1
|
Straube H, Straube J, Rinne J, Fischer L, Niehaus M, Witte CP, Herde M. An inosine triphosphate pyrophosphatase safeguards plant nucleic acids from aberrant purine nucleotides. THE NEW PHYTOLOGIST 2023; 237:1759-1775. [PMID: 36464781 DOI: 10.1111/nph.18656] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
In plants, inosine is enzymatically introduced in some tRNAs, but not in other RNAs or DNA. Nonetheless, our data show that RNA and DNA from Arabidopsis thaliana contain (deoxy)inosine, probably derived from nonenzymatic adenosine deamination in nucleic acids and usage of (deoxy)inosine triphosphate (dITP and ITP) during nucleic acid synthesis. We combined biochemical approaches, LC-MS, as well as RNA-Seq to characterize a plant INOSINE TRIPHOSPHATE PYROPHOSPHATASE (ITPA) from A. thaliana, which is conserved in many organisms, and investigated the sources of deaminated purine nucleotides in plants. Inosine triphosphate pyrophosphatase dephosphorylates deaminated nucleoside di- and triphosphates to the respective monophosphates. ITPA loss-of-function causes inosine di- and triphosphate accumulation in vivo and an elevated inosine and deoxyinosine content in RNA and DNA, respectively, as well as salicylic acid (SA) accumulation, early senescence, and upregulation of transcripts associated with immunity and senescence. Cadmium-induced oxidative stress and biochemical inhibition of the INOSINE MONOPHOSPHATE DEHYDROGENASE leads to more IDP and ITP in the wild-type (WT), and this effect is enhanced in itpa mutants, suggesting that ITP originates from ATP deamination and IMP phosphorylation. Inosine triphosphate pyrophosphatase is part of a molecular protection system in plants, preventing the accumulation of (d)ITP and its usage for nucleic acid synthesis.
Collapse
Affiliation(s)
- Henryk Straube
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover, 30419, Germany
| | - Jannis Straube
- Department of Molecular Plant Breeding, Leibniz Universität Hannover, Hannover, 30419, Germany
| | - Jannis Rinne
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover, 30419, Germany
| | - Lisa Fischer
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover, 30419, Germany
| | - Markus Niehaus
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover, 30419, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover, 30419, Germany
| | - Marco Herde
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover, 30419, Germany
| |
Collapse
|
2
|
James AM, Seal SE, Bailey AM, Foster GD. Viral inosine triphosphatase: A mysterious enzyme with typical activity, but an atypical function. MOLECULAR PLANT PATHOLOGY 2021; 22:382-389. [PMID: 33471956 PMCID: PMC7865087 DOI: 10.1111/mpp.13021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 05/03/2023]
Abstract
Plant viruses typically have highly condensed genomes, yet the plant-pathogenic viruses Cassava brown streak virus, Ugandan cassava brown streak virus, and Euphorbia ringspot virus are unusual in encoding an enzyme not yet found in any other virus, the "house-cleaning" enzyme inosine triphosphatase. Inosine triphosphatases (ITPases) are highly conserved enzymes that occur in all kingdoms of life and perform a house-cleaning function by hydrolysing the noncanonical nucleotide inosine triphosphate to inosine monophosphate. The ITPases encoded by cassava brown streak virus and Ugandan cassava brown streak virus have been characterized biochemically and are shown to have typical ITPase activity. However, their biological role in virus infection has yet to be elucidated. Here we review what is known of viral-encoded ITPases and speculate on potential roles in infection with the aim of generating a greater understanding of cassava brown streak viruses, a group of the world's most devastating viruses.
Collapse
Affiliation(s)
- Amy M. James
- School of Biological SciencesLife Sciences BuildingUniversity of BristolBristolUK
| | - Susan E. Seal
- Natural Resources Institute, Chatham MaritimeGillinghamUK
| | - Andy M. Bailey
- School of Biological SciencesLife Sciences BuildingUniversity of BristolBristolUK
| | - Gary D. Foster
- School of Biological SciencesLife Sciences BuildingUniversity of BristolBristolUK
| |
Collapse
|
3
|
Senthilvelan A, Shanmugasundaram M, Kore AR. An efficient protection-free chemical synthesis of inosine 5'-nucleotides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:829-837. [PMID: 31997708 DOI: 10.1080/15257770.2019.1708388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A facile, straightforward, reliable, and efficient chemical synthesis of inosine nucleotides such as inosine-5'-monophosphate, inosine-5'-diphosphate, and inosine-5'-triphosphate, starting from inosine is delineated. The inosine-5'-monophosphate is achieved by the highly regioselective monophosphorylation of inosine using the Yoshikawa procedure. The inosine-5'-diphosphate is obtained by the coupling reaction of tributylammonium phosphate with an activated inosine-5'-monophosphate using zinc chloride as a catalyst. The inosine-5'-triphosphate is efficiently achieved by the improved "one-pot, three-step" Ludwig synthetic strategy. In all the cases, the resulting final product is isolated in good yields with high purity (>99.5%).
Collapse
Affiliation(s)
| | | | - Anilkumar R Kore
- Life Sciences Solutions Group, Thermo Fisher Scientific, Austin, TX, USA
| |
Collapse
|
4
|
Simone PD, Pavlov YI, Borgstahl GEO. ITPA (inosine triphosphate pyrophosphatase): from surveillance of nucleotide pools to human disease and pharmacogenetics. Mutat Res 2013; 753:131-146. [PMID: 23969025 DOI: 10.1016/j.mrrev.2013.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 01/08/2023]
Abstract
Cellular nucleotide pools are often contaminated by base analog nucleotides which interfere with a plethora of biological reactions, from DNA and RNA synthesis to cellular signaling. An evolutionarily conserved inosine triphosphate pyrophosphatase (ITPA) removes the non-canonical purine (d)NTPs inosine triphosphate and xanthosine triphosphate by hydrolyzing them into their monophosphate form and pyrophosphate. Mutations in the ITPA orthologs in model organisms lead to genetic instability and, in mice, to severe developmental anomalies. In humans there is genetic polymorphism in ITPA. One allele leads to a proline to threonine substitution at amino acid 32 and causes varying degrees of ITPA deficiency in tissues and plays a role in patients' response to drugs. Structural analysis of this mutant protein reveals that the protein is destabilized by the formation of a cavity in its hydrophobic core. The Pro32Thr allele is thought to cause the observed dominant negative effect because the resulting active enzyme monomer targets both homo- and heterodimers to degradation.
Collapse
Affiliation(s)
- Peter D Simone
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Youri I Pavlov
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, USA; Department of Genetics, St-Petersburg University, St-Petersburg, 199034, Russia
| | - Gloria E O Borgstahl
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, USA.
| |
Collapse
|
5
|
Awwad K, Desai A, Smith C, Sommerhalter M. Structural and functional characterization of a noncanonical nucleoside triphosphate pyrophosphatase from Thermotoga maritima. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:184-93. [PMID: 23385455 PMCID: PMC3565439 DOI: 10.1107/s0907444912044630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/29/2012] [Indexed: 11/11/2022]
Abstract
The hyperthermophilic bacterium Thermotoga maritima has a noncanonical nucleoside triphosphatase that catalyzes the conversion of inosine triphosphate (ITP), deoxyinosine triphosphate (dITP) and xanthosine triphosphate (XTP) into inosine monophosphate (IMP), deoxyinosine monophosphate (IMP) and xanthosine monophosphate (XMP), respectively. The k(cat)/K(m) values determined at 323 and 353 K fall between 1.31 × 10(4) and 7.80 × 10(4) M(-1) s(-1). ITP and dITP are slightly preferred over XTP. Activity towards canonical nucleoside triphosphates (ATP and GTP) was not detected. The enzyme has an absolute requirement for Mg(2+) as a cofactor and has a preference for alkaline conditions. A protein X-ray structure of the enzyme with bound IMP was obtained at 2.15 Å resolution. The active site houses a well conserved network of residues that are critical for substrate recognition and catalysis. The crystal structure shows a tetramer with two possible dimer interfaces. One of these interfaces strongly resembles the dimer interface that is found in the structures of other noncanonical nucleoside pyrophosphatases from human (human ITPase) and archaea (Mj0226 and PhNTPase).
Collapse
Affiliation(s)
- Khaldeyah Awwad
- Chemistry and Biochemistry, California State University East Bay, 25800 Carlos Bee Boulevard, Hayward, CA 94542, USA
| | - Anna Desai
- Chemistry and Biochemistry, California State University East Bay, 25800 Carlos Bee Boulevard, Hayward, CA 94542, USA
| | - Clyde Smith
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Monika Sommerhalter
- Chemistry and Biochemistry, California State University East Bay, 25800 Carlos Bee Boulevard, Hayward, CA 94542, USA
| |
Collapse
|
6
|
Gille A, Guo J, Mou TC, Doughty MB, Lushington GH, Seifert R. Differential interactions of G-proteins and adenylyl cyclase with nucleoside 5'-triphosphates, nucleoside 5'-[gamma-thio]triphosphates and nucleoside 5'-[beta,gamma-imido]triphosphates. Biochem Pharmacol 2005; 71:89-97. [PMID: 16271707 DOI: 10.1016/j.bcp.2005.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 10/02/2005] [Accepted: 10/03/2005] [Indexed: 11/17/2022]
Abstract
The regulatory G-proteins of adenylyl cyclase (AC), G(i) and G(s), are not only activated by GTP and the stable GTP analogs, guanosine 5'-[gamma-thio]triphosphate (GTPgammaS) and guanosine 5'-[beta,gamma-imido]triphosphate (GppNHp), but also by hypoxanthine, xanthine, uracil and cytidine nucleotides. The latter nucleotides were previously used to analyze distinct active G-protein states. Surprisingly, recent studies have shown that inosine 5'-[gamma-thio]triphosphate and uridine 5'-[gamma-thio]triphosphate can also inhibit AC directly. Therefore, we systematically compared the interactions of nucleoside 5'-triphosphates (NTPs), nucleoside 5'-[gamma-thio]triphosphates (NTPgammaSs) and nucleoside 5'-[beta,gamma-imido]triphosphates (NppNHps) with G(i), G(s) and AC. NTPgammaSs exhibited up to 26,000-fold higher affinity for G-proteins than NTPs and NppNHps. NTPgammaSs were up to 150-fold more potent direct AC inhibitors than NTPs and NppNHps. G-proteins exhibited striking preference for guanine nucleotides compared to other purine and pyrimidine nucleotides, whereas base-selectivity of various ACs, particularly the purified catalytic subunits C1.C2, was rather poor. GTP, GTPgammaS and GppNHp exhibited much higher selectivity for G-proteins relative to AC than all other purine and pyrimidine nucleotides. We have energetically characterized the interactions of purine and pyrimidine nucleotides with AC in silico, constructing pharmacophore models that correlate well with experimental affinities and have elucidated specific amino acid residues with greatest influence on nucleotide binding. Collectively, both G-proteins and ACs bind purine and pyrimidine nucleotides, with G-proteins showing much higher base-selectivity than AC. Thus, direct inhibitory effects of nucleotides on AC should be understood and considered when probing distinct active G-protein states with non-guanine nucleotides.
Collapse
Affiliation(s)
- Andreas Gille
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS 66045-7582, USA
| | | | | | | | | | | |
Collapse
|
7
|
Gille A, Lushington GH, Mou TC, Doughty MB, Johnson RA, Seifert R. Differential inhibition of adenylyl cyclase isoforms and soluble guanylyl cyclase by purine and pyrimidine nucleotides. J Biol Chem 2004; 279:19955-69. [PMID: 14981084 DOI: 10.1074/jbc.m312560200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammals express nine membranous adenylyl cyclase isoforms (ACs 1-9), a structurally related soluble guanylyl cyclase (sGC) and a soluble AC (sAC). Moreover, Bacillus anthracis and Bacillus pertussis produce the AC toxins, edema factor (EF), and adenylyl cyclase toxin (ACT), respectively. 2'(3')-O-(N-methylanthraniloyl)-guanosine 5'-[gamma-thio]triphosphate is a potent competitive inhibitor of AC in S49 lymphoma cell membranes. These data prompted us to study systematically the effects of 24 nucleotides on AC in S49 and Sf9 insect cell membranes, ACs 1, 2, 5, and 6, expressed in Sf9 membranes and purified catalytic subunits of membranous ACs (C1 of AC5 and C2 of AC2), sAC, sGC, EF, and ACT in the presence of MnCl(2). N-Methylanthraniloyl (MANT)-GTP inhibited C1.C2 with a K(i) of 4.2 nm. Phe-889 and Ile-940 of C2 mediate hydrophobic interactions with the MANT group. MANT-inosine 5'-[gamma-thio]triphosphate potently inhibited C1.C2 and ACs 1, 5, and 6 but exhibited only low affinity for sGC, EF, ACT, and G-proteins. Inosine 5'-[gamma-thio]triphosphate and uridine 5'-[gamma-thio]triphosphate were mixed G-protein activators and AC inhibitors. AC5 was up to 15-fold more sensitive to inhibitors than AC2. EF and ACT exhibited unique inhibitor profiles. At sAC, 2',5'-dideoxyadenosine 3'-triphosphate was the most potent compound (IC(50), 690 nm). Several MANT-adenine and MANT-guanine nucleotides inhibited sGC with K(i) values in the 200-400 nm range. UTP and ATP exhibited similar affinities for sGC as GTP and were mixed sGC substrates and inhibitors. The exchange of MnCl(2) against MgCl(2) reduced inhibitor potencies at ACs and sGC 1.5-250-fold, depending on the nucleotide and cyclase studied. The omission of the NTP-regenerating system from cyclase reactions strongly reduced the potencies of MANT-ADP, indicative for phosphorylation to MANT-ATP by pyruvate kinase. Collectively, AC isoforms and sGC are differentially inhibited by purine and pyrimidine nucleotides.
Collapse
Affiliation(s)
- Andreas Gille
- Department of Pharmacology and Toxicology, Molecular Graphics and Modeling Laboratory, the University of Kansas, Lawrence, KS 66045-7582, USA
| | | | | | | | | | | |
Collapse
|
8
|
Gille A, Seifert R. MANT-substituted guanine nucleotides: a novel class of potent adenylyl cyclase inhibitors. Life Sci 2004; 74:271-9. [PMID: 14607255 DOI: 10.1016/j.lfs.2003.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mammals express nine membranous adenylyl cyclase (AC) isoforms (AC1-AC9), but the precise functions of AC isoforms are still incompletely understood. This situation is at least partially due to the paucity of potent and isoenzyme-specific AC inhibitors. The original aim of our research was to develop a fluorescence assay for the stimulatory G-protein of AC, G(s). 2'(3')-O-(N-methylanthraniloyl)-(MANT)-substituted nucleotides are fluorescent and were previously used for the fluorescence analysis of purified G(i)/G(o)-proteins. We studied the effects of MANT-guanosine 5'-[gamma-thio]triphosphate (MANT-GTPgammaS) and MANT-guanosine 5'-[beta,gamma-imido]triphosphate (MANT-GppNHp) on Galpha(s)- and Galpha(i)-mediated signaling. MANT-GTPgammaS and MANT-GppNHp had lower affinities for Galpha(s) and Galpha(i) than GTPgammaS and GppNHp. In contrast to guanosine 5'-[beta-thio]diphosphate, MANT-GTPgammaS noncompetitively inhibited GTPgammaS-stimulated AC in Galpha(s)-expressing Sf9 insect cell membranes. AC inhibition by MANT-GTPgammaS and MANT-GppNHp was not due to Galpha(s) inhibition since it was also observed in Galpha(s)-deficient S49 cyc(-) lymphoma cell membranes. Mn(2+) blocked Galpha(i)-mediated AC inhibition by GTPgammaS and GppNHp in S49 cyc(-) membranes but not AC inhibition by MANT-GTPgammaS and MANT-GppNHp. MANT-GTPgammaS and MANT-GppNHp competitively inhibited forskolin/Mn(2+)-stimulated AC in S49 cyc(-) membranes with K(i) values of 53 nM and 160 nM, respectively. Taken together, MANT-substituted guanine nucleotides constitute a novel class of potent competitive AC inhibitors. The availability of potent fluorescent AC inhibitors will help us study the kinetics of AC/nucleotide interactions as well as function, trafficking and localization of AC isoenzymes in intact cells. In future studies, we will examine the specificity of MANT-nucleotides for AC isoenzymes.
Collapse
Affiliation(s)
- Andreas Gille
- Department of Pharmacology and Toxicology, The University of Kansas, 1251 Wescoe Hall Drive, Malott Hall, Room 5064, Lawrence, KS 66045-7582, USA
| | | |
Collapse
|
9
|
Gille A, Seifert R. 2'(3')-O-(N-methylanthraniloyl)-substituted GTP analogs: a novel class of potent competitive adenylyl cyclase inhibitors. J Biol Chem 2003; 278:12672-9. [PMID: 12566433 DOI: 10.1074/jbc.m211292200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
2'(3')-O-(N-Methylanthraniloyl)-(MANT)-substituted nucleotides are fluorescent and widely used for the kinetic analysis of enzymes and signaling proteins. We studied the effects of MANT-guanosine 5'-[gamma-thio]triphosphate (MANT-GTP gamma S) and MANT-guanosine 5'-[beta,gamma-imido]triphosphate (MANT-GppNHp) on G alpha(s)- and G alpha(i)-protein-mediated signaling. MANT-GTP gamma S/MANT-GppNHp had lower affinities for G alpha(s) and G alpha(i) than GTP gamma S/GppNHp as assessed by inhibition of GTP hydrolysis of receptor-G alpha fusion proteins. MANT-GTP gamma S was much less effective than GTP gamma S at disrupting the ternary complex between the formyl peptide receptor and G alpha(i2). MANT-GTP gamma S/MANT-GppNHp non-competitively inhibited GTP gamma S/GppNHp-, AlF(4)(-)-, beta(2)-adrenoceptor plus GTP-, cholera toxin plus GTP-, and forskolin-stimulated adenylyl cyclase (AC) in G alpha(s)-expressing Sf9 insect cell membranes and S49 wild-type lymphoma cell membranes. AC inhibition by MANT-GTP gamma S/MANT-GppNHp was not due to G alpha(s) inhibition because it was also observed in G alpha(s)-deficient S49 cyc(-) lymphoma cell membranes. Mn(2+) blocked AC inhibition by GTP gamma S/GppNHp in S49 cyc(-) membranes but enhanced the potency of MANT-GTP gamma S/MANT-GppNHp at inhibiting AC by approximately 4-8-fold. MANT-GTP gamma S and MANT-GppNHp competitively inhibited forskolin/Mn(2+)-stimulated AC in S49 cyc(-) membranes with K(i) values of 53 and 160 nm, respectively. The K(i) value for MANT-GppNHp at insect cell AC was 155 nm. Collectively, MANT-GTP gamma S/MANT-GppNHp bind to G alpha(s)- and G alpha(i)-proteins with low affinity and are ineffective at activating G alpha. Instead, MANT-GTP gamma S/MANT-GppNHp constitute a novel class of potent competitive AC inhibitors.
Collapse
Affiliation(s)
- Andreas Gille
- Department of Pharmacology and Toxicology, the University of Kansas, Lawrence, Kansas 66045-7582, USA
| | | |
Collapse
|
10
|
Lin S, McLennan AG, Ying K, Wang Z, Gu S, Jin H, Wu C, Liu W, Yuan Y, Tang R, Xie Y, Mao Y. Cloning, expression, and characterization of a human inosine triphosphate pyrophosphatase encoded by the itpa gene. J Biol Chem 2001; 276:18695-701. [PMID: 11278832 DOI: 10.1074/jbc.m011084200] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ITP and dITP exist in all cells. dITP is potentially mutagenic, and the levels of these nucleotides are controlled by inosine triphosphate pyrophosphatase (EC ). Here we report the cloning, expression, and characterization of a 21.5-kDa human inosine triphosphate pyrophosphatase (hITPase), an enzyme whose activity has been reported in many animal tissues and studied in populations but whose protein sequence has not been determined before. At the optimal pH of 10.0, recombinant hITPase hydrolyzed ITP, dITP, and xanthosine 5'-triphosphate to their respective monophosphates whereas activity with other nucleoside triphosphates was low. K(m) values for ITP, dITP, and xanthosine 5'-triphosphate were 0.51, 0.31, and 0.57 mm, respectively, and k(cat) values were 580, 360, and 640 s(-1), respectively. A divalent cation was absolutely required for activity. The gene encoding the hITPase cDNA sequence was localized by radiation hybrid mapping to chromosome 20p in the interval D20S113-D20S97, the same interval in which the ITPA inosine triphosphatase gene was previously localized. A BLAST search revealed the existence of many similar sequences in organisms ranging from bacteria to mammals. The function of this ubiquitous protein family is proposed to be the elimination of minor potentially mutagenic or clastogenic purine nucleoside triphosphates from the cell.
Collapse
MESH Headings
- Amino Acid Sequence
- Blotting, Northern
- Chromatography, Gel
- Chromosomes, Human, Pair 20
- Cloning, Molecular
- DNA, Complementary/metabolism
- Databases, Factual
- Escherichia coli/metabolism
- Humans
- Hydrogen-Ion Concentration
- Hydrolysis
- Inosine Triphosphate/analogs & derivatives
- Inosine Triphosphate/metabolism
- Kinetics
- Models, Biological
- Molecular Sequence Data
- Pyrophosphatases/biosynthesis
- Pyrophosphatases/chemistry
- Pyrophosphatases/genetics
- RNA/metabolism
- Radiation Hybrid Mapping
- Recombinant Proteins/metabolism
- Ribonucleotides/metabolism
- Sequence Homology, Amino Acid
- Substrate Specificity
- Tissue Distribution
- Transcription, Genetic
- Inosine Triphosphatase
Collapse
Affiliation(s)
- S Lin
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Mammalian rod cyclic nucleotide gated (CNG) channels (i.e., alpha plus beta subunits) are strongly inhibited by phosphatidylinositol 4, 5-bisphosphate (PIP(2)) when they are expressed in Xenopus oocytes and studied in giant membrane patches. Cytoplasmic Mg-ATP inhibits CNG currents similarly, and monoclonal antibodies to PIP(2) reverse the effect and hyperactivate currents. When alpha subunits are expressed alone, PIP(2) inhibition is less strong; olfactory CNG channels are not inhibited. In giant patches from rod outer segments, inhibition by PIP(2) is intermediate. Other anionic lipids (e.g., phosphatidyl serine and phosphatidic acid), a phosphatidylinositol-specific phospholipase C, and full-length diacylglycerol have stimulatory effects. Although ATP also potently inhibits cGMP-activated currents in rod patches, the following findings indicate that ATP is used to transphosphorylate GMP, generated from cGMP, to GTP. First, a phosphodiesterase (PDE) inhibitor, Zaprinast, blocks inhibition by ATP. Second, inhibition can be rapidly reversed by exogenous regulator of G-protein signaling 9, suggesting G-protein activation by ATP. Third, the reversal of ATP effects is greatly slowed when cyclic inosine 5'-monophosphate is used to activate currents, as expected for slow inosine 5' triphosphate hydrolysis by G-proteins. Still, other results remain suggestive of regulatory roles for PIP(2). First, the cGMP concentration producing half-maximal CNG channel activity (K(1/2)) is decreased by PIP(2) antibody in the presence of PDE inhibitors. Second, the activation of PDE activity by several nucleotides, monitored electrophysiologically and biochemically, is reversed by PIP(2) antibody. Third, exogenous PIP(2) can enhance PDE activation by nucleotides.
Collapse
|
12
|
Klinker JF, Seifert R. Interaction of the retinal G-protein transducin with uracil nucleotides. Biochem Biophys Res Commun 1999; 262:341-5. [PMID: 10462476 DOI: 10.1006/bbrc.1999.1203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Little is known about the interaction of pyrimidine nucleotides with G-proteins. Here we report that under experimental conditions that exclude transphosphorylation reactions, nucleoside 5'-triphosphates inhibited transducin-catalyzed GTP hydrolysis in the order of potency guanosine 5'-[gamma-thio]triphosphate > GTP > guanosine 5'-[beta,gamma-imido]triphosphate > uridine 5'-[gamma-thio]triphosphate > UTP > CTP. Nucleoside 5'-diphosphates inhibited GTP hydrolysis in the order of potency GDP approximately guanosine 5'-[beta-thio]thiodiphosphate > uridine 5'-[beta-thio]diphosphate >> UDP (no effect). UTP inhibited GTP hydrolysis competitively, indicative for nucleotide binding to the same site. Uracil nucleotides had a distinct activity profile with respect to disruption of the transitory complex between photoexcited rhodopsin and nucleotide-free transducin. We conclude that (i) uracil nucleotides bind to transducin-alpha with lower affinity than the corresponding guanine nucleotides, (ii) phosphorothioate modification of uracil nucleotides increases their affinity for transducin, and (iii) uracil nucleotides induce conformational changes in G-proteins that are different from the conformational changes induced by guanine nucleotides.
Collapse
Affiliation(s)
- J F Klinker
- Institut für Pharmakologie, Freie Universität Berlin, Thielallee 69-73, Berlin, D-14195, Germany
| | | |
Collapse
|
13
|
Seifert R, Gether U, Wenzel-Seifert K, Kobilka BK. Effects of guanine, inosine, and xanthine nucleotides on beta(2)-adrenergic receptor/G(s) interactions: evidence for multiple receptor conformations. Mol Pharmacol 1999; 56:348-58. [PMID: 10419554 DOI: 10.1124/mol.56.2.348] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The aim of our study was to examine the effects of different purine nucleotides [GTP, ITP, and xanthosine 5'-triphosphate (XTP)] on receptor/G protein coupling. As a model system, we used a fusion protein of the beta(2)-adrenergic receptor and the alpha subunit of the G protein G(s). GTP was more potent and efficient than ITP and XTP at inhibiting ternary complex formation and supporting adenylyl cyclase (AC) activation. We also studied the effects of several beta(2)-adrenergic receptor ligands on nucleotide hydrolysis and on AC activity in the presence of GTP, ITP, and XTP. The efficacy of agonists at promoting GTP hydrolysis correlated well with the efficacy of agonists for stimulating AC in the presence of GTP. This was, however, not the case for ITP hydrolysis and AC activity in the presence of ITP. The efficacy of ligands at stimulating AC in the presence of XTP differed considerably from the efficacies of ligands in the presence of GTP and ITP, and there was no evidence for receptor-regulated XTP hydrolysis. Our findings support the concept of multiple ligand-specific receptor conformations and demonstrate the usefulness of purine nucleotides as tools to study conformational states of receptors.
Collapse
MESH Headings
- Adenosine Triphosphate/pharmacology
- Adenylyl Cyclases/metabolism
- Adrenergic beta-Agonists/pharmacology
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Cells, Cultured
- GTP Phosphohydrolases/metabolism
- GTP-Binding Protein alpha Subunits, Gs/chemistry
- GTP-Binding Protein alpha Subunits, Gs/genetics
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- Guanosine Triphosphate/pharmacology
- Hydrolysis
- Inosine Triphosphate/pharmacology
- Insecta
- Isoproterenol/pharmacology
- Kinetics
- Ligands
- Propanolamines/pharmacology
- Protein Binding/drug effects
- Protein Conformation
- Purine Nucleotides/pharmacology
- Pyrophosphatases/metabolism
- Receptors, Adrenergic, beta-2/chemistry
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Recombinant Fusion Proteins/metabolism
- Ribonucleotides/pharmacology
- Inosine Triphosphatase
Collapse
Affiliation(s)
- R Seifert
- Howard Hughes Medical Institute, Stanford University Medical School, Stanford, California, USA
| | | | | | | |
Collapse
|
14
|
Klinker JF, Seifert R. Nucleoside diphosphate kinase activity in soluble transducin preparations biochemical properties and possible role of transducin-beta as phosphorylated enzyme intermediate. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:72-80. [PMID: 10103035 DOI: 10.1046/j.1432-1327.1999.00209.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Known nucleoside diphosphate kinases (NDPKs) are oligomers of 17-23-kDa subunits and catalyze the reaction N1TP + N2DP --> N1DP + N2TP via formation of a histidine-phosphorylated enzyme intermediate. NDPKs are involved in the activation of heterotrimeric GTP-binding proteins (G-proteins) by catalyzing the formation of GTP from GDP, but the properties of G-protein-associated NDPKs are still incompletely known. The aim of our present study was to characterize NDPK in soluble preparations of the retinal G-protein transducin. The NDPK is operationally referred to as transducin-NDPK. Like known NDPKs, transducin-NDPK utilizes NTPs and phosphorothioate analogs of NTPs as substrates. GDP was a more effective phosphoryl group acceptor at transducin-NDPK than ADP and CDP, and guanosine 5'-[gamma-thio]triphosphate (GTP[S]) was a more effective thiophosphoryl group donor than adenosine 5'-[gamma-thio]triphosphate (ATP[S]). In contrast with their action on known NDPKs, mastoparan and mastoparan 7 had no stimulatory effect on transducin-NDPK. Guanosine 5'-[beta, gamma-imido]triphosphate (p[NH]ppG) potentiated [3H]GTP[S] formation from [3H]GDP and ATP[S] but not [3H]GTP[S] formation from [3H]GDP and GTP[S]. Depending on the thiophosphoryl group acceptor and donor, [3H]NTP[S] formation was differentially regulated by Mg2+, Mn2+, Co2+, Ca2+ and Zn2+. [gamma-32P]ATP and [gamma-32P]GTP [32P]phosphorylated, and [35S]ATP[S] [35S]thiophosphorylated, a 36-kDa protein comigrating with transducin-beta. p[NH]ppG potentiated [35S]thiophosphorylation of the 36-kDa protein. 32P-labeling of the 36-kDa protein showed characteristics of histidine phosphorylation. There was no evidence for (thio)phosphorylation of 17-23-kDa proteins. Our data show the following: (a) soluble transducin preparations contain a GDP-prefering and guanine nucleotide-regulated NDPK; (b) transducin-beta may serve as a (thio)phosphorylated NDPK intermediate; (c) transducin-NDPK is distinct from known NDPKs and may consist of multiple kinases or a single kinase with multiple regulatory domains.
Collapse
Affiliation(s)
- J F Klinker
- Institut für Pharmakologie, Freie Universität Berlin, Germany
| | | |
Collapse
|