1
|
Targeting DNA repair with aphidicolin sensitizes primary chronic lymphocytic leukemia cells to purine analogs. Oncotarget 2018; 7:38367-38379. [PMID: 27223263 PMCID: PMC5122396 DOI: 10.18632/oncotarget.9525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/04/2016] [Indexed: 11/25/2022] Open
Abstract
Purine analogs are among the most effective chemotherapeutic drugs for the treatment of chronic lymphocytic leukemia (CLL). However, chemoresistance and toxicity limit their clinical use. Here, we report that the DNA polymerase inhibitor aphidicolin, which displayed negligible cytotoxicity as a single agent in primary CLL cells, markedly synergizes with fludarabine and cladribine via enhanced apoptosis. Importantly, synergy was recorded regardless of CLL prognostic markers. At the molecular level, aphidicolin enhanced purine analog-induced phosphorylation of p53 and accumulation of γH2AX, consistent with increase in DNA damage. In addition, aphidicolin delayed γH2AX disappearance that arises after removal of purine analogs, suggesting that aphidicolin causes an increase in DNA damage by impeding DNA damage repair. Similarly, aphidicolin inhibited UV-induced DNA repair known to occur primarily through the nucleotide excision repair (NER) pathway. Finally, we showed that fludarabine induced nuclear import of XPA, an indispensable factor for NER, and that XPA silencing sensitized cell lines to undergo apoptosis in response to fludarabine. Together, our data indicate that aphidicolin potentiates the cytotoxicity of purine analogs by inhibiting a DNA repair pathway that involves DNA polymerases, most likely NER, and provide a rationale for manipulating it to therapeutic advantage.
Collapse
|
2
|
Beyaert M, Starczewska E, Pérez ACG, Vanlangendonck N, Saussoy P, Tilman G, De Leener A, Vekemans MC, Van Den Neste E, Bontemps F. Reevaluation of ATR signaling in primary resting chronic lymphocytic leukemia cells: evidence for pro-survival or pro-apoptotic function. Oncotarget 2017; 8:56906-56920. [PMID: 28915641 PMCID: PMC5593612 DOI: 10.18632/oncotarget.18144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/24/2017] [Indexed: 12/30/2022] Open
Abstract
ATM, primarily activated by DNA double-strand breaks, and ATR, activated by single-stranded DNA, are master regulators of the cellular response to DNA damage. In primary chronic lymphocytic leukemia (CLL) cells, ATR signaling is considered to be switched off due to ATR downregulation. Here, we hypothesized that ATR, though expressed at low protein level, could play a role in primary resting CLL cells after genotoxic stress. By investigating the response of CLL cells to UV-C irradiation, a prototypical activator of ATR, we could detect phosphorylation of ATR at Thr-1989, a marker for ATR activation, and also observed that selective ATR inhibitors markedly decreased UV-C-induced phosphorylation of ATR targets, including H2AX and p53. Similar results were obtained with the purine analogs fludarabine and cladribine that were also shown to activate ATR and induce ATR-dependent phosphorylation of H2AX and p53. In addition, ATR inhibition was found to sensitize primary CLL cells to UV-C by decreasing DNA repair synthesis. Conversely, ATR inhibition rescued CLL cells against purine analogs by reducing expression of the pro-apoptotic genes PUMA and BAX. Collectively, our study indicates that ATR signaling can be activated in resting CLL cells and play a pro-survival or pro-apoptotic role, depending on the genotoxic context.
Collapse
Affiliation(s)
- Maxime Beyaert
- de Duve Institute, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Eliza Starczewska
- de Duve Institute, Université catholique de Louvain, B-1200 Brussels, Belgium
| | | | - Nicolas Vanlangendonck
- Department of Hematology, Cliniques universitaires Saint-Luc, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Pascale Saussoy
- Service de Biologie clinique, Cliniques universitaires Saint-Luc, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Gaëlle Tilman
- Center for Human Genetic, Cliniques universitaires Saint-Luc, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Anne De Leener
- Center for Human Genetic, Cliniques universitaires Saint-Luc, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Marie-Christiane Vekemans
- Department of Hematology, Cliniques universitaires Saint-Luc, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Eric Van Den Neste
- de Duve Institute, Université catholique de Louvain, B-1200 Brussels, Belgium.,Department of Hematology, Cliniques universitaires Saint-Luc, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Françoise Bontemps
- de Duve Institute, Université catholique de Louvain, B-1200 Brussels, Belgium
| |
Collapse
|
3
|
The Role of Deoxycytidine Kinase (dCK) in Radiation-Induced Cell Death. Int J Mol Sci 2016; 17:ijms17111939. [PMID: 27879648 PMCID: PMC5133934 DOI: 10.3390/ijms17111939] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/12/2016] [Accepted: 11/14/2016] [Indexed: 12/26/2022] Open
Abstract
Deoxycytidine kinase (dCK) is a key enzyme in deoxyribonucleoside salvage and the anti-tumor activity for many nucleoside analogs. dCK is activated in response to ionizing radiation (IR)-induced DNA damage and it is phosphorylated on Serine 74 by the Ataxia-Telangiectasia Mutated (ATM) kinase in order to activate the cell cycle G2/M checkpoint. However, whether dCK plays a role in radiation-induced cell death is less clear. In this study, we genetically modified dCK expression by knocking down or expressing a WT (wild-type), S74A (abrogates phosphorylation) and S74E (mimics phosphorylation) of dCK. We found that dCK could decrease IR-induced total cell death and apoptosis. Moreover, dCK increased IR-induced autophagy and dCK-S74 is required for it. Western blotting showed that the ratio of phospho-Akt/Akt, phospho-mTOR/mTOR, phospho-P70S6K/P70S6K significantly decreased in dCK-WT and dCK-S74E cells than that in dCK-S74A cells following IR treatment. Reciprocal experiment by co-immunoprecipitation showed that mTOR can interact with wild-type dCK. IR increased polyploidy and decreased G2/M arrest in dCK knock-down cells as compared with control cells. Taken together, phosphorylated and activated dCK can inhibit IR-induced cell death including apoptosis and mitotic catastrophe, and promote IR-induced autophagy through PI3K/Akt/mTOR pathway.
Collapse
|
4
|
Beyaert M, Starczewska E, Van Den Neste E, Bontemps F. A crucial role for ATR in the regulation of deoxycytidine kinase activity. Biochem Pharmacol 2016; 100:40-50. [DOI: 10.1016/j.bcp.2015.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/20/2015] [Indexed: 11/15/2022]
|
5
|
Bunimovich YL, Nair-Gill E, Riedinger M, McCracken MN, Cheng D, McLaughlin J, Radu CG, Witte ON. Deoxycytidine kinase augments ATM-Mediated DNA repair and contributes to radiation resistance. PLoS One 2014; 9:e104125. [PMID: 25101980 PMCID: PMC4125169 DOI: 10.1371/journal.pone.0104125] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 07/10/2014] [Indexed: 11/19/2022] Open
Abstract
Efficient and adequate generation of deoxyribonucleotides is critical to successful DNA repair. We show that ataxia telangiectasia mutated (ATM) integrates the DNA damage response with DNA metabolism by regulating the salvage of deoxyribonucleosides. Specifically, ATM phosphorylates and activates deoxycytidine kinase (dCK) at serine 74 in response to ionizing radiation (IR). Activation of dCK shifts its substrate specificity toward deoxycytidine, increases intracellular dCTP pools post IR, and enhances the rate of DNA repair. Mutation of a single serine 74 residue has profound effects on murine T and B lymphocyte development, suggesting that post-translational regulation of dCK may be important in maintaining genomic stability during hematopoiesis. Using [(18)F]-FAC, a dCK-specific positron emission tomography (PET) probe, we visualized and quantified dCK activation in tumor xenografts after IR, indicating that dCK activation could serve as a biomarker for ATM function and DNA damage response in vivo. In addition, dCK-deficient leukemia cell lines and murine embryonic fibroblasts exhibited increased sensitivity to IR, indicating that pharmacologic inhibition of dCK may be an effective radiosensitization strategy.
Collapse
Affiliation(s)
- Yuri L. Bunimovich
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, California, United States of America
| | - Evan Nair-Gill
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Mireille Riedinger
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Melissa N. McCracken
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Donghui Cheng
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jami McLaughlin
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Caius G. Radu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, California, United States of America
- Ahmanson Translational Imaging Division, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Owen N. Witte
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
6
|
Weng T, Karmouty-Quintana H, Garcia-Morales LJ, Molina JG, Pedroza M, Bunge RR, Bruckner BA, Loebe M, Seethamraju H, Blackburn MR. Hypoxia-induced deoxycytidine kinase expression contributes to apoptosis in chronic lung disease. FASEB J 2013; 27:2013-26. [PMID: 23392349 DOI: 10.1096/fj.12-222067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by persistent inflammation and tissue remodeling and is a leading cause of death in the United States. Increased apoptosis of pulmonary epithelial cells is thought to play a role in COPD development and progression. Identification of signaling pathways resulting in increased apoptosis in COPD can be used in the development of novel therapeutic interventions. Deoxyadenosine (dAdo) is a DNA breakdown product that amplifies lymphocyte apoptosis by being phosphorylated to deoxyadenosine triphosphate (dATP). dAdo is maintained at low levels by adenosine deaminase (ADA). This study demonstrated that mice lacking ADA developed COPD manifestations in association with elevated dAdo and dATP levels and increased apoptosis in the lung. Deoxycitidine kinase (DCK), a major enzyme for dAdo phosphorylation, was up-regulated in mouse and human airway epithelial cells in association with air-space enlargement. Hypoxia was identified as a novel regulator of DCK, and inhibition of DCK resulted in diminished dAdo-mediated apoptosis in the lungs. Our results suggest that activating the dAdo-DCK-dATP pathway directly results in increased apoptosis in the lungs of mice with air-space enlargement and suggests a novel therapeutic target for the treatment of COPD.
Collapse
Affiliation(s)
- Tingting Weng
- Department of Biochemistry and Molecular Biology, University of Texas–Houston Medical School, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ju J, Qi Z, Cai X, Cao P, Huang Y, Wang S, Liu N, Chen Y. The apoptotic effects of toosendanin are partially mediated by activation of deoxycytidine kinase in HL-60 cells. PLoS One 2012; 7:e52536. [PMID: 23300702 PMCID: PMC3531419 DOI: 10.1371/journal.pone.0052536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/15/2012] [Indexed: 12/17/2022] Open
Abstract
Triterpenoid toosendanin (TSN) exhibits potent cytotoxic activity through inducing apoptosis in a variety of cancer cell lines. However, the target and mechanism of the apoptotic effects by TSN remain unknown. In this study, we captured a specific binding protein of TSN in HL-60 cells by serial affinity chromatography and further identified it as deoxycytidine kinase (dCK). Combination of direct activation of dCK and inhibition of TSN-induced apoptosis by a dCK inhibitor confirmed that dCK is a target for TSN partially responsible for the apoptosis in HL-60 cells. Moreover, the activation of dCK by TSN was a result of conformational change, rather than auto-phosphorylation. Our results further imply that, in addition to the dATP increase by dCK activation in tumor cells, dCK may also involve in the apoptotic regulation.
Collapse
Affiliation(s)
- Jianming Ju
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, China
- Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zhichao Qi
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, China
| | - Xueting Cai
- Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Peng Cao
- Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yan Huang
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, China
| | - Shuzhen Wang
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, China
| | - Nan Liu
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, China
| | - Yijun Chen
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
8
|
Yang C, Lee M, Hao J, Cui X, Guo X, Smal C, Bontemps F, Ma S, Liu X, Engler D, Parker WB, Xu B. Deoxycytidine kinase regulates the G2/M checkpoint through interaction with cyclin-dependent kinase 1 in response to DNA damage. Nucleic Acids Res 2012; 40:9621-32. [PMID: 22850745 PMCID: PMC3479177 DOI: 10.1093/nar/gks707] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Deoxycytidine kinase (dCK) is a rate limiting enzyme critical for phosphorylation of endogenous deoxynucleosides for DNA synthesis and exogenous nucleoside analogues for anticancer and antiviral drug actions. dCK is activated in response to DNA damage; however, how it functions in the DNA damage response is largely unknown. Here, we report that dCK is required for the G2/M checkpoint in response to DNA damage induced by ionizing radiation (IR). We demonstrate that the ataxia–telangiectasia-mutated (ATM) kinase phosphorylates dCK on Serine 74 to activate it in response to DNA damage. We further demonstrate that Serine 74 phosphorylation is required for initiation of the G2/M checkpoint. Using mass spectrometry, we identified a protein complex associated with dCK in response to DNA damage. We demonstrate that dCK interacts with cyclin-dependent kinase 1 (Cdk1) after IR and that the interaction inhibits Cdk1 activity both in vitro and in vivo. Together, our results highlight the novel function of dCK and provide molecular insights into the G2/M checkpoint regulation in response to DNA damage.
Collapse
Affiliation(s)
- Chunying Yang
- Department of Radiation Oncology, The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Amsailale R, Van Den Neste E, Arts A, Starczewska E, Bontemps F, Smal C. Phosphorylation of deoxycytidine kinase on Ser-74: impact on kinetic properties and nucleoside analog activation in cancer cells. Biochem Pharmacol 2012; 84:43-51. [PMID: 22490700 DOI: 10.1016/j.bcp.2012.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/23/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
Abstract
Deoxycytidine kinase (dCK) (EC 2.7.1.74) is a key enzyme in the activation of several therapeutic nucleoside analogs (NA). Its activity can be increased in vivo by Ser-74 phosphorylation, a property that could be used for enhancing NA activation and clinical efficacy. In line with this, studies with recombinant dCK showed that mimicking Ser-74 phosphorylation by a S74E mutation increases its activity toward pyrimidine analogs. However, purine analogs had not been investigated. Here, we show that the S74E mutation increased the k(cat) for cladribine (CdA) by 8- or 3-fold, depending on whether the phosphoryl donor was ATP or UTP, for clofarabine (CAFdA) by about 2-fold with both ATP and UTP, and for fludarabine (F-Ara-A) by 2-fold, but only with UTP. However, the catalytic efficiencies (k(cat)/Km) were not, or slightly, increased. The S74E mutation also sensitized dCK to feed-back inhibition by dCTP, regardless of the phosphoryl donor. Importantly, we did not observe an increase of endogenous dCK activity toward purine analogs after in vivo-induced increase of Ser-74 phosphorylation. Accordingly, treatment of CLL cells with aphidicolin, which enhances dCK activity through Ser-74 phosphorylation, did not modify the conversion of CdA or F-Ara-A into their active triphosphate form. Nevertheless, the same treatment enhanced activation of gemcitabine (dFdC) into dFdCTP in CLL as well as in HCT-116 cells and produced synergistic cytotoxicity. We conclude that increasing phosphorylation of dCK on Ser-74 might constitute a valuable strategy to enhance the clinical efficacy of some NA, like dFdC, but not of CdA or F-Ara-A.
Collapse
Affiliation(s)
- Rachid Amsailale
- Laboratory of Physiological Chemistry, de Duve Institute & Université catholique de Louvain, B-1200 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
10
|
Smal C, Ntamashimikiro S, Arts A, Van Den Neste E, Bontemps F. Influence of phosphorylation of THR-3, SER-11, and SER-15 on deoxycytidine kinase activity and stability. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 29:404-7. [PMID: 20544527 DOI: 10.1080/15257771003741216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Deoxycytidine kinase (dCK) is a key enzyme in the salvage of deoxyribonucleosides and in the activation of several anticancer and antiviral nucleoside analogues. We have recently shown that dCK is a phosphoprotein. Four in vivo phosphorylation sites were identified: Thr-3, Ser-11, Ser-15, and Ser-74. Site-directed mutagenesis demonstrated that phosphorylation of Ser-74, the major phosphorylated residue, strongly influences dCK activity in eucaryotic cells. Here, we show that phosphorylation of the three other sites, located in the N-terminal extremity of the protein, does not significantly modify dCK activity, but phosphorylation of Thr-3 could promote dCK stability.
Collapse
Affiliation(s)
- C Smal
- Université Catholique de Louvain, de Duve Institute, Brussels, Belgium.
| | | | | | | | | |
Collapse
|
11
|
Casein kinase 1delta activates human recombinant deoxycytidine kinase by Ser-74 phosphorylation, but is not involved in the in vivo regulation of its activity. Arch Biochem Biophys 2010; 502:44-52. [PMID: 20637175 DOI: 10.1016/j.abb.2010.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/09/2010] [Accepted: 07/11/2010] [Indexed: 11/20/2022]
Abstract
Deoxycytidine kinase (dCK) is a key enzyme in the salvage of deoxynucleosides and in the activation of several anticancer and antiviral nucleoside analogues. We recently showed that dCK was activated in vivo by phosphorylation of Ser-74. However, the protein kinase responsible was not identified. Ser-74 is located downstream a Glu-rich region, presenting similarity with the consensus phosphorylation motif of casein kinase 1 (CKI), and particularly of CKI delta. We showed that recombinant CKI delta phosphorylated several residues of bacterially overexpressed dCK: Ser-74, but also Ser-11, Ser-15, and Thr-72. Phosphorylation of dCK by CKI delta correlated with increased activity reaching at least 4-fold. Site-directed mutagenesis demonstrated that only Ser-74 phosphorylation was involved in dCK activation by CKI delta, strengthening the key role of this residue in the control of dCK activity. However, neither CKI delta inhibitors nor CKI delta siRNA-mediated knock-down modified Ser-74 phosphorylation or dCK activity in cultured cells. Moreover, these approaches did not prevent dCK activation induced by treatments enhancing Ser-74 phosphorylation. Taken together, the data preclude a role of CKI delta in the regulation of dCK activity in vivo. Nevertheless, phosphorylation of dCK by CKI delta could be a useful tool for elucidating the influence of Ser-74 phosphorylation on the structure-activity relationships in the enzyme.
Collapse
|
12
|
de Viron E, Knoops L, Connerotte T, Smal C, Michaux L, Saussoy P, Vannuffel P, Beert E, Vekemans MC, Hermans C, Bontemps F, Van Den Neste E. Impaired up-regulation of polo-like kinase 2 in B-cell chronic lymphocytic leukaemia lymphocytes resistant to fludarabine and 2-chlorodeoxyadenosine: a potential marker of defective damage response. Br J Haematol 2009; 147:641-52. [PMID: 19764992 DOI: 10.1111/j.1365-2141.2009.07900.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The functional evaluation of ataxia telangiectasia mutated (ATM) and p53 was recently developed in B-cell chronic lymphocytic leukaemia (B-CLL), a disease in which the response to DNA damage is frequently altered. We identified a novel biomarker of chemosensitivity based on the induction of DNA damage by the purine nucleoside analogues (PNA) fludarabine and 2-chlorodeoxyadenosine (CdA). Using genome-wide expression profiling, it was observed that, in chemosensitive samples, PNA predominantly increased the expression of p53-dependent genes, among which PLK2 was the most highly activated at early time points. Conversely, in chemoresistant samples, p53-dependent and PLK2 responses were abolished. Using a quantitative real time polymerase chain reaction, we confirmed that PNA dose- and time-dependently increased PLK2 expression in chemosensitive but not chemoresistant B-CLL samples. Analysis of a larger cohort of B-CLL patients showed that cytotoxicity induced by PNA correlated well with PLK2 mRNA induction. Interestingly, we observed that failure to up-regulate PLK2 following PNA and chemoresistance were not strictly correlated with structural alterations in the TP53 gene. In conclusion, we propose that testing PLK2 activation after a 24-h incubation with PNA could be used to investigate the functional integrity of DNA damage-response pathways in B-CLL cells, and predict clinical sensitivity to these drugs.
Collapse
Affiliation(s)
- Emeline de Viron
- De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Smal C, Van Den Neste E, Maerevoet M, Poiré X, Théate I, Bontemps F. Positive regulation of deoxycytidine kinase activity by phosphorylation of Ser-74 in B-cell chronic lymphocytic leukaemia lymphocytes. Cancer Lett 2007; 253:68-73. [PMID: 17350163 DOI: 10.1016/j.canlet.2007.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Accepted: 01/15/2007] [Indexed: 11/22/2022]
Abstract
Deoxycytidine kinase (dCK) activates several antileukaemic nucleoside analogues. We have recently reported that the activity of dCK, overexpressed in HEK 293T cells, correlates with its phosphorylation level on Ser-74. Here, we show that dCK from B-cell chronic lymphocytic leukaemia (B-CLL) lymphocytes can be detected by an anti-phospho-Ser-74 antibody and that interindividual variability in dCK activity is related to its phosphorylation level on Ser-74. Moreover, pharmacological intervention modified Ser-74 phosphorylation, in close parallel with changes in dCK activity. These results suggest that activation of dCK via phosphorylation of Ser-74 might constitute a new therapeutic strategy to enhance activation and efficacy of nucleoside analogues.
Collapse
Affiliation(s)
- Caroline Smal
- Laboratory of Physiological Chemistry, Christian de Duve Institute of Cellular Pathology and Université catholique de Louvain, B-1200 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
14
|
Smal C, Vertommen D, Bertrand L, Rider MH, van den Neste E, Bontemps F. Identification of phosphorylation sites on human deoxycytidine kinase after overexpression in eucaryotic cells. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2007; 25:1141-6. [PMID: 17065079 DOI: 10.1080/15257770600890194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Compelling evidence suggests that deoxycytidine kinase (dCK), a key enzyme in the salvage of deoxyribonucleosides and in the activation of clinically relevant nucleoside analogues, can be regulated by reversible phosphorylation. In this study, we show that dCK overexpressed in HEK-293T cells was labelled after incubation of the cells with [32P]orthophosphate. Tandem mass spectrometry allowed the identification of 4 in vivo phosphorylation sites, Thr3, Ser11, Ser15, and Ser74. These results provide the first evidence that dCK is constitutively multiphosphorylated in intact cells. In addition, site-directed mutagenesis demonstrated that phosphorylation of Ser74, the major in vivo phosphorylation site, is crucial for dCK activity.
Collapse
Affiliation(s)
- C Smal
- Laboratory of Physiological Chemistry, Christian de Duve Institute of Cellular Pathology, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
15
|
Keszler G, Spasokoukotskaja T, Sasvári-Székely M, Eriksson S, Staub M. Deoxycytidine kinase is reversibly phosphorylated in normal human lymphocytes. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2007; 25:1147-51. [PMID: 17065080 DOI: 10.1080/15257770600894345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The activity of deoxycytidine kinase (dCK) has been shown to be enhanced upon genotoxic stress in human lymphocytes, and reversible phosphorylation of the enzyme has been implicated in the activation process. Here, we provide compelling evidence that dCK is a cytosolic phosphoprotein. Two-dimensional gel electrophoresis revealed that dCK has several differentially charged isoforms in cells. One-third of total cellular dCK was bound to a phosphoprotein-binding column irrespective of its activity levels, indicating that other mechanisms rather than phosphorylation alone might also be involved in the stimulation of enzyme activity. We excluded the possibility that activated dCK is translocated to the nucleus, but identified a dCK isoform of low abundance with a higher molecular weight in the nuclear fractions.
Collapse
Affiliation(s)
- G Keszler
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
16
|
Lotfi K, Karlsson K, Fyrberg A, Juliusson G, Jonsson V, Peterson C, Eriksson S, Albertioni F. The pattern of deoxycytidine- and deoxyguanosine kinase activity in relation to messenger RNA expression in blood cells from untreated patients with B-cell chronic lymphocytic leukemia. Biochem Pharmacol 2006; 71:882-90. [PMID: 16436271 DOI: 10.1016/j.bcp.2005.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 12/07/2005] [Accepted: 12/07/2005] [Indexed: 11/26/2022]
Abstract
Deoxycytidine kinase (dCK) and deoxyguanosine kinase (dGK) catalyze the first step in the intracellular cascade of fludarabine (2-fluoroadenine-beta-D-arabinofuranoside) and cladribine (2-chlorodeoxyadenosine) phosphorylation, which leads to activation of these prodrugs, commonly used for treatment of chronic lymphocytic leukemia (CLL). Thus, resistance to nucleoside analogues may primarily be due to low levels of deoxynucleoside kinase activity. The purpose of this study was to investigate the activity profiles of dCK and dGK and characterize the possible relationship between the levels of dCK enzymatic activities and mRNA levels in B-CLL cells from untreated patient samples in an attempt to determine the best approach for predicting sensitivity to nucleoside analogues and thereby optimizing treatment of CLL. For this purpose, dCK and dGK analyses were done in blood cells from 59 untreated symptomatic patients with CLL. The dGK activity towards 2-chlorodeoxyadenosine was significantly lower than of dCK (median 73 pmol/mg protein/min (85-121, 95% CI) versus 353 pmol/mg protein/min (331-421)). The median dCK mRNA level was 0.107 (0.096-0.120, 95% CI). There was a lack of correlation between the activities of dCK and dGK, which indicates that these proteins are regulated independently. We also found that the dCK and dGK activity measurement towards their endogenous substrates were comparable to the nucleoside analogues tested. Such variations in enzyme activities and mRNA levels may well explain differences in clinical responses to treatment. There was no correlation between the levels of dCK mRNAs and enzymatic activities using a quantitative real-time PCR procedure. Sequencing of dCK mRNA did not reveal alternate splicing or mutations in the coding region. The relation between activity and mRNA levels was studied by short interfering RNA (siRNA) method, which showed that in the siRNA treated cells the down-regulation of dCK expression, and activity followed each other. However, in control cells the mRNA levels remained stable but the protein activity markedly decreased. These data demonstrate that the dCK activity is not reflected by dCK mRNA expression that indicates a post-translational mechanism(s).
Collapse
Affiliation(s)
- Kourosh Lotfi
- Department of Medicine and Care, Clinical Pharmacology, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Smal C, Vertommen D, Bertrand L, Ntamashimikiro S, Rider MH, Van Den Neste E, Bontemps F. Identification of in vivo phosphorylation sites on human deoxycytidine kinase. Role of Ser-74 in the control of enzyme activity. J Biol Chem 2005; 281:4887-93. [PMID: 16361699 DOI: 10.1074/jbc.m512129200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deoxycytidine kinase (dCK) catalyzes the rate-limiting step of the deoxyribonucleoside salvage pathway in mammalian cells and plays a key role in the activation of numerous nucleoside analogues used in anti-cancer and antiviral chemotherapy. Although compelling evidence indicated that dCK activity might be regulated by phosphorylation/dephosphorylation, direct demonstration was lacking. Here we showed that dCK overexpressed in HEK 293T cells was labeled after incubating the cells with [32P]orthophosphate. Sorbitol, which was reported to decrease dCK activity, also decreased the labeling of dCK. These results indicated that dCK may exist as a phosphoprotein in vivo and that its activity can be correlated with its phosphorylation level. After purification of 32P-labeled dCK, digestion by trypsin, and analysis of the radioactive peptides by tandem mass spectrometry, the following four in vivo phosphorylation sites were identified: Thr-3, Ser-11, Ser-15, and Ser-74, the latter being the major phosphorylation site. Site-directed mutagenesis and use of an anti-phospho-Ser-74 antibody demonstrated that Ser-74 phosphorylation was crucial for dCK activity in HEK 293T cells, whereas phosphorylation of other identified sites did not seem essential. Phosphorylation of Ser-74 was also detected on endogenous dCK in leukemic cells, in which the Ser-74 phosphorylation state was increased by agents that enhanced dCK activity. Our study provided direct evidence that dCK activity can be controlled by phosphorylation in intact cells and highlights the importance of Ser-74 for dCK activity.
Collapse
Affiliation(s)
- Caroline Smal
- Laboratory of Physiological Chemistry and Hormone and Metabolic Research Unit, Christian de Duve Institute of Cellular Pathology, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
18
|
Keszler G, Virga S, Spasokoukotskaja T, Bauer PI, Sasvari-Szekely M, Staub M. Activation of deoxycytidine kinase by deoxyadenosine: implications in deoxyadenosine-mediated cytotoxicity. Arch Biochem Biophys 2005; 436:69-77. [PMID: 15752710 DOI: 10.1016/j.abb.2005.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 01/13/2005] [Indexed: 11/17/2022]
Abstract
The inborn deficiency of adenosine deaminase is characterised by accumulation of excess amounts of cytotoxic deoxyadenine nucleotides in lymphocytes. Formation of dATP requires phosphorylation of deoxyadenosine by deoxycytidine kinase (dCK), the main nucleoside salvage enzyme in lymphoid cells. Activation of dCK by a number of genotoxic agents including 2-chlorodeoxyadenosine, a deamination-resistant deoxyadenosine analogue, was found previously. Here, we show that deoxyadenosine itself is also a potent activator of dCK if its deamination was prevented by the adenosine deaminase inhibitor deoxycoformycin. In contrast, deoxycytidine was found to prevent stimulation of dCK by various drugs. The activated form of dCK was more resistant to tryptic digestion, indicating that dCK undergoes a substrate-independent conformational change upon activation. Elevated dCK activities were accompanied by decreased pyrimidine nucleotide levels whereas cytotoxic dATP pools were selectively enhanced. dCK activity was found to be downregulated by growth factor and MAP kinase signalling, providing a potential tool to slow the rate of dATP accumulation in adenosine deaminase deficiency.
Collapse
Affiliation(s)
- Gergely Keszler
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, P.O. Box 260, H-1444 Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
19
|
Smal C, Bertrand L, Van den Neste E, Cardoen S, Veiga-da-Cunha M, Marie S, Race V, Ferrant A, Van den Berghe G, Bontemps F. New evidences for a regulation of deoxycytidine kinase activity by reversible phosphorylation. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 23:1363-5. [PMID: 15571259 DOI: 10.1081/ncn-200027620] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Recent studies indicate that deoxycytidine kinase (dCK), which activates various nucleoside analogues used in antileukemic therapy, can be regulated by post-translational modification, most probably through reversible phosphorylation. To further unravel its regulation, dCK was overexpressed in HEK-293 cells as a His-tag fusion protein. Western blot analysis showed that purified overexpressed dCK appears as doublet protein bands. The slower band disappeared after treatment with protein phosphatase lambda (PP lambda) in parallel with a decrease of dCK activity, providing additional arguments in favor of both phosphorylated and unphosphorylated forms of dCK.
Collapse
Affiliation(s)
- C Smal
- Laboratory of Physiological Chemistry, Christian de Duve Institute of Cellular Pathology, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Keszler G, Spasokoukotskaja T, Virga S, Sasvari-Szekely M, Staub M. Stimulation of deoxycytidine kinase results in prolonged maintenance of the enzyme activity. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 23:1357-61. [PMID: 15571258 DOI: 10.1081/ncn-200027618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A number of genotoxic and antiproliferative agents such as 2-chlorodeoxyadenosine (Cladribine; CdA) and aphidicolin (APC) have been shown to stimulate the activity of deoxycytidine kinase, the main deoxynucleoside salvage enzyme in lymphocytes. Here we show that enzyme activation could be prevented by treating cells with the membrane-permeant calcium chelator BAPTA-AM. Long-term incubations demonstrated that CdA and APC not only stimulated but also sustained deoxycytidine kinase activity in the cellular context, as compared to the control and BAPTA-AM treated enzyme activities.
Collapse
Affiliation(s)
- G Keszler
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
21
|
Keszler G, Spasokoukotskaja T, Csapo Z, Virga S, Staub M, Sasvari-Szekely M. Selective increase of dATP pools upon activation of deoxycytidine kinase in lymphocytes: implications in apoptosis. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 23:1335-42. [PMID: 15571254 DOI: 10.1081/ncn-200027586] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Stimulation of the activity of deoxycytidine kinase (dCK), the principal deoxynucleoside salvage enzyme, has been recently considered as a protective cellular response to a wide range of agents interfering with DNA repair and apoptosis. In light of this, the potential contribution of dCK activation to apoptosis induction--presumably by supplying dATP or its analogues for the apoptosome formation--deserves consideration. Two-hour exposure of human tonsillar lymphocytes to 2-chloro-deoxyadenosine (CdA) led to a two-fold activation of dCK. This activation process was inhibited by pifithrin-alpha, a potent inhibitor of p53. When the dNTP pools were determined, both deoxypyrimidine triphosphate and dGTP pools were reduced after the treatments, while dATP levels elevated by 62%, 77% and 50% in the CdA, aphidicolin and etoposide-treated cells, respectively. We assume that dCK activation elicited by cellular damage might be a proapoptotic factor in terms of generating dATP well before the release of cytochrome c and deoxyguanosine kinase from mitochondria.
Collapse
Affiliation(s)
- Gergely Keszler
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
22
|
Smal C, Cardoen S, Bertrand L, Delacauw A, Ferrant A, Van den Berghe G, Van Den Neste E, Bontemps F. Activation of deoxycytidine kinase by protein kinase inhibitors and okadaic acid in leukemic cells. Biochem Pharmacol 2004; 68:95-103. [PMID: 15183121 DOI: 10.1016/j.bcp.2004.02.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Accepted: 02/25/2004] [Indexed: 11/29/2022]
Abstract
Deoxycytidine kinase (dCK) is a key enzyme in the deoxynucleoside salvage pathway and in the activation of numerous nucleoside analogues used in cancer and antiviral chemotherapy. Recent studies indicate that dCK activity might be regulated through reversible phosphorylation. Here, we report the effects of a large panel of protein kinase inhibitors on dCK activity in the B-leukemia cell line EHEB, both in basal conditions and in the presence of the nucleoside analogue 2-chloro-2'-deoxyadenosine (CdA) which induces activation of dCK. Except staurosporine and H-7 that significantly reduced the activation of dCK by CdA, no specific protein kinase inhibitor diminished basal dCK activity or its activation by CdA. In contrast, genistein, a general protein tyrosine kinase inhibitor, and AG-490, an inhibitor of JAK2 and JAK3, increased basal dCK activity more than two-fold. Two specific inhibitors of the MAPK/ERK pathway, PD-98059 and U-0126, also enhanced dCK activity. These data suggest that the JAK/MAPK pathway could be involved in the regulation of dCK. Moreover, we show that the activity of dCK, raised by CdA, can return to its initial level by treatment with protein phosphatase-2A (PP2A). Accordingly, dCK activity in intact cells increased upon incubation with okadaic acid (OA) at concentrations that should inhibit PP2A, but not protein phosphatase-1. Activation of dCK by protein kinase inhibitors and OA was also observed in CCRF-CEM cells and in chronic lymphocytic leukemia B-lymphocytes, suggesting a general mechanism of post-translational regulation of dCK, which could be exploited to enhance the activation of antileukemic nucleoside analogues.
Collapse
Affiliation(s)
- Caroline Smal
- Laboratory of Physiological Chemistry, Christian de Duve Institute of Cellular Pathology, Avenue Hippocrate 75, UCL-ICP 7539, B-1200 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Keszler G, Spasokoukotskaja T, Csapo Z, Talianidis I, Eriksson S, Staub M, Sasvari-Szekely M. Activation of deoxycytidine kinase in lymphocytes is calcium dependent and involves a conformational change detectable by native immunostaining. Biochem Pharmacol 2004; 67:947-55. [PMID: 15104248 DOI: 10.1016/j.bcp.2003.10.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Deoxycytidine kinase (dCK), the principal deoxynucleoside salvage enzyme, plays a seminal role in the bioactivation of a wide array of cytotoxic nucleoside analogues. Recently, activation of dCK has been considered as a protective cellular response to a number of DNA-damaging agents in lymphocytes. Regarding the molecular mechanism of the enzyme activation, a post-translational modification by protein phosphorylation has been suggested. Here we provide evidence that both the activation process and the maintenance of the activated state require free cytosolic calcium. BAPTA-AM, a cell-permeable calcium chelator selectively inhibited the activation of dCK in a time- and concentration-dependent manner while extracellular calcium depletion had no effect. On the other hand, elevation of cytoplasmic calcium levels by thapsigargin did not potentiate the enzyme, referring to the permissive function of calcium in the activation process. Denaturing Western blots of extracts from lymphocytes incubated with 2-chlorodeoxyadenosine, aphidicolin and/or BAPTA-AM clearly demonstrated that dCK protein levels were unchanged during these treatments. However, a striking correlation was found between enzyme activity and the intensity of dCK-specific signals in native Western blots. Extracts from CdA-treated cells were much better recognized by the antibody raised against the C-terminal peptide of dCK than the BAPTA-AM-treated samples. These results indicate that the calcium-dependent activation of dCK is accompanied by a conformational change that renders the C-terminal epitope more accessible to the antibody.
Collapse
Affiliation(s)
- Gergely Keszler
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, P.O. Box 260, H-1444 Budapest, Hungary.
| | | | | | | | | | | | | |
Collapse
|