2
|
Silva JM, Giuntini S, Cerofolini L, Geraldes CFGC, Macedo AL, Ravera E, Fragai M, Luchinat C, Calderone V. Non-crystallographic symmetry in proteins: Jahn-Teller-like and Butterfly-like effects? J Biol Inorg Chem 2018; 24:91-101. [PMID: 30470900 DOI: 10.1007/s00775-018-1630-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/14/2018] [Indexed: 11/29/2022]
Abstract
Partial symmetry, i.e., the presence of more than one molecule in the asymmetric unit of a crystal, is a relatively rare phenomenon in small-molecule crystallography, but is quite common in protein crystallography, where it is typically known as non-crystallographic symmetry (NCS). Several papers in literature propose molecular determinants such as crystal contacts, thermal factors, or TLS parameters as an explanation for the phenomenon of intrinsic asymmetry among molecules that are in principle equivalent. Nevertheless, are all of the above determinants the cause or are they rather the effect? In the general frame of the NCS often observed in crystals of biomolecules, this paper deals with nickel(II)-substituted human carbonic anhydrase(II) (hCAII) and its SAD structure determination at the nickel edge. The structure revealed two non-equivalent molecules in the asymmetric unit, the presence of a secondary nickel-binding site at the N-terminus of both molecules (which had never been found before in the nickel-substituted enzyme) and two different coordination geometries of the active site nickel (hexa-coordinated in one molecule and mainly penta-coordinated in the other). The above-mentioned standard molecular crystallographic determinants of this asymmetry are analyzed and presented in detail for this particular case. From these considerations, we speculate on the existence of a fundamental, although yet unknown, common cause for the partial symmetry that is so often encountered in X-ray structures of biomolecules.
Collapse
Affiliation(s)
- José Malanho Silva
- Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy.,UCIBIO-Requimte, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, Caparica, 2829-516, Portugal
| | - Stefano Giuntini
- Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | - Carlos F G C Geraldes
- Department of Life Sciences and Coimbra Chemistry Center, University of Coimbra, Coimbra, Portugal
| | - Anjos L Macedo
- UCIBIO-Requimte, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, Caparica, 2829-516, Portugal
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy. .,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy.
| | - Vito Calderone
- Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy. .,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
3
|
Cerofolini L, Staderini T, Giuntini S, Ravera E, Fragai M, Parigi G, Pierattelli R, Luchinat C. Long-range paramagnetic NMR data can provide a closer look on metal coordination in metalloproteins. J Biol Inorg Chem 2017; 23:71-80. [PMID: 29218635 DOI: 10.1007/s00775-017-1511-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/06/2017] [Indexed: 11/24/2022]
Abstract
Paramagnetic NMR data can be profitably incorporated in structural refinement protocols of metalloproteins or metal-substituted proteins, mostly as distance or angle restraints. However, they could in principle provide much more information, because the magnetic susceptibility of a paramagnetic metal ion is largely determined by its coordination sphere. This information can in turn be used to evaluate changes occurring in the coordination sphere of the metal when ligands (e.g.: inhibitors) are bound to the protein. This gives an experimental handle on the molecular structure in the vicinity of the metal which falls in the so-called blind sphere. The magnetic susceptibility anisotropy tensors of cobalt(II) and nickel(II) ions bound to human carbonic anhydrase II in free and inhibited forms have been determined. The change of the magnetic susceptibility anisotropy is directly linked to the binding mode of different ligands in the active site of the enzyme. Indication about the metal coordination sphere in the presence of an inhibitor in pharmaceutically relevant proteins could be important in the design of selective drugs with a structure-based approach.
Collapse
Affiliation(s)
- Linda Cerofolini
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Tommaso Staderini
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Stefano Giuntini
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
- Giotto Biotech S.R.L., Via Madonna del Piano 6, 50019, Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Roberta Pierattelli
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy.
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
5
|
Moratal JM, Martinez-Ferrer MJ, Jiménez HR, Donaire A, Castells J, Salgado J. 1H NMR and UV-Vis spectroscopic characterization of sulfonamide complexes of nickel(II)-carbonic anhydrase. Resonance assignments based on NOE effects. J Inorg Biochem 1992; 45:231-43. [PMID: 1619400 DOI: 10.1016/0162-0134(92)84012-c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The binding of acetazolamide, p-fluorobenzensulfonamide, p-toluenesulfonamide, and sulfanilamide to nickel(II)-substituted carbonic anhydrase II has been studied by 1H NMR and electronic absorption spectroscopies. These inhibitors bind to the metal ion forming 1:1 complexes and their affinity constants were determined. The 1H NMR spectra of the formed complexes show a number of isotropically shifted signals corresponding to the histidine ligands. The complexes with benzene-sulfonamides gave rise to very similar 1H NMR spectra. The NMR data suggest that these aromatic sulfonamides bind to the metal ion altering its coordination sphere. In addition, from the temperature dependence of 1H NMR spectra of the p-fluorobenzenesulfonamide adduct, a conformational change is suggested. The T1 values of the meta-like protons of the coordinated histidines have been measured and resonance assignments based on NOE experiments were performed.
Collapse
Affiliation(s)
- J M Moratal
- Department of Inorganic Chemistry, University of Valencia, Spain
| | | | | | | | | | | |
Collapse
|
7
|
Mailer K, Calhoun LA, Livesey DL. Ultraviolet difference spectroscopy of bovine carbonic anhydrase substituted with various divalent metals. J Inorg Biochem 1984; 20:93-102. [PMID: 6425457 DOI: 10.1016/0162-0134(84)80010-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The ultraviolet (uv) difference spectra of M(II)-apocarbonic anhydrase at pH 5-9 are reported. For Zn(II) at all pH's and Co(II) at pH greater than or equal to 7.65 identical protein difference spectra are seen and a positive 300 nm feature is interpreted as consistent with interaction of a metal-bound hydroxyl with a Trp chromophore near the active site. Hg(II), Cu(II), and Cd(II) do not provoke a positive 300 nm band even at alkaline pH (although a Cd(II) spectral band at 300 nm becomes less negative, i.e., more like the holoenzyme with increasing pH) and the 280-292 nm spectral region is generally different from that of Zn(II) and high pH Co(II). A specific orientation of M-OH and, hence, an ordered solvent structure in the enzyme site is implied for enzyme activation. Ni(II) appears to bind to the vacated zinc site slowly, at low pH, in a manner similar to zinc. At higher pH's Ni(II) may be displaced toward a Tyr residue in the active site of apocarbonic anhydrase.
Collapse
|
9
|
Dietrich H, Maret W, Kozłowski H, Zeppezauer M. Active site-specifically reconstituted nickel(II) horse liver alcohol dehydrogenase: optical spectra of binary and ternary complexes with coenzymes, coenzyme analogues, substrates, and inhibitors. J Inorg Biochem 1981; 14:297-311. [PMID: 7024475 DOI: 10.1016/s0162-0134(00)80287-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Insertion of nickel ions into the empty catalytic site of horse liver alcohol dehydrogenase yields an active enzyme with 65% metal substitution and about 12% intrinsic activity. The electronic absorption spectrum is characterized by bands at 357 nm (2900 M-1 cm-1), 407 nm (3500 M-1 cm-1), 505 nm (300 M-1 cm-1), 570 nm (approximately equal to 130 M-1 cm-1), and 680 nm (approximately equal to 80 M-1 cm-1). The absorption and CD spectra are similar to those of nickel(II) azurin and nickel(II) aspartate transcarbamoylase and prove coordination of the nickel(II) ions to sulfur in a distorted tetrahedral coordination geometry. Changes of the spectra upon ligand binding at the metal or conformation changes of the protein induced by coenzyme, or both, indicate alterations of the metal geometry. The chromophoric substrate trans-4-(N, N-dimethylamino)-cinnamaldehyde forms a ternary complex with Ni(II) liver alcohol dehydrogenase and the coenzyme analogue 1,4,5,6-tetrahydronicotinamide-adenine-dinucleotide, stable between pH 6 and 10. The corresponding ternary complex with NADH is only stable at pH greater than 9.0. The spectral redshifts induced in the substrate are 11 nm larger than those found in the zinc enzyme. We suggest direct coordination of the substrate to the catalytic metal on which acts as a Lewis acid in both substrate coordination and catalysis.
Collapse
|