1
|
Zhuang W, Mun SY, Park WS. Direct effects of antipsychotics on potassium channels. Biochem Biophys Res Commun 2025; 749:151344. [PMID: 39842331 DOI: 10.1016/j.bbrc.2025.151344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Schizophrenia (SCZ) and bipolar disorder (BD) and are severe psychiatric conditions that contribute to disability and increased healthcare costs globally. Although first-, second-, and third-generation antipsychotics are available for treating BD and SCZ, most have various side effects unrelated to their unique functions. Many antipsychotics affect K+ channels (Kv, KCa, Kir, K2P, and other channels), which change the functions of various organs. This review summarizes the biological actions of antipsychotics, including off-target side effects involving K+ channels.
Collapse
Affiliation(s)
- Wenwen Zhuang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Seo-Yeong Mun
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| |
Collapse
|
2
|
Teisseyre A, Palko-Labuz A, Sroda-Pomianek K, Michalak K. Voltage-Gated Potassium Channel Kv1.3 as a Target in Therapy of Cancer. Front Oncol 2019; 9:933. [PMID: 31612103 PMCID: PMC6769076 DOI: 10.3389/fonc.2019.00933] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
Voltage-gated potassium channel Kv1.3 is an integral membrane protein, which is selectively permeable for potassium ions and is activated upon a change of membrane potential. Channel activation enables transportation of potassium ions down their electrochemical gradient. Kv1.3 channel is expressed in many cell types, both normal and cancer. Activity of the channel plays an important role in cell proliferation and apoptosis. Inhibition of Kv1.3 channel may be beneficial in therapy of several diseases including some cancer disorders. This review focuses on Kv1.3 channel as a new potentially attractive molecular target in cancer therapy. In the first part, changes in the channel expression in selected cancer disorders are described. Then, the role of the channel activity in cancer cell proliferation and apoptosis is presented. Finally, it is shown that some low molecular weight organic inhibitors of the channel including selected biologically active plant-derived polycyclic compounds may selectively induce apoptosis of Kv1.3-expressing cancer cells while sparing normal cells and healthy organs. These compounds may be promising candidates for putative application in therapy of some cancer disorders, such as melanoma, pancreatic ductal adenocarcinoma (PDAC), or B-type chronic lymphocytic leukemia (B-CLL).
Collapse
Affiliation(s)
- Andrzej Teisseyre
- Department of Biophysics, Wroclaw Medical University, Wrocław, Poland
| | - Anna Palko-Labuz
- Department of Biophysics, Wroclaw Medical University, Wrocław, Poland
| | | | - Krystyna Michalak
- Department of Biophysics, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
3
|
Teisseyre A, Palko-Labuz A, Uryga A, Michalak K. The Influence of 6-Prenylnaringenin and Selected Non-prenylated Flavonoids on the Activity of Kv1.3 Channels in Human Jurkat T Cells. J Membr Biol 2018; 251:695-704. [PMID: 30187077 DOI: 10.1007/s00232-018-0046-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/29/2018] [Indexed: 01/03/2023]
Abstract
The influence of a prenylated flavonoid-6-prenylnaringenin (6-PR) and selected non-prenylated flavonoids: acacetin, chrysin, baicalein, wogonin, and luteolin on the activity of voltage-gated potassium channels Kv1.3 was investigated in human leukemic Jurkat T cells. Electrophysiological measurements were accompanied by studies on the cytotoxic effect of the examined compounds on Jurkat T cells. Electrophysiological studies were performed using the whole-cell patch-clamp technique. Cell viability was determined using the MTT assay. 6-PR inhibited Kv1.3 channels in Jurkat T cells in a concentration-dependent manner. The estimated value of the half-blocking concentration (EC50) was about 5.76 µM. Among non-prenylated flavonoids, acacetin and chrysin inhibited Kv1.3 channels in Jurkat T cells when applied at the concentration of 30 µM, whereas baicalein, wogonin, and luteolin were ineffective at this concentration. The inhibitory effects of acacetin and chrysin on Kv1.3 channels were significantly less potent than the inhibition caused by 6-PR. All tested compounds inhibited growth of Jurkat T cells in a concentration-dependent manner. Wogonin and chrysin were the most cytotoxic flavonoids tested, whereas baicalein and 6-PR were the least cytotoxic compounds. In accordance to our hypothesis the prenylated flavonoid (6-PR) was much more effective inhibitor of Kv1.3 channels than non-prenylated compounds selected for this study. The inhibition of Kv1.3 channels by 6-PR, acacetin, and chrysin was not related to cytotoxicity of these compounds. The channels' inhibition might be involved in anti-proliferative and pro-apoptotic effects of 6-PR, acacetin and chrysin observed in cancer cell lines expressing these channels.
Collapse
Affiliation(s)
- Andrzej Teisseyre
- Department of Biophysics, Wroclaw Medical University, ul. Chałubińskiego 10, 50-368, Wrocław, Poland.
| | - Anna Palko-Labuz
- Department of Biophysics, Wroclaw Medical University, ul. Chałubińskiego 10, 50-368, Wrocław, Poland
| | - Anna Uryga
- Department of Biophysics, Wroclaw Medical University, ul. Chałubińskiego 10, 50-368, Wrocław, Poland
| | - Krystyna Michalak
- Department of Biophysics, Wroclaw Medical University, ul. Chałubińskiego 10, 50-368, Wrocław, Poland
| |
Collapse
|
4
|
Chae YJ, Choi BH, Choi JS, Hahn SJ. Block of Kv4.3 potassium channel by trifluoperazine independent of CaMKII. Neurosci Lett 2014; 578:159-64. [PMID: 24993295 DOI: 10.1016/j.neulet.2014.06.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/12/2014] [Accepted: 06/23/2014] [Indexed: 11/24/2022]
Abstract
Trifluoperazine, a trifluoro-methyl phenothiazine derivative, is widely used in the management of schizophrenia and related psychotic disorders. We studied the effects of trifluoperazine on Kv4.3 currents expressed in CHO cells using the whole-cell patch-clamp technique. Trifluoperazine blocked Kv4.3 in a concentration-dependent manner with an IC50 value of 8.0±0.4 μM and a Hill coefficient of 2.1±0.1. Trifluoperazine also accelerated the inactivation and activation (time-to-peak) kinetics in a concentration-dependent manner. The effects of trifluoperazine on Kv4.3 were completely reversible after washout. The effects of trifluoperazine were not affected by the pretreatment of KN93, which is another CaMKII inhibitor. In addition, the inclusion of CaMKII inhibitory peptide 281-309 in the pipette solution did not modify the effect of trifluoperazine on Kv4.3. Trifluoperazine shifted the activation curve of Kv4.3 in a hyperpolarizing direction but did not affect the slope factor. The block of Kv4.3 by trifluoperazine was voltage-dependent with a steep increase across the voltage range of channel activation. Voltage dependence was also observed over the full range of activation (δ=0.18). Trifluoperazine slowed the time course for recovery from inactivation of Kv4.3. Our results indicated that trifluoperazine blocked Kv4.3 by preferentially binding to the open state of the channel. This effect was not mediated via the inhibition of CaMKII activity.
Collapse
Affiliation(s)
- Yun Ju Chae
- Department of Physiology, Cell Death and Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Bok Hee Choi
- Department of Pharmacology, Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-180, Republic of Korea
| | - Jin-Sung Choi
- College of Pharmacy, Integrated Research Institute of Pharmaceutical, The Catholic University of Korea, 43-1 Yeokgok 2-dong, Wonmi-gu, Bucheon, Gyeonggi-do, Republic of Korea
| | - Sang June Hahn
- Department of Physiology, Cell Death and Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea.
| |
Collapse
|
5
|
Hong DH, Son YK, Li H, Jung ID, Park YM, Jung WK, Kim HS, Choi IW, Park WS. The calmodulin inhibitor and antipsychotic drug trifluoperazine inhibits voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. Biochem Biophys Res Commun 2014; 443:321-5. [DOI: 10.1016/j.bbrc.2013.11.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
|
6
|
Pores-Fernando AT, Zweifach A. Calcium influx and signaling in cytotoxic T-lymphocyte lytic granule exocytosis. Immunol Rev 2009; 231:160-73. [PMID: 19754896 DOI: 10.1111/j.1600-065x.2009.00809.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cytotoxic T lymphocytes (CTLs) kill targets by releasing cytotoxic agents from lytic granules. Killing is a multi-step process. The CTL adheres to a target, allowing its T-cell receptors to recognize antigen. This triggers a signal transduction cascade that leads to the polarization of the microtubule cytoskeleton and granules towards the target, followed by exocytosis that occurs specifically at the site of contact. As with cytokine production by helper T cells (Th cells), target cell killing is absolutely dependent on Ca2+ influx, which is involved in regulating both reorientation and release. Current evidence suggests that Ca2+ influx in CTLs, as in Th cells, occurs via depletion-activated channels. The molecules that couple increases in Ca2+ to reorientation are unknown. The Ca2+/calmodulin-dependent phosphatase calcineurin, which plays a critical role in cytokine production by Th cells, is also involved in lytic granule exocytosis, although the relevant substrates remain to be identified and calcineurin activation is only one Ca2+-dependent step involved. There are thus striking similarities and important differences between Ca2+ signals in Th cells and CTLs, illustrating how cells can use similar signal transduction pathways to generate different functional outcomes.
Collapse
Affiliation(s)
- Arun T Pores-Fernando
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | | |
Collapse
|
7
|
|
8
|
Gill S, Gill R, Wicks D, Liang D. A cell-based Rb(+)-flux assay of the Kv1.3 potassium channel. Assay Drug Dev Technol 2007; 5:373-80. [PMID: 17638537 DOI: 10.1089/adt.2006.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Kv1.3 channels expressed by human T lymphocytes are emerging as important therapeutic targets. Peptides like agitoxin and margatoxin in scorpion venom and some non-peptide small molecules are known to inhibit this channel. Since such blockers cannot be used as drugs, pharma has a need to discover effective blockers. The major limiting factor for such development has been the lack of a reliable high-throughput screening (HTS) technology. A cell-based HTS assay for this target was developed in 96-well format to facilitate screening of many candidates. The assay incorporates rubidium ion as a tracer for potassium ion, which can be analyzed by the atomic absorption spectroscopy. The assay provided a Z' factor of 0.813 with more than a 4.5-fold window of detection. The two known blockers agitoxin and margatoxin gave a 50% inhibitory concentration (IC(50)) of 1.52 and 2 nM, respectively. These values are about five- and 2.8-fold higher than their IC(50) values obtained from patch clamp. Some non-peptide compounds like tamoxifen, nifedipine, and fluoxetine also inhibited the efflux through these channels, whereas astemizole and pimozide (potent human ether-a-go-go-related gene blockers) did not block Kv1.3 activity.
Collapse
|
9
|
Morris CE, Juranka PF. Lipid stress at play: mechanosensitivity of voltage-gated channels. CURRENT TOPICS IN MEMBRANES 2007; 59:297-338. [PMID: 25168141 DOI: 10.1016/s1063-5823(06)59011-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Membrane stretch modulates the activity of voltage-gated channels (VGCs). These channels are nearly ubiquitous among eukaryotes and they are present, too, in prokaryotes, so the potential ramifications of VGC mechanosensitivity are diverse. In situ traumatic stretch can irreversibly alter VGC activity with lethal results but that is pathology. This chapter discusses the reversible responses of VGCs to stretch, with the general relation of stretch stimuli to other forms of lipid stress, and briefly, with some irreversible stretch effects (=stretch trauma). A working assumption throughout is that mechanosensitive (MS) VGC motions-that is, motions that respond reversibly to bilayer stretch-are susceptible to other forms of lipid stress, such as the stresses produced when amphiphilic molecules (anesthetics, lipids, alcohols, and lipophilic drugs) are inserted into the bilayer. Insofar as these molecules change the bilayer's lateral pressure profile, they can be termed bilayer mechanical reagents (BMRs). The chapter also discusses the MS VGC behavior against the backdrop of eukaryotic channels more widely accepted as "MS channels"--namely, the transient receptor potential (TRP)-based MS cation channels.
Collapse
Affiliation(s)
- Catherine E Morris
- Neuroscience, Ottawa Health Research Institute, Ottawa Hospital, Ottawa, Ontario K1Y 4E9, Canada
| | - Peter F Juranka
- Neuroscience, Ottawa Health Research Institute, Ottawa Hospital, Ottawa, Ontario K1Y 4E9, Canada
| |
Collapse
|
10
|
Potassium channels: new targets in cancer therapy. ACTA ACUST UNITED AC 2006; 30:375-85. [PMID: 16971052 DOI: 10.1016/j.cdp.2006.06.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2006] [Indexed: 01/01/2023]
Abstract
BACKGROUND Potassium channels (KCh) are the most diverse and ubiquitous class of ion channels. KCh control membrane potential and contribute to nerve and cardiac action potentials and neurotransmitter release. KCh are also involved in insulin release, differentiation, activation, proliferation, apoptosis, and several other physiological functions. The aim of this review is to provide an updated overview of the KCh role during the cell growth. Their potential use as pharmacological targets in cancer therapies is also discussed. METHODS We searched PubMed (up to 2005) and identified relevant articles. Reprints were mainly obtained by on line subscription. Additional sources were identified through cross-referencing and obtained from Library services. RESULTS KCh are responsible for some neurological and cardiovascular diseases and for a new medical discipline, channelopathies. Their role in congenital deafness, multiple sclerosis, episodic ataxia, LQT syndrome and diabetes has been proven. Furthermore, a large body of information suggests that KCh play a role in the cell cycle progression, and it is now accepted that cells require KCh to proliferate. Thus, KCh expression has been studied in a number of tumours and cancer cells. CONCLUSIONS Cancer is far from being considered a channelopathy. However, it seems appropriate to take into account the involvement of KCh in cancer progression and pathology when developing new strategies for cancer therapy.
Collapse
|
11
|
Wittekindt OH, Schmitz A, Lehmann-Horn F, Hänsel W, Grissmer S. The human Ca2+-activated K+ channel, IK, can be blocked by the tricyclic antihistamine promethazine. Neuropharmacology 2006; 50:458-67. [PMID: 16310228 DOI: 10.1016/j.neuropharm.2005.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 10/04/2005] [Accepted: 10/10/2005] [Indexed: 11/17/2022]
Abstract
Phenothiazines can be used as psychopharmaceutical agents and are known to cause many side effects during treatment since they interfere with many different cellular systems. Recently, phenothiazines were reported to block Ca(2+)-activated potassium channels of the SK type. Therefore we investigated their effect on the functionally related class of Ca(2+)-activated potassium channels of the IK type. The representative phenothiazine derivative promethazine (PTZ) blocked IK channels almost independently from the extracellular pH(o) with an IC(50) of 49 +/- 0.2 microM (pH(o) 7.4, n = 5) and 32 +/- 0.2 microM (pH(o) 6.2, n = 5) in whole cell experiments. The extracellularly applied membrane impermeable PTZ analogue methyl-promethazine (M-PTZ) had a strongly reduced blocking potency compared to PTZ. In contrast, intracellularly applied PTZ and M-PTZ had the same blocking potency on IK channels in excised inside out patch clamp experiments (K(d) = 9.3 +/- 0.5 microM for PTZ, n = 7 and 6.7 +/- 0.4 microM for M-PTZ, n = 5). The voltage dependency of the PTZ and M-PTZ block was investigated in excised inside out patch clamp experiments at a concentration of 100 microM. For both compounds the block was more pronounced at positive membrane potentials. The steepness of the voltage dependency was found to be 70 +/- 10 mV (for PTZ) and 61 +/- 6 mV (for M-PTZ) indicating that both compounds sensed approximately 40% of the entire membrane spanning electrical field from the inside. We conclude that PTZ and M-PTZ bind to a side in IK channels, which is located within the electrical field and is accessible from the intracellular side.
Collapse
|
12
|
Nagappa AN, Kole PL, Srinivas D, Vivek D, Ullas DP, Srivastava RC. Role of liquid membrane phenomenon in the biological actions of thioridazine. Colloids Surf B Biointerfaces 2005; 43:21-7. [PMID: 15893459 DOI: 10.1016/j.colsurfb.2005.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 03/29/2005] [Accepted: 04/12/2005] [Indexed: 11/19/2022]
Abstract
Role of surface activity in the mechanism of action of thioridazine (THR) has been studied. THR has been shown to generate liquid membrane it self and also in association with the relevant membrane lipids, sphingomyelin and cholesterol in series with a supporting membrane. Transport of relevant biogenic amines e.g. dopamine, nor-adrenaline, adrenaline, serotonin, gamma amino butyric acid (GABA) and glutamic acid and ions viz. sodium, potassium, and calcium has been studied in the presence of liquid membranes generated by THR and THE in association with sphingomyelin-cholesterol. The data on modifications in the permeability of relevant biogenic amines and ions indicate that the liquid membranes generated by THR may contribute to the mechanism of action of THR.
Collapse
Affiliation(s)
- A N Nagappa
- Pharmacy Group, Birla Institute of Technology and Science, Pilani, Rajasthan, India.
| | | | | | | | | | | |
Collapse
|
13
|
Bakalova R, Ohba H, Zhelev Z, Nagase T, Jose R, Ishikawa M, Baba Y. Quantum Dot anti-CD Conjugates: Are They Potential Photosensitizers or Potentiators of Classical Photosensitizing Agents in Photodynamic Therapy of Cancer? NANO LETTERS 2004; 4:1567-1573. [DOI: 10.1021/nl049627w] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Affiliation(s)
- Rumiana Bakalova
- Single-Molecule Bioanalysis Laboratory, National Institute for Advanced Industrial Science and Technology, 2217-14 Hayashi-cho, Takamatsu 761-0395, Japan
| | - Hideki Ohba
- Single-Molecule Bioanalysis Laboratory, National Institute for Advanced Industrial Science and Technology, 2217-14 Hayashi-cho, Takamatsu 761-0395, Japan
| | - Zhivko Zhelev
- Single-Molecule Bioanalysis Laboratory, National Institute for Advanced Industrial Science and Technology, 2217-14 Hayashi-cho, Takamatsu 761-0395, Japan
| | - Toshimi Nagase
- Single-Molecule Bioanalysis Laboratory, National Institute for Advanced Industrial Science and Technology, 2217-14 Hayashi-cho, Takamatsu 761-0395, Japan
| | - Rajan Jose
- Single-Molecule Bioanalysis Laboratory, National Institute for Advanced Industrial Science and Technology, 2217-14 Hayashi-cho, Takamatsu 761-0395, Japan
| | - Mitsuru Ishikawa
- Single-Molecule Bioanalysis Laboratory, National Institute for Advanced Industrial Science and Technology, 2217-14 Hayashi-cho, Takamatsu 761-0395, Japan
| | - Yoshinobu Baba
- Single-Molecule Bioanalysis Laboratory, National Institute for Advanced Industrial Science and Technology, 2217-14 Hayashi-cho, Takamatsu 761-0395, Japan
| |
Collapse
|