1
|
Bele T, Turk T, Križaj I. Nicotinic acetylcholine receptors in cancer: Limitations and prospects. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166875. [PMID: 37673358 DOI: 10.1016/j.bbadis.2023.166875] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) have long been considered to solely mediate neurotransmission. However, their widespread distribution in the human body suggests a more diverse physiological role. Additionally, the expression of nAChRs is increased in certain cancers, such as lung cancer, and has been associated with cell proliferation, epithelial-to-mesenchymal cell transition, angiogenesis and apoptosis prevention. Several compounds that interact with these receptors have been identified as potential therapeutic agents. They have been tested as drugs for treating nicotine addiction, alcoholism, depression, pain and Alzheimer's disease. This review focuses on nAChR-mediated signalling in cancer, presenting opportunities for the development of innovative nAChR-based anticancer drugs. It displays the differences in expression of each nAChR subunit between normal and cancer cells for selected cancer types, highlighting their possible involvement in specific cases. Antagonists of nAChRs that could complement existing cancer therapies are summarised and critically discussed. We hope that this review will stimulate further research on the role of nAChRs in cancer potentially leading to innovative cancer therapies.
Collapse
Affiliation(s)
- T Bele
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia.
| | - T Turk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - I Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Maity A, Munda M, Niyogi S, Kumar N, Bisai A. Total syntheses of Hexahydropyrrolo[2,3-b]indole Alkaloids, (+)-pseudophrynamine 270 and (+)-pseudophrynamine 272A. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Kundu S, Munda M, Nandi R, Bisai A. Pd(0)-Catalyzed Deacylative Allylations (DaA) Strategy and Application in the Total Synthesis of Alkaloids. CHEM REC 2021; 21:3818-3838. [PMID: 34796643 DOI: 10.1002/tcr.202100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 11/12/2022]
Abstract
Natural product synthesis has been the prime focus for the development of new carbon-carbon bond forming transformations. In particular, the construction of molecules with all-carbon quaternary centers remain one of the most facinating targets. In this regard, transition-metal catalyzed processes have gained imporatnce owing to their mild nature. Towards this, Pd(0)-catalyzed decarboxylative allylations (DcA) is worth mentioning and has emerged as a convenient method for synthesis of molecules even in their enantioenriched form. However, in order to have a flexible approach that facilitate rapid production of derivatives by utilizing commercially available allyl alcohols, the concept of Pd(0)-catalyzed deacylative allylations (DaA) methodology gains popularity. In these reactions, the transfer of an acyl group has a functional role in activating the allylic alcohol (proelectrophile) toward reaction with Pd(0)-catalysts. We present here an Account on newly conceptualized deacylative allylations (DaA) methodology and its applications in the synthesis of various intermediates and building blocks. Further, its potential in the total synthesis of naturally occurring alkaloids have been summarized in this personal account.
Collapse
Affiliation(s)
- Sourav Kundu
- Department of Chemistry, Indian Institution of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, MP, India
| | - Mintu Munda
- Department of Chemistry, Indian Institution of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, MP, India
| | - Rhituparna Nandi
- Department of Chemistry, Indian Institution of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, MP, India
| | - Alakesh Bisai
- Department of Chemical Sciences, Indian Institution of Science Education and Research Kolkata Mohanpur Campus, Kalyani, Nadia, 741 246, WB, India
| |
Collapse
|
4
|
Heravi MM, Abedian‐Dehaghani N, Zadsirjan V, Rangraz Y. Catalytic Function of Cu (I) and Cu (II) in Total Synthesis of Alkaloids. ChemistrySelect 2021. [DOI: 10.1002/slct.202101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Majid M. Heravi
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Neda Abedian‐Dehaghani
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Vahideh Zadsirjan
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Yalda Rangraz
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| |
Collapse
|
5
|
Otvos RA, Still KBM, Somsen GW, Smit AB, Kool J. Drug Discovery on Natural Products: From Ion Channels to nAChRs, from Nature to Libraries, from Analytics to Assays. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2019; 24:362-385. [PMID: 30682257 PMCID: PMC6484542 DOI: 10.1177/2472555218822098] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/16/2018] [Accepted: 12/07/2018] [Indexed: 12/21/2022]
Abstract
Natural extracts are complex mixtures that may be rich in useful bioactive compounds and therefore are attractive sources for new leads in drug discovery. This review describes drug discovery from natural products and in explaining this process puts the focus on ion-channel drug discovery. In particular, the identification of bioactives from natural products targeting nicotinic acetylcholine receptors (nAChRs) and serotonin type 3 receptors (5-HT3Rs) is discussed. The review is divided into three parts: "Targets," "Sources," and "Approaches." The "Targets" part will discuss the importance of ion-channel drug targets in general, and the α7-nAChR and 5-HT3Rs in particular. The "Sources" part will discuss the relevance for drug discovery of finding bioactive compounds from various natural sources such as venoms and plant extracts. The "Approaches" part will give an overview of classical and new analytical approaches that are used for the identification of new bioactive compounds with the focus on targeting ion channels. In addition, a selected overview is given of traditional venom-based drug discovery approaches and of diverse hyphenated analytical systems used for screening complex bioactive mixtures including venoms.
Collapse
Affiliation(s)
- Reka A. Otvos
- The Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Kristina B. M. Still
- The Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Govert W. Somsen
- The Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jeroen Kool
- The Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Gupta GR, Shah J, Vadagaonkar KS, Lavekar AG, Kapdi AR. Hetero-bimetallic cooperative catalysis for the synthesis of heteroarenes. Org Biomol Chem 2019; 17:7596-7631. [DOI: 10.1039/c9ob01152h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Review covering the synthesis of 5- and 6-membered as well as condensed heteroarenes, focussing on the combinations in cooperative catalytic systems in strategies used to achieve selectivity and also highlights the mode of action for the cooperative catalysis leading to the synthesis of commercially and biologically relevant heteroarenes.
Collapse
Affiliation(s)
- Gaurav R. Gupta
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai-400019
- India
| | - Jagrut Shah
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai-400019
- India
| | | | - Aditya G. Lavekar
- Former Research Fellow
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow-226031
- India
| | - Anant R. Kapdi
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai-400019
- India
| |
Collapse
|
7
|
Tu HF, Zhang X, Zheng C, Zhu M, You SL. Enantioselective dearomative prenylation of indole derivatives. Nat Catal 2018. [DOI: 10.1038/s41929-018-0111-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Gao Q, Zhou P, Liu F, Hao WJ, Yao C, Jiang B, Tu SJ. Cobalt(ii)/silver relay catalytic isocyanide insertion/cycloaddition cascades: a new access to pyrrolo[2,3-b]indoles. Chem Commun (Camb) 2015; 51:9519-22. [DOI: 10.1039/c5cc02754c] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The combination of Co(acac)2 and AgOTf enables the bimetallic relay catalysis reaction of 2-ethynylanilines and isocyanides, allowing an easy and low-cost access to new densely functionalized pyrrolo[2,3-b]indoles.
Collapse
Affiliation(s)
- Qian Gao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - Peng Zhou
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - Feng Liu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - Wen-Juan Hao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - Changsheng Yao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - Bo Jiang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - Shu-Jiang Tu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou
- P. R. China
| |
Collapse
|
9
|
Zhou Y, Xi Y, Zhao J, Sheng X, Zhang S, Zhang H. Copper-Catalyzed Arylation of o-Bromoanilides: Highly Flexible Synthesis of Hexahydropyrroloindole Alkaloids. Org Lett 2012; 14:3116-9. [DOI: 10.1021/ol3012056] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yongyun Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yongkai Xi
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Jingfeng Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Xianfu Sheng
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Shuqin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
10
|
Chemoselective asymmetric synthesis of C-3a-(3-hydroxypropyl)tetrahydropyrrolo[2,3-b]indole and C-4a-(2-aminoethyl)-tetrahydropyrano[2,3-b]indole derivatives. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Daly JW. Nicotinic agonists, antagonists, and modulators from natural sources. Cell Mol Neurobiol 2005; 25:513-52. [PMID: 16075378 DOI: 10.1007/s10571-005-3968-4] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Accepted: 04/14/2004] [Indexed: 10/25/2022]
Abstract
1. Acetylcholine receptors were initially defined as nicotinic or muscarinic, based on selective activation by two natural products, nicotine and muscarine. Several further nicotinic agonists have been discovered from natural sources, including cytisine, anatoxin, ferruginine, anabaseine, epibatidine, and epiquinamide. These have provided lead structures for the design of a wide range of synthetic agents. 2. Natural sources have also provided competitive nicotinic antagonists, such as the Erythrina alkaloids, the tubocurarines, and methyllycaconitine. Noncompetitive antagonists, such as the histrionicotoxins, various izidines, decahydroquinolines, spiropyrrolizidine oximes, pseudophrynamines, ibogaine, strychnine, cocaine, and sparteine have come from natural sources. Finally, galanthamine, codeine, and ivermectin represent positive modulators of nicotinic function, derived from natural sources. 3. Clearly, research on acetylcholine receptors and functions has been dependent on key natural products and the synthetic agents that they inspired.
Collapse
Affiliation(s)
- John W Daly
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892, USA.
| |
Collapse
|
12
|
Tan GH, Zhu X, Ganesan A. Total synthesis of debromoflustramine B via biomimetic alkylative cyclization. Org Lett 2003; 5:1801-3. [PMID: 12735781 DOI: 10.1021/ol034516+] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[reaction: see text] The hexahydropyrrolo[2,3-b]indoline skeleton is readily accessed by the zinc triflate-mediated alkylation of tryptamine derivatives. The methodology was employed in a three-step total synthesis of debromoflustramine B.
Collapse
Affiliation(s)
- Gan Hup Tan
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | | | | |
Collapse
|
13
|
Daly JW. Ernest Guenther award in chemistry of natural products. Amphibian skin: a remarkable source of biologically active arthropod alkaloids. J Med Chem 2003; 46:445-52. [PMID: 12570366 DOI: 10.1021/jm0204845] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John W Daly
- Chief, Section of Pharmacodynamics, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0820, USA.
| |
Collapse
|
14
|
|
15
|
Arias HR. Binding sites for exogenous and endogenous non-competitive inhibitors of the nicotinic acetylcholine receptor. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1376:173-220. [PMID: 9748559 DOI: 10.1016/s0304-4157(98)00004-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The nicotinic acetylcholine receptor (AChR) is the paradigm of the neurotransmitter-gated ion channel superfamily. The pharmacological behavior of the AChR can be described as three basic processes that progress sequentially. First, the neurotransmitter acetylcholine (ACh) binds the receptor. Next, the intrinsically coupled ion channel opens upon ACh binding with subsequent ion flux activity. Finally, the AChR becomes desensitized, a process where the ion channel becomes closed in the prolonged presence of ACh. The existing equilibrium among these physiologically relevant processes can be perturbed by the pharmacological action of different drugs. In particular, non-competitive inhibitors (NCIs) inhibit the ion flux and enhance the desensitization rate of the AChR. The action of NCIs was studied using several drugs of exogenous origin. These include compounds such as chlorpromazine (CPZ), triphenylmethylphosphonium (TPMP+), the local anesthetics QX-222 and meproadifen, trifluoromethyl-iodophenyldiazirine (TID), phencyclidine (PCP), histrionicotoxin (HTX), quinacrine, and ethidium. In order to understand the mechanism by which NCIs exert their pharmacological properties several laboratories have studied the structural characteristics of their binding sites, including their respective locations on the receptor. One of the main objectives of this review is to discuss all available experimental evidence regarding the specific localization of the binding sites for exogenous NCIs. For example, it is known that the so-called luminal NCIs bind to a series of ring-forming amino acids in the ion channel. Particularly CPZ, TPMP+, QX-222, cembranoids, and PCP bind to the serine, the threonine, and the leucine ring, whereas TID and meproadifen bind to the valine and extracellular rings, respectively. On the other hand, quinacrine and ethidium, termed non-luminal NCIs, bind to sites outside the channel lumen. Specifically, quinacrine binds to a non-annular lipid domain located approximately 7 A from the lipid-water interface and ethidium binds to the vestibule of the AChR in a site located approximately 46 A away from the membrane surface and equidistant from both ACh binding sites. The non-annular lipid domain has been suggested to be located at the intermolecular interfaces of the five AChR subunits and/or at the interstices of the four (M1-M4) transmembrane domains. One of the most important concepts in neurochemistry is that receptor proteins can be modulated by endogenous substances other than their specific agonists. Among membrane-embedded receptors, the AChR is one of the best examples of this behavior. In this regard, the AChR is non-competitively modulated by diverse molecules such as lipids (fatty acids and steroids), the neuropeptide substance P, and the neurotransmitter 5-hydroxytryptamine (5-HT). It is important to take into account that the above mentioned modulation is produced through a direct binding of these endogenous molecules to the AChR. Since this is a physiologically relevant issue, it is useful to elucidate the structural components of the binding site for each endogenous NCI. In this regard, another important aim of this work is to review all available information related to the specific localization of the binding sites for endogenous NCIs. For example, it is known that both neurotransmitters substance P and 5-HT bind to the lumen of the ion channel. Particularly, the locus for substance P is found in the deltaM2 domain, whereas the binding site for 5-HT and related compounds is putatively located on both the serine and the threonine ring. Instead, fatty acid and steroid molecules bind to non-luminal sites. More specifically, fatty acids may bind to the belt surrounding the intramembranous perimeter of the AChR, namely the annular lipid domain, and/or to the high-affinity quinacrine site which is located at a non-annular lipid domain. Additionally, steroids may bind to a site located on the extracellular hydrophi
Collapse
Affiliation(s)
- H R Arias
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, and Universidad Nacional del Sur, Blanca, Argentina.
| |
Collapse
|