1
|
Dhar T, Bera D, Chaudhuri T, Mukhopadhyay C. Metal and acid-free synthesis of acenaphthenone-2-ylidene ketones in PEG 400 and their radical nitration by TBN in water. Org Biomol Chem 2024; 22:8002-8009. [PMID: 39254654 DOI: 10.1039/d4ob00963k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The synthesis of acenaphthenone-2-ylidene ketones has been developed using PEG 400 as a solvent under metal and acid-free conditions. Using TBN as a nitrating agent under atmospheric oxygen, nitration of acenaphthenone-2-ylidene ketones has been accomplished for the first time. Upon nitration, (E)-2-(2-oxo-2-phenylethylidene)acenaphthylen-1(2H)-one and alkyl (E)-2-(2-oxoacenaphthylen-1(2H)-ylidene)acetate give the diastereomer with the same geometry. The variety of substrates employed and low cost and non-toxicity of the chemicals used in this process demonstrate its important applicability. Another noteworthy aspect of the procedure is that, in contrast to previous procedures, it does not use HNO3 or metal nitrates during the transformation.
Collapse
Affiliation(s)
- Tiyasa Dhar
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| | - Debasish Bera
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| | - Tandrima Chaudhuri
- Department of Chemistry, Dr. Bhupendranath Dutta Smriti Mahavidyalaya, Burdwan 713407, India
| | - Chhanda Mukhopadhyay
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| |
Collapse
|
2
|
Eslaminejad T, Faghih Mirzaei E, Abaszadeh M. Synthesis, Antioxidant, Cytotoxicity, Induce Apoptosis Investigation and Docking Study of New Halogenated Dihydropyrano[3,2- b]Chromene-3-Carbonitrile Derivatives on MCF-7 Breast Cancer Cell Line. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e132932. [PMID: 38116542 PMCID: PMC10728837 DOI: 10.5812/ijpr-132932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 12/21/2023]
Abstract
Background Chromene derivatives showed numerous biological activities. In the current study, the antioxidant, cytotoxicity, and apoptosis properties of halogenated dihydropyrano[3,2-b]chromene-3-carbonitrile derivatives (HDCCD) on MCF-7 cell line have been examined. Objectives This study's principal point was synthesizing new halogenated pyranochromene derivatives and assessing their cytotoxic effects and apoptosis potential on MCF-7 breast cancer cell line by flow cytometry. Methods Initially, 6-chloro- and 6-bromo-3-hydroxychromone compounds were prepared. In the next step, a series of HDCCD were synthesized by a one-pot three-component reaction of these two compounds, aromatic aldehydes, and malononitrile, in the presence of triethylamine in EtOH at reflux conditions. These compounds were fully characterized by standard spectroscopic techniques (IR, 1H, and 13C NMR) and elemental analyses. The potential of the antioxidant activity was determined by using ferric reducing antioxidant power assay (FRAP). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and lactate dehydrogenase (LDH) were used to evaluate metabolic activity. The nitric oxide (NO) and malondialdehyde (MDA) biomarkers of the exposed cells were evaluated on the cells and their supernatant. To quantify apoptotic death of MCF-7 breast cancer cells treated by the compounds at their IC50 concentrations, Annexin V-FITC apoptosis detection kit was utilized. Molecular docking of compounds (6a-j) into the Cyclin-dependent kinase 6 (PDB code: 4EZ5) was carried out, and the probable binding mode of compounds 6e and 6j was determined. Results A dose-response relationship was seen in all the compounds. Most of them induced cytotoxic effects on the cells. Nitrite concentration of the culture media of the cells was decreased compared to the control. Malondialdehyde levels of the cells were below the range of the control by the addition of 6b, 6d, 6e, 6f, and 6g compounds on the cells, while the addition of the 6a, 6c, 6h, 6i, and 6j compounds increased the MDA level compared to the control. Flow cytometric analysis showed that most of the exposed cells were in the early and late apoptotic stage, and a few of them were in the necrotic stage. Conclusions It could be concluded that HDCCD (6a-j) was toxic and caused death in the cells by apoptosis. The compounds have lipophilic characteristics, so they can easily pass the cell membrane. As confirmed by LDH results, it can be concluded that the cytotoxicity is connected with apoptosis rather than necrosis, endorsed by flowcytometry analysis afterward.
Collapse
Affiliation(s)
- Touba Eslaminejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Faghih Mirzaei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Abaszadeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Nicoletti G, White K. The Anti-Fungal Activity of Nitropropenyl Benzodioxole (NPBD), a Redox-Thiol Oxidant and Tyrosine Phosphatase Inhibitor. Antibiotics (Basel) 2022; 11:antibiotics11091188. [PMID: 36139967 PMCID: PMC9495065 DOI: 10.3390/antibiotics11091188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Phylogenetically diverse fungal species are an increasing cause of severe disease and mortality. Identification of new targets and development of new fungicidal drugs are required to augment the effectiveness of current chemotherapy and counter increasing resistance in pathogens. Nitroalkenyl benzene derivatives are thiol oxidants and inhibitors of cysteine-based molecules, which show broad biological activity against microorganisms. Nitropropenyl benzodioxole (NPBD), one of the most active antimicrobial derivatives, shows high activity in MIC assays for phylogenetically diverse saprophytic, commensal and parasitic fungi. NPBD was fungicidal to all species except the dermatophytic fungi, with an activity profile comparable to that of Amphotericin B and Miconazole. NPBD showed differing patterns of dynamic kill rates under different growth conditions for Candida albicans and Aspergillus fumigatus and was rapidly fungicidal for non-replicating vegetative forms and microconidia. It did not induce resistant or drug tolerant strains in major pathogens on long term exposure. A literature review highlights the complexity and interactivity of fungal tyrosine phosphate and redox signaling pathways, their differing metabolic effects in fungal species and identifies some targets for inhibition. A comparison of the metabolic activities of Amphotericin B, Miconazole and NPBD highlights the multiple cellular functions of these agents and the complementarity of many mechanisms. The activity profile of NPBD illustrates the functional diversity of fungal tyrosine phosphatases and thiol-based redox active molecules and contributes to the validation of tyrosine phosphatases and redox thiol molecules as related and complementary selective targets for antimicrobial drug development. NPBD is a selective antifungal agent with low oral toxicity which would be suitable for local treatment of skin and mucosal infections.
Collapse
|
4
|
Shan X, Gao P, Zhang S, Jia X, Yuan Y. 2,2′‐Azodi(2‐methylbutyronitrile) (AMBN) Promoted Alkenylation of Cyclic Ethers via Radical Addition to β‐Nitrostyrenes. ChemistrySelect 2022. [DOI: 10.1002/slct.202200425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaojie Shan
- College of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002, Jiangsu Province P. R. China
| | - Pan Gao
- College of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002, Jiangsu Province P. R. China
| | - Shuwei Zhang
- College of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002, Jiangsu Province P. R. China
| | - Xiaodong Jia
- College of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002, Jiangsu Province P. R. China
| | - Yu Yuan
- College of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002, Jiangsu Province P. R. China
| |
Collapse
|
5
|
Wu Z, Li X, Li T, Xiao T, Jiang Y, Qin G. Fe-catalyzed denitrative cyanoalkylation of nitroalkenes with cycloketone oxime esters via reductive C–C bond formation. Org Chem Front 2022. [DOI: 10.1039/d2qo00992g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An iron catalyzed reductive denitrative cyanoalkylation of nitroalkenes with cycloketone oxime esters using Zn as the reductant has been successfully established in which the NO2 of nitroalkenes eventually acts as a leaving group.
Collapse
Affiliation(s)
- Zefeng Wu
- Faculty of Science, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming, 650500, P. R. China
| | - Xiangxiang Li
- Faculty of Science, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming, 650500, P. R. China
| | - Tao Li
- Faculty of Science, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming, 650500, P. R. China
| | - Tiebo Xiao
- Faculty of Science, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming, 650500, P. R. China
| | - Yubo Jiang
- Faculty of Science, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming, 650500, P. R. China
| | - Guiping Qin
- Faculty of Science, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming, 650500, P. R. China
| |
Collapse
|
6
|
Park S, Yoon S, Min S. Metal‐free Synthesis of
β‐Nitrostyrenes
via
DDQ‐Catalyzed
Nitration. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sangwoon Park
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research Hanyang University Ansan Gyeonggi‐do 15588 Republic of Korea
| | - Seungri Yoon
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research Hanyang University Ansan Gyeonggi‐do 15588 Republic of Korea
| | - Sun‐Joon Min
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research Hanyang University Ansan Gyeonggi‐do 15588 Republic of Korea
- Department of Chemical and Molecular Engineering Hanyang University Ansan Gyeonggi‐do 15588 Republic of Korea
| |
Collapse
|
7
|
Sousa‐Brito HL, Arruda‐Barbosa L, Vasconcelos‐Silva AA, Gonzaga‐Costa K, Duarte GP, Borges RS, Magalhães PJC, Lahlou S. Vasorelaxant effect of trans‐4‐chloro‐β‐nitrostyrene, a synthetic nitroderivative, in rat thoracic aorta. Fundam Clin Pharmacol 2020; 35:331-340. [DOI: 10.1111/fcp.12624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022]
Affiliation(s)
| | - Loeste Arruda‐Barbosa
- Department of Physiology and Pharmacology School of Medicine Federal University of Ceará Fortaleza Brazil
| | | | - Karoline Gonzaga‐Costa
- Department of Physiology and Pharmacology School of Medicine Federal University of Ceará Fortaleza Brazil
| | - Gloria Pinto Duarte
- Department of Physiology and Pharmacology Federal University of Pernambuco Recife Brazil
| | | | | | - Saad Lahlou
- Department of Physiology and Pharmacology School of Medicine Federal University of Ceará Fortaleza Brazil
| |
Collapse
|
8
|
Byrne AJ, Bright SA, McKeown JP, O’Brien JE, Twamley B, Fayne D, Williams DC, Meegan MJ. Design, Synthesis and Biochemical Evaluation of Novel Ethanoanthracenes and Related Compounds to Target Burkitt's Lymphoma. Pharmaceuticals (Basel) 2020; 13:ph13010016. [PMID: 31963567 PMCID: PMC7168933 DOI: 10.3390/ph13010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
Lymphomas (cancers of the lymphatic system) account for 12% of malignant diseases worldwide. Burkitt’s lymphoma (BL) is a rare form of non-Hodgkin’s lymphoma in which the cancer starts in the immune B-cells. We report the synthesis and preliminary studies on the antiproliferative activity of a library of 9,10-dihydro-9,10-ethanoanthracene based compounds structurally related to the antidepressant drug maprotiline against BL cell lines MUTU-1 and DG-75. Structural modifications were achieved by Diels-Alder reaction of the core 9-(2-nitrovinyl)anthracene with number of dienophiles including maleic anhydride, maleimides, acrylonitrile and benzyne. The antiproliferative activity of these compounds was evaluated in BL cell lines EBV− MUTU-1 and EBV+ DG-75 (chemoresistant). The most potent compounds 13j, 15, 16a, 16b, 16c, 16d and 19a displayed IC50 values in the range 0.17–0.38 μM against the BL cell line EBV− MUTU-1 and IC50 values in the range 0.45–0.78 μM against the chemoresistant BL cell line EBV+ DG-75. Compounds 15, 16b and 16c demonstrated potent ROS dependent apoptotic effects on the BL cell lines which were superior to the control drug taxol and showed minimal cytotoxicity to peripheral blood mononuclear cells (PBMCs). The results suggest that this class of compounds merits further investigation as antiproliferative agents for BL.
Collapse
Affiliation(s)
- Andrew J. Byrne
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590, Ireland; (A.J.B.); (J.P.M.)
| | - Sandra A. Bright
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590, Ireland; (S.A.B.); (D.F.); (D.C.W.)
| | - James P. McKeown
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590, Ireland; (A.J.B.); (J.P.M.)
| | - John E. O’Brien
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590, Ireland; (J.E.O.); (B.T.)
| | - Brendan Twamley
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590, Ireland; (J.E.O.); (B.T.)
| | - Darren Fayne
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590, Ireland; (S.A.B.); (D.F.); (D.C.W.)
| | - D. Clive Williams
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590, Ireland; (S.A.B.); (D.F.); (D.C.W.)
| | - Mary J. Meegan
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590, Ireland; (A.J.B.); (J.P.M.)
- Correspondence: ; Tel.: +353-1-896-2798; Fax: +353-1-8962793
| |
Collapse
|
9
|
Liu L, Ward RM, Schomaker JM. Mechanistic Aspects and Synthetic Applications of Radical Additions to Allenes. Chem Rev 2019; 119:12422-12490. [PMID: 31833759 DOI: 10.1021/acs.chemrev.9b00312] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
More than 50 years have passed since Haszeldine reported the first addition of a trifluoromethyl radical to an allene; in the intervening years, both the chemistry of allenes and the reactivity of single-electron species have become topics of intense interest. In this Review, we provide an overview of the fundamentals of radical additions to allenes and highlight the emergence of theoretical and experimental evidence that reveals unique reactivity patterns for radical additions to allenes as compared with other unsaturated compounds. Factors capable of exerting control over the chemo-, regio-, and stereoselectivities of the attack of carbon- and heteroatom-based radicals at each of the three potential reactive sites in an allene substrate are described. These include reaction conditions, the nature of the attacking radical, the substitution pattern of the allene, and the length of the linker between the radical center and the proximal allene carbon in the substrate. Cycloaddition reactions between allenes and partners containing π-bonds, which are likely to proceed through radical pathways, are presented to highlight their ability to rapidly access complex polycyclic scaffolds. Finally, the synthetic utility of the products arising from these chemistries is described, including their applications to the construction of complex molecules.
Collapse
Affiliation(s)
- Lu Liu
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Robert M Ward
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Jennifer M Schomaker
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| |
Collapse
|
10
|
Ipso-nitration of carboxylic acids using a mixture of nitronium tetrafluoroborate, base and 1-hexyl-3,4,5-trimethyl-1H-imidazolium tetrafluoroborate. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.05.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Luque-Agudo V, Albarrán-Velo J, Light ME, Padrón JM, Román E, Serrano JA, Gil MV. Synthesis and antiproliferative activity of new 2-glyco-3-nitro-2H-chromenes. Bioorg Chem 2019; 87:112-116. [DOI: 10.1016/j.bioorg.2019.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/15/2019] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
|
12
|
Stimulation of pulmonary vagal C-fibers by trans-4-methyl-β-nitrostyrene induces bradycardiac and depressor reflex in rats: Role of vanilloid TRPV 1 receptors. Eur J Pharmacol 2019; 849:154-159. [PMID: 30716310 DOI: 10.1016/j.ejphar.2019.01.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/19/2022]
Abstract
Previously, we showed that the synthetic nitroderivative trans-4-methyl-β-nitrostyrene (T4MeN) induced vasorelaxant effects in rat isolated aortic rings. Here, we investigated the mechanisms underlying the cardiovascular effects of T4MeN in normotensive rats. In pentobarbital-anesthetized rats, intravenous (i.v.) injection of T4MeN (0.03-0.5 mg/kg) induced a rapid (onset time of 1-2 s) and dose-dependent bradycardia and hypotension. These cardiovascular responses to T4MeN were abolished by bilateral cervical vagotomy or selective blockade of neural conduction of vagal C-fiber afferents by perineural treatment of both cervical vagus nerves with capsaicin. Hypotension and bradycardia were also recorded when T4MeN was directly injected in the right, but not into the left ventricle. Furthermore, they were significantly reduced by i.v. pretreatment with capsazepine but remained unaltered by ondansetron or suramin. In conscious rats, the dose-dependent hypotension and bradycardia evoked by T4MeN were abolished by i.v. methylatropine pretreatment. In conclusion, bradycardiac and depressor responses induced by T4MeN has a vago-vagal reflex origin resulting from the vagal pulmonary afferents stimulation. The transduction mechanism seems to involve the activation of vanilloid TRPV1, but not purinergic (P2X) or 5-HT3 receptors located on vagal pulmonary sensory nerves.
Collapse
|
13
|
Ambala S, Singh R, Singh M, Cham PS, Gupta R, Munagala G, Yempalla KR, Vishwakarma RA, Singh PP. Metal-free, room temperature, acid-K2S2O8 mediated method for the nitration of olefins: an easy approach for the synthesis of nitroolefins. RSC Adv 2019; 9:30428-30431. [PMID: 35530202 PMCID: PMC9072150 DOI: 10.1039/c9ra06414a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/05/2019] [Indexed: 12/24/2022] Open
Abstract
Here, we have developed a simple, room temperature method for the nitration of olefins by using inexpensive sodium nitrite as a source of nitro groups in the presence of trifluoroacetic acid (TFA) and potassium persulfate (K2S2O8) under an open atmosphere. Styrenes and mono-substituted olefins give stereo-selective corresponding E-nitroolefins under optimized conditions, however, 1,1-bisubstituted olefins give a mixture of E- and Z-nitroolefins. The optimized conditions work well with electron-donating, electron-withdrawing, un-substituted and heterocyclic styrenes and mono-substituted olefins and give corresponding nitroolefins with good to excellent yields. Here, we have developed a simple, room temperature method for the nitration of olefins by using inexpensive sodium nitrite as a source of nitro groups in the presence of TFA and potassium persulphate under an open atmosphere.![]()
Collapse
Affiliation(s)
- Srinivas Ambala
- Medicinal Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- India
- Academy of Scientific and Innovative Research
- India
| | - Rohit Singh
- Medicinal Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- India
- Academy of Scientific and Innovative Research
- India
| | - Maninder Singh
- Medicinal Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- India
| | - Pankaj Singh Cham
- Medicinal Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- India
| | - Ria Gupta
- Medicinal Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- India
- Academy of Scientific and Innovative Research
- India
| | - Gurunadham Munagala
- Medicinal Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- India
- Academy of Scientific and Innovative Research
- India
| | - Kushalava Reddy Yempalla
- Medicinal Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- India
- Academy of Scientific and Innovative Research
- India
| | - Ram A. Vishwakarma
- Medicinal Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- India
- Academy of Scientific and Innovative Research
- India
| | - Parvinder Pal Singh
- Medicinal Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- India
- Academy of Scientific and Innovative Research
- India
| |
Collapse
|
14
|
Tashrifi Z, Mohammadi-khanaposhtani M, Shafiee Ardestani M, Safavi M, Rad-Moghadam K, Mehrdad M, Larijani B, Mahdavi M. Design, Synthesis and In vitro Cytotoxicity of New 1,2,3-triazol- and Nitrostyrene Hybrids as Potent Anticancer Agents. LETT DRUG DES DISCOV 2018. [DOI: 10.2174/1570180815666180427151830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
A new series of 1,2,3-triazol-nitrostyrene derivatives was designed,
synthesized, and evaluated for cytotoxic activity against Hep-2 and L929 cell lines.
</P><P>
Methods: The synthetic procedure started from the functionalization of 4-hydroxybenzaldehyde
with propargyl bromide and a subsequent click reaction to give 1,2,3-triazole derivatives. Then, the
reaction of the mentioned derivatives with nitromethane led to the formation of the title compounds
in excellent yields.
Results:
Most of the compounds exhibited better cytotoxic activity with respect to the standard drug
5-fluorouracil. Among them, (E)-1-(3,4-dichlorobenzyl)-4-((4-(2-nitrovinyl)phenoxy)methyl)-1H-
1,2,3-triazole 6i (IC50 = 4.66 ± 1.3 µM) against the Hep-2 cell line and (E)-1-(2,3-dichlorobenzoyl)-
4-((4-(2-nitrovinyl)phenoxy)methyl)-1H-1,2,3-triazole 6g (IC50 = 5.18 ± 0.8 µM) against the L929
cell line exhibited the best cytotoxic effects.
Conclusion:
Moreover, the acridine orange/ethidium bromide double staining technique showed
that the most potent compounds 6i and 6g could induce apoptosis in studied cancer cell lines.
Collapse
Affiliation(s)
- Zahra Tashrifi
- Department of Chemistry, University of Guilan, Rasht, Iran
| | | | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy and Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | | | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Tripathi S, Kapoor R, Yadav LDS. Visible Light Activated Radical Denitrative Benzoylation of β
-Nitrostyrenes: A Photocatalytic Approach to Chalcones. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701559] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shubhangi Tripathi
- Green Synthesis Lab; Department of Chemistry; University of Allahabad; Allahabad 211002 India
| | - Ritu Kapoor
- Green Synthesis Lab; Department of Chemistry; University of Allahabad; Allahabad 211002 India
| | - Lal Dhar S. Yadav
- Green Synthesis Lab; Department of Chemistry; University of Allahabad; Allahabad 211002 India
| |
Collapse
|
16
|
Chang YW, Tseng CP, Lee CH, Hwang TL, Chen YL, Su MT, Chong KY, Lan YW, Wu CC, Chen KJ, Lu FH, Liao HR, Hsueh C, Hsieh PW. β-Nitrostyrene derivatives attenuate LPS-mediated acute lung injury via the inhibition of neutrophil-platelet interactions and NET release. Am J Physiol Lung Cell Mol Physiol 2018; 314:L654-L669. [PMID: 29351433 DOI: 10.1152/ajplung.00501.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) are high-mortality and life-threatening diseases that are associated with neutrophil activation and accumulation within lung tissue. Emerging evidence indicates that neutrophil-platelet aggregates (NPAs) at sites of injury increase acute inflammation and contribute to the development of ALI. Although numerous studies have increased our understanding of the pathophysiology of ALI, there is still a lack of innovative and useful treatments that reduce mortality, emphasizing that there is an urgent need for novel treatment strategies. In this study, a new series of small compounds of β-nitrostyrene derivatives (BNSDs) were synthesized, and their anti-inflammatory bioactivities on neutrophils and platelets were evaluated. The new small compound C7 modulates neutrophil function by inhibiting superoxide generation and elastase release. Compound C7 elicits protective effects on LPS-induced paw edema and acute lung injury via the inhibition of neutrophil accumulation, proinflammatory mediator release, platelet aggregation, myeloperoxidase activity, and neutrophil extracellular trap (NET) release. NET formation was identified as the bridge for the critical interactions between neutrophils and platelets by confocal microscopy and flow cytometry. This research provides new insights for elucidating the complicated regulation of neutrophils and platelets in ALI and sheds further light on future drug development strategies for ALI/ARDS and acute inflammatory diseases.
Collapse
Affiliation(s)
- Yao-Wen Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,Graduate Institute of Natural Products, College of Medicine, and Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan
| | - Ching-Ping Tseng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,Molecular Medicine Research Center, Chang Gung University , Taoyuan , Taiwan.,Department of Laboratory Medicine, Chang Gung Memorial Hospital , Taoyuan , Taiwan
| | - Chih-Hsun Lee
- Graduate Institute of Natural Products, College of Medicine, and Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,Graduate Institute of Natural Products, College of Medicine, and Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan.,Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology , Taoyuan , Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital , Linkou , Taiwan
| | - Yu-Li Chen
- Graduate Institute of Natural Products, College of Medicine, and Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan
| | - Mei-Tzu Su
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University , Taipei , Taiwan
| | - Kowit-Yu Chong
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou , Taoyuan , Taiwan
| | - Ying-Wei Lan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Chin-Chung Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Kung-Ju Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,Graduate Institute of Natural Products, College of Medicine, and Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan
| | - Fen-Hua Lu
- Graduate Institute of Natural Products, College of Medicine, and Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan
| | - Hsiang-Ruei Liao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,Graduate Institute of Natural Products, College of Medicine, and Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital , Linkou , Taiwan
| | - Chuen Hsueh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,Molecular Medicine Research Center, Chang Gung University , Taoyuan , Taiwan.,Department of Pathology, Chang Gung Memorial Hospital, Linkou, Taoyuan , Taiwan
| | - Pei-Wen Hsieh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,Graduate Institute of Natural Products, College of Medicine, and Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan.,Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology , Taoyuan , Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital , Linkou , Taiwan
| |
Collapse
|
17
|
Laskar S, Sánchez-Sánchez L, Flores SM, López-Muñoz H, Escobar-Sánchez ML, López-Ortiz M, Hernández-Rodríguez M, Regla I. Identification of (1S,4S)-2,5-diazabicyclo[2.2.1]heptane-dithiocarbamate-nitrostyrene hybrid as potent antiproliferative and apoptotic inducing agent against cervical cancer cell lines. Eur J Med Chem 2018; 146:621-635. [PMID: 29407986 DOI: 10.1016/j.ejmech.2018.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 12/17/2017] [Accepted: 01/07/2018] [Indexed: 01/15/2023]
Abstract
The present study seeks to describe the design and synthesis of six new Michael adducts of (1S,4S)-2,5-diazabicyclo[2.2.1]heptane-dithiocarbamate with nitrostyrenes and their in vitro antiproliferative activity against human cervical cancer cell lines [HeLa (HPV 18 positive), CaSki (HPV 16 positive) and ViBo (HPV negative) cervical cancer cell lines]. Virtual screening of the physicochemical properties of all compounds have also been presented. All the compounds exploited significant antiproliferative activity on the three cervical cancer cell lines. Compound 8a was found to be most potent, displaying in vitro antiproliferative activity against HeLa, CaSki and ViBo cervical cancer cell lines superior to Cisplatin and Paclitaxel with IC50 values 0.99 ± 0.007, 2.36 ± 0.016 and 0.73 ± 0.002 μM respectively. In addition, compound 8a did not trigger the necrosis cell death to the test cancer cell lines. Further mechanistic study revealed that compound 8a could inhibit the cancer cell proliferation by inducing apoptosis through caspase-3 activation. Moreover, cell cycle analysis indicated that compound 8a could arrest the cell cycle at the G1 phase for HeLa and CaSki cancer cells. At the predetermined IC50 values on cancer cells, compound 8a did not induce any necrotic (cytotoxic) death to the normal human lymphocytes. In the present design, (1S,4S)-2,5-diazabicyclo[2.2.1]heptane system was found to be superior than the piperazine counterpart 11.
Collapse
Affiliation(s)
- Sujay Laskar
- Lab. de Síntesis de Fármacos, Laboratorio 9 UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ejercito de Oriente, Iztapalapa 09230, Ciudad de México, Mexico.
| | - Luis Sánchez-Sánchez
- Lab. Biología Molecular del Cáncer, Laboratorio 2 PB UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ejercito de Oriente, Iztapalapa 09230, Ciudad de México, Mexico.
| | - Sebastián M Flores
- Lab. de Síntesis de Fármacos, Laboratorio 9 UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ejercito de Oriente, Iztapalapa 09230, Ciudad de México, Mexico
| | - Hugo López-Muñoz
- Lab. Biología Molecular del Cáncer, Laboratorio 2 PB UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ejercito de Oriente, Iztapalapa 09230, Ciudad de México, Mexico
| | - María L Escobar-Sánchez
- Lab. Microscopía Electrónica, Depto. Biología Celular, Facultad de Ciencias, Cd. Universitaria, Universidad Nacional Autónoma de México, Coyoacán, 04510, Ciudad de México, Mexico
| | - Manuel López-Ortiz
- Lab. de Síntesis de Fármacos, Laboratorio 9 UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ejercito de Oriente, Iztapalapa 09230, Ciudad de México, Mexico
| | - Marcos Hernández-Rodríguez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Ignacio Regla
- Lab. de Síntesis de Fármacos, Laboratorio 9 UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ejercito de Oriente, Iztapalapa 09230, Ciudad de México, Mexico.
| |
Collapse
|
18
|
Laporte AN, Ji JX, Ma L, Nielsen TO, Brodin BA. Identification of cytotoxic agents disrupting synovial sarcoma oncoprotein interactions by proximity ligation assay. Oncotarget 2018; 7:34384-94. [PMID: 27120803 PMCID: PMC5085163 DOI: 10.18632/oncotarget.8882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 04/02/2016] [Indexed: 02/06/2023] Open
Abstract
Conventional cytotoxic therapies for synovial sarcoma provide limited benefit. Drugs specifically targeting the product of its driver translocation are currently unavailable, in part because the SS18-SSX oncoprotein functions via aberrant interactions within multiprotein complexes. Proximity ligation assay is a recently-developed method that assesses protein-protein interactions in situ. Here we report use of the proximity ligation assay to confirm the oncogenic association of SS18-SSX with its co-factor TLE1 in multiple human synovial sarcoma cell lines and in surgically-excised human tumor tissue. SS18-SSX/TLE1 interactions are disrupted by class I HDAC inhibitors and novel small molecule inhibitors. This assay can be applied in a high-throughput format for drug discovery in fusion-oncoprotein associated cancers where key effector partners are known.
Collapse
Affiliation(s)
- Aimée N Laporte
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute and Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Jennifer X Ji
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Limin Ma
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Torsten O Nielsen
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute and Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Bertha A Brodin
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Kącka A, Jasiński R. Triethylsulfonium and triethylphosphonium cations as novel catalysts for the decomposition process of nitroethyl benzoates. PHOSPHORUS SULFUR 2017. [DOI: 10.1080/10426507.2017.1290626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Agnieszka Kącka
- Institute of Organic Chemistry and Technology, Cracow University of Technology, Cracow, Poland
| | - Radomir Jasiński
- Institute of Organic Chemistry and Technology, Cracow University of Technology, Cracow, Poland
| |
Collapse
|
20
|
Mild C(sp 3)-H functionalization of dihydrosanguinarine and dihydrochelerythrine for development of highly cytotoxic derivatives. Eur J Med Chem 2017. [PMID: 28641156 DOI: 10.1016/j.ejmech.2017.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A series of C(6)-substituted dihydrobenzo[c]phenanthridines were synthesized by mild copper-catalyzed C(sp3)-H functionalization of dihydrosanguinarine (2) and dihydrochelerythrine (3) with certain nucleophiles selected to enhance cytotoxicity against human breast, colorectal, and prostate cancer cell lines. We also investigated the cytotoxicity of our previously reported C(6)-functionalized N-methyl-5,6-dihydrobenzo[c]phenanthridines 1a-1e to perform structure-activity relationship (SAR) studies. Among the target compounds, five β-aminomalonates (1a, 1b, 2a, 2b, and 3b), one α-aminophosphonate (2c), and one nitroalkyl derivative (2h) exhibited half maximal inhibitory concentration (IC50) values in the range of 0.6-8.2 μM. Derivatives 1b, 2b and 2h showed the lowest IC50 values, with 2b being the most potent with values comparable to those of the positive control doxorubicin. On the basis of their IC50 values, derivatives 1a, 1b, 2a, 2b, 2h, and 3b were selected to evaluate the apoptotic PC-3 cell death at 10 μM by flow cytometry using propidium iodide and fluorescein isothiocyanate-conjugated Annexin V dual staining. The results indicated that the cytotoxic activity of the tested compounds in PC-3 cells is due to the induction of apoptosis, with 1a and 2h being the most active (55% of early apoptosis induction). Our preliminary SAR study showed that the incorporation of specific malonic esters, dialkyl phosphites and nitro alkanes on scaffolds 1-3 significantly enhanced their cytotoxic properties. Moreover, it appears that the electron donating 7,8-methylenedioxy group allowed derivatives of 2 to exhibit higher cytotoxicity than derivatives of 1 and 3. The present results suggest that derivatives 2b and 2h may be considered as potential lead compounds for the development of new anticancer agents.
Collapse
|
21
|
Wos M, Miazga-Karska M, Kaczor AA, Klimek K, Karczmarzyk Z, Kowalczuk D, Wysocki W, Ginalska G, Urbanczyk-Lipkowska Z, Morawiak M, Pitucha M. Novel thiosemicarbazide derivatives with 4-nitrophenyl group as multi-target drugs: α-glucosidase inhibitors with antibacterial and antiproliferative activity. Biomed Pharmacother 2017; 93:1269-1276. [DOI: 10.1016/j.biopha.2017.07.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/12/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022] Open
|
22
|
Kącka A, Domingo LR, Jasiński R. Does a fluorinated Lewis acid catalyst change the molecular mechanism of the decomposition process of nitroethyl carboxylates? RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3106-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Ershov OV, Maksimova VN, Ievlev MY, Belikov MY, Tafeenko VA. Synthesis of dinitrochloromethyl pyridine derivatives. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1070428017070120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Teófilo TM, Arruda-Barbosa L, Rodrigues-Silva JM, Vale JKL, Borges RS, Duarte GP, Magalhães PJC, Lahlou S. Mechanism of the vasorelaxant effect induced by trans-4-methyl-β-nitrostyrene, a synthetic nitroderivative, in rat thoracic aorta. Clin Exp Pharmacol Physiol 2017; 44:787-794. [DOI: 10.1111/1440-1681.12771] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/02/2017] [Accepted: 04/13/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Taylena Maria Teófilo
- School of Medicine; Department of Physiology and Pharmacology; Federal University of Ceará; Fortaleza CE Brazil
| | - Loeste Arruda-Barbosa
- School of Medicine; Department of Physiology and Pharmacology; Federal University of Ceará; Fortaleza CE Brazil
| | | | | | | | - Gloria Pinto Duarte
- Department of Physiology and Pharmacology; Federal University of Pernambuco; Recife PE Brazil
| | | | - Saad Lahlou
- School of Medicine; Department of Physiology and Pharmacology; Federal University of Ceará; Fortaleza CE Brazil
| |
Collapse
|
25
|
De Filippis B, Ammazzalorso A, Fantacuzzi M, Giampietro L, Maccallini C, Amoroso R. Anticancer Activity of Stilbene-Based Derivatives. ChemMedChem 2017; 12:558-570. [PMID: 28266812 DOI: 10.1002/cmdc.201700045] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/28/2017] [Indexed: 12/27/2022]
Abstract
Stilbene is an abundant structural scaffold in nature, and stilbene-based compounds have been widely reported for their biological activity. Notably, (E)-resveratrol and its natural stilbene-containing derivatives have been extensively investigated as cardioprotective, potent antioxidant, anti-inflammatory, and anticancer agents. Starting from its potent chemotherapeutic activity against a wide variety of cancers, the stilbene scaffold has been subject to synthetic manipulations with the aim of obtaining new analogues with improved anticancer activity and better bioavailability. Within the last decade, the majority of new synthetic stilbene derivatives have demonstrated significant anticancer activity against a large number of cancer cell lines, depending on the type and position of substituents on the stilbene skeleton. This review focuses on the structure-activity relationship of the key compounds containing a stilbene scaffold and describes how the structural modifications affect their anticancer activity.
Collapse
Affiliation(s)
- Barbara De Filippis
- Dipartimento di Farmacia, Università "G. d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| | - Alessandra Ammazzalorso
- Dipartimento di Farmacia, Università "G. d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| | - Marialuigia Fantacuzzi
- Dipartimento di Farmacia, Università "G. d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| | - Letizia Giampietro
- Dipartimento di Farmacia, Università "G. d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| | - Cristina Maccallini
- Dipartimento di Farmacia, Università "G. d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| | - Rosa Amoroso
- Dipartimento di Farmacia, Università "G. d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| |
Collapse
|
26
|
The Synthetic β-Nitrostyrene Derivative CYT-Rx20 Inhibits Esophageal Tumor Growth and Metastasis via PI3K/AKT and STAT3 Pathways. PLoS One 2016; 11:e0166453. [PMID: 27875549 PMCID: PMC5119777 DOI: 10.1371/journal.pone.0166453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/30/2016] [Indexed: 12/28/2022] Open
Abstract
The β-nitrostyrene family have been implicated for anti-cancer property. However, the pharmacological role of β-nitrostyrene in esophageal cancer remain unclear. Here, a β-nitrostyrene derivative, CYT-Rx20, was synthesized and assessed for its anti-cancer activities and underlying mechanism in esophageal cancer. CYT-Rx20 induced cytotoxicity in esophageal cancer cells by promoting apoptosis through activation of caspase cascade and poly(ADP-ribose) polymerase (PARP) cleavage. Besides, CYT-Rx20 inhibited esophageal cancer cell migration and invasion by regulating the expression of epithelial to mesenchymal transition (EMT) markers. CYT-Rx20 decreased cell viability and migration through suppression of the PI3K/AKT and STAT3 pathways. Of note, the cytotoxicity and anti-migratory effect of CYT-Rx20 were enhanced by co-treatment with SC79 (AKT activator) or colivelin (STAT3 activator), suggesting the dependency of esophageal cancer cells on AKT and STAT3 for survival and migration, an oncogene addiction phenomenon. In xenograft tumor-bearing mice, CYT-Rx20 significantly reduced tumor growth of the implanted esophageal cancer cells accompanied by decreased Ki-67, phospho-AKT, and phospho-STAT3 expression. In orthotopic esophageal cancer mouse model, decreased tumor growth and lung metastasis with reduced Ki-67 and phospho-STAT3 expression were observed in mice treated with CYT-Rx20. Together, our results suggest that CYT-Rx20 is a potential β-nitrostyrene-based anticancer compound against the tumor growth and metastasis of esophageal cancer.
Collapse
|
27
|
Zhang N, Quan ZJ, Wang XC. Nickel-Catalyzed Denitrated Coupling Reaction of Nitroalkenes with Aliphatic and Aromatic Alkenes. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Na Zhang
- College of Chemistry and Chemical Engineering; Northwest Normal University, Lanzhou; Gansu 730070 People's Republic of China
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering; Northwest Normal University, Lanzhou; Gansu 730070 People's Republic of China
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering; Northwest Normal University, Lanzhou; Gansu 730070 People's Republic of China
| |
Collapse
|
28
|
Shafi S, Afrin F, Islamuddin M, Chouhan G, Ali I, Naaz F, Sharma K, Zaman MS. β-Nitrostyrenes as Potential Anti-leishmanial Agents. Front Microbiol 2016; 7:1379. [PMID: 27635124 PMCID: PMC5007854 DOI: 10.3389/fmicb.2016.01379] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022] Open
Abstract
Development of new therapeutic approach to treat leishmaniasis has become a priority. In the present study, the antileishmanial effect of β-nitrostyrenes was investigated against in vitro promastigotes and amastigotes. A series of β-nitrostyrenes have been synthesized by using Henry reaction and were evaluated for their antimicrobial activities by broth microdilution assay and in vitro antileishmanial activities against Leishmania donovani promastigotes by following standard guidelines. The most active compounds were futher evaluated for their in vitro antileishmanial activities against intracellular amastigotes. Among the tested β-nitrostyrenes, compounds 7, 8, 9, 12, and 17 exhibited potential activities (MICs range, 0.25–8 μg/mL) against clinically significant human pathogenic fungi. However, the microbactericidal concentrations (MBCs) and the microfungicidal concentrations (MFCs) were found to be either similar or only two-fold greater than the MICs. Anti-leishmanial results demonstrated that compounds 9, 12, 14, and 18 were found to be most active among the tested samples and exhibited 50% inhibitory concentration (IC50) by 23.40 ± 0.71, 37.83 ± 3.74, 40.50 ± 1.47, 55.66 ± 2.84 nM against L. donovani promastigotes and 30.5 ± 3.42, 21.46 ± 0.96, 26.43 ± 2.71, and 61.63 ± 8.02 nM respectively against intracellular L. donovani promastigotes amastigotes respectively which are comparable with standard AmB (19.60 ± 1.71 nM against promastigotes and 27.83 ± 3.26 nM against amastigotes). Compounds 9, 12, 14, and 18 were found to have potent in vitro leishmanicidal activity against L. donovani and found to be non-toxic against mammalian macrophages even at a concentration of 25 μM. Nitric oxide (NO) estimation studies reveals that these compounds are moderately inducing NO levels.
Collapse
Affiliation(s)
- Syed Shafi
- Medicinal Chemistry Lab, Department of Chemistry, Faculty of Science, Hamdard University New Delhi, India
| | - Farhat Afrin
- Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Taibah UniversityMedina, Saudi Arabia; Parasite Immunology Lab, Department of Biotechnology, Faculty of Science, Hamdard UniversityNew Delhi, India
| | - Mohammad Islamuddin
- Parasite Immunology Lab, Department of Biotechnology, Faculty of Science, Hamdard UniversityNew Delhi, India; Molecular Virology and Vaccinology Lab, Department of Biotechnology, Faculty of Science, Hamdard UniversityNew Delhi, India
| | - Garima Chouhan
- Parasite Immunology Lab, Department of Biotechnology, Faculty of Science, Hamdard University New Delhi, India
| | - Intzar Ali
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University New Delhi, India
| | - Faatima Naaz
- Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard New Delhi, India
| | - Kalicharan Sharma
- Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard New Delhi, India
| | - Mohammad S Zaman
- Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard New Delhi, India
| |
Collapse
|
29
|
3,4-Methylenedioxy-β-Nitrostyrene Ameliorates Experimental Burn Wound Progression by Inhibiting the NLRP3 Inflammasome Activation. Plast Reconstr Surg 2016; 137:566e-575e. [PMID: 26910701 DOI: 10.1097/01.prs.0000479972.06934.83] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Burn wound progression remains a challenging problem in the clinic. Secondary tissue damage caused by unlimited inflammatory response is considered to be one of the key factors contributing to this clinical problem. Nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome has recently been found to play important roles in immune activation and the inflammatory response after burn/trauma. This experimental study aims (1) to observe the expression and distribution of NLRP3 inflammasome in burn wounds of a rat burn model and (2) to study whether inhibiting the NLRP3 inflammasome activation would ameliorate burn wound progression. METHODS A deep second-degree burn was inflicted on the backs of Wistar rats. The expression of NLRP3 inflammasome components and interleukin-1β were determined by Western blot and coimmunoprecipitation. The distribution of NLRP3 inflammasome was assessed by immunohistochemical staining and double-labeling immunofluorescence. Neutrophil infiltration, wound perfusion, burn depth, and wound healing time were assessed. RESULTS Burn induced remarkable NLRP3 inflammasome activation and cleavage of interleukin-1β. The NLRP3 inflammasome was observed mainly in macrophages of the zone of stasis. 3,4-Methylenedioxy-β-nitrostyrene significantly inhibited NLRP3 inflammasome activation and inflammatory cytokine production in burn wounds. Consequently, neutrophil infiltration was reduced, wound perfusion was restored, burn wound progression was ameliorated, and wound healing was accelerated. CONCLUSIONS In this study, the authors demonstrated that burn induced NLRP3 inflammasome activation and inflammatory response in wounds, which may be associated with burn wound progression. Treatment with 3,4-methylenedioxy-β-nitrostyrene inhibited NLRP3 inflammasome activation, ameliorated burn wound progression, and promoted wound healing.
Collapse
|
30
|
Chen H, Han X, Qin N, Wei L, Yang Y, Rao L, Chi B, Feng L, Ren Y, Wan J. Synthesis and biological evaluation of novel inhibitors against 1,3,8-trihydroxynaphthalene reductase from Magnaporthe grisea. Bioorg Med Chem 2016; 24:1225-30. [DOI: 10.1016/j.bmc.2016.01.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
|
31
|
GUILLON J, RONGA L, MARCHIVIE M, MOREAU S. Crystal Structure of (<i>E</i>)-1-(3,4-Methylenedioxy-6-fluorophenyl)-2-nitropropene. X-RAY STRUCTURE ANALYSIS ONLINE 2016. [DOI: 10.2116/xraystruct.32.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jean GUILLON
- Université de Bordeaux, UFR des Sciences Pharmaceutiques
| | - Luisa RONGA
- Université de Bordeaux, UFR des Sciences Pharmaceutiques
| | | | | |
Collapse
|
32
|
Poomathi N, Perumal PT. Cinchona alkaloid and di-tert-butyldicarbonate–DMAP promoted efficient synthesis of (E)-nitroolefins. RSC Adv 2016. [DOI: 10.1039/c6ra06644e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple and efficient metal-free methodology for the synthesis of β-nitroolefins has been developed from arylidinemalononitrile using bifunctional cinchona alkaloid along with di-tert-butyldicarbonate–DMAP in high yields with total selectivity.
Collapse
Affiliation(s)
- Nataraj Poomathi
- Organic Chemistry Division
- CSIR-Central Leather Research Institute
- Chennai-600020
- India
| | | |
Collapse
|
33
|
Zhang N, Quan ZJ, Zhang Z, Da YX, Wang XC. Synthesis of stilbene derivatives via visible-light-induced cross-coupling of aryl diazonium salts with nitroalkenes using –NO2 as a leaving group. Chem Commun (Camb) 2016; 52:14234-14237. [DOI: 10.1039/c6cc08182g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photocatalytic coupling of nitroalkenes with diazonium salts.
Collapse
Affiliation(s)
- Na Zhang
- Key Laboratory of Polymer Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Zheng-Jun Quan
- Key Laboratory of Polymer Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Zhang Zhang
- Key Laboratory of Polymer Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Yu-Xia Da
- Key Laboratory of Polymer Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Xi-Cun Wang
- Key Laboratory of Polymer Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| |
Collapse
|
34
|
Regiospecific synthesis of gem -dinitro derivatives of 2-halogenocycloalka[ b ]pyridine-3,4-dicarbonitriles. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.06.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Zeng Z, Sun Z, Huang M, Zhang W, Liu J, Chen L, Chen F, Zhou Y, Lin J, Huang F, Xu L, Zhuang Z, Guo S, Alitongbieke G, Xie G, Xu Y, Lin B, Cao X, Su Y, Zhang XK, Zhou H. Nitrostyrene Derivatives Act as RXRα Ligands to Inhibit TNFα Activation of NF-κB. Cancer Res 2015; 75:2049-60. [PMID: 25795708 DOI: 10.1158/0008-5472.can-14-2435] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 01/21/2015] [Indexed: 11/16/2022]
Abstract
Retinoid X receptor alpha (RXRα) and its N-terminally truncated version, tRXRα, are widely implicated in cancer development and represent intriguing targets for cancer prevention and treatment. Successful manipulation of RXRα and tRXRα requires the identification of their modulators that could produce therapeutic effects. Here, we report that a class of nitrostyrene derivatives bind to RXRα by a unique mechanism, of which the nitro group of nitrostyrene derivatives and Cys432 of RXRα are required for binding. The binding results in the potent activation of Gal4-DBD-RXRα-LBD transactivation. However, the binding inhibits the transactivation of RXRα homodimer, which might be due to the distinct conformation of RXRα homodimer induced by these nitrostyrene derivatives. Two RXRα point mutants with Cys432 substituted with Tyr and Trp, respectively, could mimic the bindings of two nitrostyrene derivatives and have the ability of autotransactivation. In studying the functional consequences of the binding, we show that these nitrostyrene derivatives could potently inhibit the TNFα/NFκB signaling pathway in a tRXRα-dependent manner. tRXRα promotes TNFα-induced NF-κB activation through its interaction with TRAF2 and enhances TNFα-induced ubiquitination of RIP1, which is strongly inhibited by nitrostyrene derivatives. The inhibition of TNFα-induced NF-κB activation results in the synergistic effect of the combination of nitrostyrene derivatives and TNFα on the induction of cancer cell apoptosis. Together, our results show a new class of RXRα modulators that induce apoptosis of cancer cells through their unique binding mode and new mechanism of action.
Collapse
Affiliation(s)
- Zhiping Zeng
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhe Sun
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Mingfeng Huang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Weidong Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jie Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Liqun Chen
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Fan Chen
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yuqi Zhou
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiacheng Lin
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Fengyu Huang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lin Xu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zixing Zhuang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shangjie Guo
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | | | - Guobin Xie
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yang Xu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Bingzhen Lin
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California
| | - Xihua Cao
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California
| | - Ying Su
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China. Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China. Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California.
| | - Hu Zhou
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
36
|
Xue C, Fu C, Ma S. Highly regio- and stereoselective nitro-oxoamination of mono-substituted allenes. Chem Commun (Camb) 2014; 50:15333-6. [DOI: 10.1039/c4cc05743k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Synthesis, in vitro cytotoxicity and apoptosis inducing study of 2-aryl-3-nitro-2H-chromene derivatives as potent anti-breast cancer agents. Eur J Med Chem 2014; 86:562-9. [DOI: 10.1016/j.ejmech.2014.09.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 08/18/2014] [Accepted: 09/05/2014] [Indexed: 11/22/2022]
|
38
|
White KS, Nicoletti G, Borland R. Nitropropenyl benzodioxole, an anti-infective agent with action as a protein tyrosine phosphatase inhibitor. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2014; 8:1-16. [PMID: 24976873 PMCID: PMC4073595 DOI: 10.2174/1874104501408010001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/27/2014] [Accepted: 02/17/2014] [Indexed: 12/25/2022]
Abstract
We report on the activities of a broad spectrum antimicrobial compound,nitropropenyl benzodioxole (NPBD) which are of relevance to its potential as an anti-infective drug. These investigations support the proposal that a major mechanism of NPBD is action as a tyrosine mimetic, competitively inhibiting bacterial and fungal protein tyrosine phosphatases (PTP). NPBD did not affect major anti-bacterial drug targets, namely, ATP production, cell wall or cell membrane integrity, or transcription and translation of RNA. NPBD inhibited bacterial YopH and human PTP1B and not human CD45 in enzyme assays. NPBD inhibited PTP-associated bacterial virulence factors, namely, endospore formation in Bacillus cereus, prodigiosin secretion in Serratia marcescens , motility in Proteus spp., and adherence and invasion of mammalian cells by Yersinia enterocolitica . NPBD acts intracellularly to inhibit the early development stages of the Chlamydia trachomatis infection cycle in mammalian cells known to involve sequestration of host cell PTPs. NPBD thus both kills pathogens and inhibits virulence factors relevant to early infection, making it a suitable candidate for development as an anti-infective agent, particularly for pathogens that enter through, or cause infections at, mucosal surfaces. Though much is yet to be understood about bacterial PTPs, they are proposed as suitable anti-infective targets and have been linked to agents similar to NPBD. The structural and functional diversity and heterogeneous distribution of PTPs across microbial species make them suitably selective targets for the development of both broadly active and pathogen-specific drugs.
Collapse
Affiliation(s)
- Kylie S White
- School of Applied Sciences, College of Science, Engineering and Technology, RMIT University, 124 Latrobe St, Victoria, 3000, Australia
| | | | | |
Collapse
|
39
|
Tena Pérez V, Fuentes de Arriba ÁL, Monleón LM, Simón L, Rubio OH, Sanz F, Morán JR. A High Yield Procedure for the Preparation of 2-Hydroxynitrostyrenes: Synthesis of Imines and Tetracyclic 1,3-Benzoxazines. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Bartels M, Calgarotto AK, Martens AC, Maso V, da Silva SL, Bierings MB, de Souza Queiroz ML, Coffer PJ. Differential effects of nitrostyrene derivatives on myelopoiesis involve regulation of C/EBPα and p38MAPK activity. PLoS One 2014; 9:e90586. [PMID: 24614182 PMCID: PMC3948686 DOI: 10.1371/journal.pone.0090586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/03/2014] [Indexed: 11/18/2022] Open
Abstract
Bone marrow failure syndromes and MDS represent a heterogenous group of diseases, characterized by ineffective myelopoiesis, the risk of clonal evolution and a generally poor response to chemotherapy-based treatment regimen. Nitrostyrene derivatives have been studied as protein phosphatase inhibitors in various tumor models. Pharmacological studies have identified nitrostyrene as the structural core underlying a pro-apoptotic effect in tumor cells, yet their effects on normal cells, including those of the hematopoietic system, are largely unknown. In this study, utilizing umbilical cord blood-derived myeloid progenitor cells, patient-derived bone marrow cells, and a (BALB/c) mouse model; we investigated the effects of treatment with two nitrostyrene derivatives (NTS1 and NTS2) on myeloid development. We demonstrate that these compounds stimulate the expansion and differentiation of myeloid progenitors in vitro and improve myeloid reconstitution after chemotherapy-induced bone marrow depletion in vitro and in vivo. These effects were accompanied by increased C/EBPα expression and activity and inhibition of the p38MAPK signalling pathway. Together, our data suggest that nitrostyrenes improve myelopoiesis and represent potential new treatment strategies for patients suffering from bone marrow failure syndromes, hypocellular myelodysplastic syndrome and chemotherapy-induced aplasia.
Collapse
Affiliation(s)
- Marije Bartels
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands; Division of Pediatrics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Andrana K Calgarotto
- Departamento de Farmacologica, Universidade Estadual de Campinas, Campinas/SP, Brazil
| | - Anton C Martens
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Victor Maso
- Departamento de Farmacologica, Universidade Estadual de Campinas, Campinas/SP, Brazil
| | - Saulo L da Silva
- Departamento de Química, Universidade Federal de São João Del-Rei, Ouro Branco/MG, Brazil
| | - Marc B Bierings
- Division of Pediatrics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Paul J Coffer
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands; Division of Pediatrics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
41
|
Yan G, Borah AJ, Wang L. Recent advances in the synthesis of nitroolefin compounds. Org Biomol Chem 2014; 12:6049-58. [DOI: 10.1039/c4ob00573b] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review focuses on recent achievements in nitroolefin synthesis and the mechanisms of the reactions are also discussed.
Collapse
Affiliation(s)
- Guobing Yan
- Department of Chemistry
- Lishui University
- Lishui City 323000, P. R. China
| | - Arun Jyoti Borah
- Department of Chemistry
- Lishui University
- Lishui City 323000, P. R. China
| | - Lianggui Wang
- Department of Chemistry
- Lishui University
- Lishui City 323000, P. R. China
| |
Collapse
|
42
|
Gruber J, Staniek K, Krewenka C, Moldzio R, Patel A, Böhmdorfer S, Rosenau T, Gille L. Tocopheramine succinate and tocopheryl succinate: mechanism of mitochondrial inhibition and superoxide radical production. Bioorg Med Chem 2013; 22:684-91. [PMID: 24393721 DOI: 10.1016/j.bmc.2013.12.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/16/2013] [Accepted: 12/16/2013] [Indexed: 12/17/2022]
Abstract
Tocopherols (TOH) are lipophilic antioxidants which require the phenolic OH group for their redox activity. In contrast, non-redox active esters of α-TOH with succinate (α-TOS) were shown to possess proapoptotic activity in cancer cells. It was suggested that this activity is mediated via mitochondrial inhibition with subsequent O2(-) production triggering apoptosis and that the modification of the linker between the succinate and the lipophilic chroman may modulate this activity. However, the specific mechanism and the influence of the linker are not clear yet on the level of the mitochondrial respiratory chain. Therefore, this study systematically compared the effects of α-TOH acetate (α-TOA), α-TOS and α-tocopheramine succinate (α-TNS) in cells and submitochondrial particles (SMP). The results showed that not all cancer cell lines are highly sensitive to α-TOS and α-TNS. In HeLa cells α-TNS did more effectively reduce cell viability than α-TOS. The complex I activity of SMP was little affected by α-TNS and α-TOS while the complex II activity was much more inhibited (IC50=42±8μM α-TOS, 106±8μM α-TNS, respectively) than by α-TOA (IC50 >1000μM). Also the complex III activity was inhibited by α-TNS (IC50=137±6μM) and α-TOS (IC50=315±23μM). Oxygen consumption of NADH- or succinate-respiring SMP, involving the whole electron transfer machinery, was dose-dependently decreased by α-TOS and α-TNS, but only marginal effects were observed in the presence of α-TOA. In contrast to the similar inhibition pattern of α-TOS and α-TNS, only α-TOS triggered O2(-) formation in succinate- and NADH-respiring SMP. Inhibitor studies excluded complex I as O2(-) source and suggested an involvement of complex III in O2(-) production. In cancer cells only α-TOS was reproducibly able to increase O2(-) levels above the background level but neither α-TNS nor α-TOA. Furthermore, the stability of α-TNS in liver homogenates was significantly lower than that of α-TOS. In conclusion, this suggests that α-TNS although it has a structure similar to α-TOS is not acting via the same mechanism and that for α-TOS not only complex II but also complex III interactions are involved.
Collapse
Affiliation(s)
- Julia Gruber
- Institute of Pharmacology and Toxicology, Dept. of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria; University of Applied Sciences Wiener Neustadt (FHWN), Wiener Neustadt, Austria
| | - Katrin Staniek
- Institute of Pharmacology and Toxicology, Dept. of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Christopher Krewenka
- Institute of Medicinal Biochemistry, Dept. of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Rudolf Moldzio
- Institute of Medicinal Biochemistry, Dept. of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Anjan Patel
- Dept. of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Stefan Böhmdorfer
- Dept. of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Thomas Rosenau
- Dept. of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Lars Gille
- Institute of Pharmacology and Toxicology, Dept. of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
43
|
He Y, Varadarajan S, Muñoz-Planillo R, Burberry A, Nakamura Y, Núñez G. 3,4-methylenedioxy-β-nitrostyrene inhibits NLRP3 inflammasome activation by blocking assembly of the inflammasome. J Biol Chem 2013; 289:1142-50. [PMID: 24265316 DOI: 10.1074/jbc.m113.515080] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NLRP3 inflammasome is a critical component of the innate immune system. NLRP3 activation is induced by diverse stimuli associated with bacterial infection or tissue damage, but its inappropriate activation is involved in the pathogenesis of inherited and acquired inflammatory diseases. However, the mechanism by which NLRP3 is activated remains poorly understood. In this study, we explored the role of kinases in NLRP3 inflammasome activation by screening a kinase inhibitor library and identified 3,4-methylenedioxy-β-nitrostyrene (MNS) as an inhibitor for NLRP3 inflammasome activation. Notably, MNS did not affect the activation of the NLRC4 or AIM2 (absent in melanoma 2) inflammasome. Mechanistically, MNS specifically prevented NLRP3-mediated ASC speck formation and oligomerization without blocking potassium efflux induced by NLRP3 agonists. Surprisingly, Syk kinase, the reported target of MNS, did not mediate the inhibitory activity of MNS on NLRP3 inflammasome activation. We also found that the nitrovinyl group of MNS is essential for the inhibitory activity of MNS. Immunoprecipitation, mass spectrometry, and mutation studies suggest that both the nucleotide binding oligomerization domain and the leucine-rich repeat domain of NLRP3 were the intracellular targets of MNS. Administration of MNS also inhibited NLRP3 ATPase activity in vitro, suggesting that MNS blocks the NLRP3 inflammasome by directly targeting NLRP3 or NLRP3-associated complexes. These studies identified a novel chemical probe for studying the molecular mechanism of NLRP3 inflammasome activation which may advance the development of novel strategies to treat diseases associated with abnormal activation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Yuan He
- From the Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | | | | | | | | | | |
Collapse
|
44
|
Maity S, Naveen T, Sharma U, Maiti D. Stereoselective Nitration of Olefins with tBuONO and TEMPO: Direct Access to Nitroolefins under Metal-free Conditions. Org Lett 2013; 15:3384-7. [DOI: 10.1021/ol401426p] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Soham Maity
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400 076, India
| | - Togati Naveen
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400 076, India
| | - Upendra Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400 076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400 076, India
| |
Collapse
|
45
|
Jalal S, Sarkar S, Bera K, Maiti S, Jana U. Synthesis of Nitroalkenes Involving a Cooperative Catalytic Action of Iron(III) and Piperidine: A One-Pot Synthetic Strategy to 3-Alkylindoles, 2H-Chromenes andN-Arylpyrrole. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300172] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Zhang M, Hu P, Zhou J, Wu G, Huang S, Su W. Pd-Catalyzed Multidehydrogenative Cross-Coupling between (Hetero)Arenes and Nitroethane to Construct β-Aryl Nitroethylenes. Org Lett 2013; 15:1718-21. [DOI: 10.1021/ol400507u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Min Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Peng Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Jun Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Ge Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Shijun Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| |
Collapse
|
47
|
Rokade BV, Prabhu KR. Synthesis of substituted nitroolefins: a copper catalyzed nitrodecarboxylation of unsaturated carboxylic acids. Org Biomol Chem 2013; 11:6713-6. [DOI: 10.1039/c3ob41408f] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
48
|
Scholz T, Heyl CL, Bernardi D, Zimmermann S, Kattner L, Klein CD. Chemical, biochemical and microbiological properties of a brominated nitrovinylfuran with broad-spectrum antibacterial activity. Bioorg Med Chem 2012; 21:795-804. [PMID: 23266177 DOI: 10.1016/j.bmc.2012.11.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 11/07/2012] [Accepted: 11/12/2012] [Indexed: 11/16/2022]
Abstract
A di-bromo substituted nitrovinylfuran with reported broad-spectrum antibacterial activity was found to be a potent inhibitor of MurA, a key enzyme in peptidoglycan biosynthesis. Further characterization of the compound was carried out to assess its reactivity towards thiol nucleophiles, its stability and degradation under aqueous conditions, inhibitory potential at other enzymes, and antibacterial and cytotoxic activity. Our results indicate that the nitrovinylfuran derivative is reactive towards cysteine residues in proteins, as demonstrated by the irreversible inhibition of MurA and bacterial methionine aminopeptidase. Experiments with proteins and model thiols indicate that the compound forms covalent adducts with SH groups and induces intermolecular disulfide bonds, with the intermediate formation of a monobromide derivative. The parent molecule as well as most of its breakdown products are potent antibiotics with MIC values below 4 μg/mL and are active against multiresistant strains such as methicillin-resistant Staphylococcus aureus (MRSA). Further development of the bromonitrovinyl scaffold towards antibiotics with clinical relevance, however, requires optimization of the antibiotic-cytotoxic selectivity profile.
Collapse
Affiliation(s)
- Therese Scholz
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Osteosarcoma Phenotype Is Inhibited by 3,4-Methylenedioxy-β-nitrostyrene. Sarcoma 2012; 2012:479712. [PMID: 22701331 PMCID: PMC3371351 DOI: 10.1155/2012/479712] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 02/20/2012] [Indexed: 11/18/2022] Open
Abstract
β-nitrostyrene compounds, such as 3,4-methylenedioxy-β-nitrostyrene (MNS), inhibit growth and induce apoptosis in tumor cells, but no reports have investigated their role in osteosarcoma. In this study, human osteosarcoma cell families with cell lines of varying tumorigenic and metastatic potential were utilized. Scrape motility assays, colony formation assays, and colony survival assays were performed with osteosarcoma cell lines, both in the presence and absence of MNS. Effects of MNS on human osteoblasts and airway epithelial cells were assessed in monolayer cultures. MNS decreased metastatic cell line motility by 72–76% and colony formation by 95–100%. MNS consistently disrupted preformed colonies in a time-dependent and dose-dependent manner. MNS had similar effects on human osteoblasts but little effect on airway epithelial cells. An inactive analog of MNS had no detectable effects, demonstrating specificity. MNS decreases motility and colony formation of osteosarcoma cells and disrupts preformed cell colonies, while producing little effect on pulmonary epithelial cells.
Collapse
|
50
|
Calgarotto AK, da Silva Pereira GJ, Bechara A, Paredes-Gamero EJ, Barbosa CMV, Hirata H, de Souza Queiroz ML, Smaili SS, Bincoletto C. Autophagy inhibited Ehrlich ascitic tumor cells apoptosis induced by the nitrostyrene derivative compounds: relationship with cytosolic calcium mobilization. Eur J Pharmacol 2011; 678:6-14. [PMID: 22227332 DOI: 10.1016/j.ejphar.2011.12.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 12/15/2011] [Accepted: 12/17/2011] [Indexed: 01/07/2023]
Abstract
Apoptosis induction is often associated with increased autophagy, indicating interplay between these two important cellular events in cell death and survival. In this study, the programmed cell death and autophagy induced by two nitrostyrene derivative compounds (NTS1 and NTS2) was studied using the tumorigenic Ehrlich ascitic tumor (EAT) cells. EAT cells were highly sensitive to NTS1 and NTS2 cytotoxicity in a dose-dependent manner. NTS1 and NTS2 IC(50) was less than 15.0μM post 12h incubation. Apoptosis was primarily induced by both compounds, as demonstrated by an increase in Annexin-V positive cells, concurrently with cytochrome c release from mitochondria to cytosol and caspase-3 activation. Although cytosolic Ca(2+) mobilization is involved in autophagy as well as apoptosis in response to cellular stress in many cancer cell types, from the two nitrostyrene derivative compounds studied, mainly NTS1 mobilized this ion and disparate autophagy in EAT cells. These results suggest that EAT induced cell death by NTS1 and NTS2 involved a Ca(2+)-dependent and a Ca(2+)-independent pathways, respectively. In accordance with these results, the treatment of EAT cells with 3 methyladenine (3-MA), an autophagy inhibitor; significantly increased the number of apoptotic cells after NTS1 treatment, suggesting that pharmacological modulation of autophagy augments the NTS1 efficacy. Thus, we denote the importance of studies involving autophagy and apoptosis during pre-clinical studies of new drugs with anticancer properties.
Collapse
Affiliation(s)
- Andrana K Calgarotto
- Departamento de Farmacologia, FCM, Universidade Estadual de Campinas, UNICAMP, Campinas/SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|