1
|
Charge Recombination Kinetics of Bacterial Photosynthetic Reaction Centres Reconstituted in Liposomes: Deterministic Versus Stochastic Approach. DATA 2020. [DOI: 10.3390/data5020053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this theoretical work, we analyse the kinetics of charge recombination reaction after a light excitation of the Reaction Centres extracted from the photosynthetic bacterium Rhodobacter sphaeroides and reconstituted in small unilamellar phospholipid vesicles. Due to the compartmentalized nature of liposomes, vesicles may exhibit a random distribution of both ubiquinone molecules and the Reaction Centre protein complexes that can produce significant differences on the local concentrations from the average expected values. Moreover, since the amount of reacting species is very low in compartmentalized lipid systems the stochastic approach is more suitable to unveil deviations of the average time behaviour of vesicles from the deterministic time evolution.
Collapse
|
2
|
Abstract
The utilization of light energy to power organic-chemical transformations is a fundamental strategy of the terrestrial energy cycle. Inspired by the elegance of natural photosynthesis, much interdisciplinary research effort has been devoted to the construction of simplified cell mimics based on artificial vesicles to provide a novel tool for biocatalytic cascade reactions with energy-demanding steps. By inserting natural or even artificial photosynthetic systems into liposomes or polymersomes, the light-driven proton translocation and the resulting formation of electrochemical gradients have become possible. This is the basis for the conversion of photonic into chemical energy in form of energy-rich molecules such as adenosine triphosphate (ATP), which can be further utilized by energy-dependent biocatalytic reactions, e.g. carbon fixation. This review compares liposomes and polymersomes as artificial compartments and summarizes the types of light-driven proton pumps that have been employed in artificial photosynthesis so far. We give an overview over the methods affecting the orientation of the photosystems within the membranes to ensure a unidirectional transport of molecules and highlight recent examples of light-driven biocatalysis in artificial vesicles. Finally, we summarize the current achievements and discuss the next steps needed for the transition of this technology from the proof-of-concept status to preparative applications.
Collapse
|
3
|
Highly oriented photosynthetic reaction centers generate a proton gradient in synthetic protocells. Proc Natl Acad Sci U S A 2017; 114:3837-3842. [PMID: 28320948 DOI: 10.1073/pnas.1617593114] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photosynthesis is responsible for the photochemical conversion of light into the chemical energy that fuels the planet Earth. The photochemical core of this process in all photosynthetic organisms is a transmembrane protein called the reaction center. In purple photosynthetic bacteria a simple version of this photoenzyme catalyzes the reduction of a quinone molecule, accompanied by the uptake of two protons from the cytoplasm. This results in the establishment of a proton concentration gradient across the lipid membrane, which can be ultimately harnessed to synthesize ATP. Herein we show that synthetic protocells, based on giant lipid vesicles embedding an oriented population of reaction centers, are capable of generating a photoinduced proton gradient across the membrane. Under continuous illumination, the protocells generate a gradient of 0.061 pH units per min, equivalent to a proton motive force of 3.6 mV⋅min-1 Remarkably, the facile reconstitution of the photosynthetic reaction center in the artificial lipid membrane, obtained by the droplet transfer method, paves the way for the construction of novel and more functional protocells for synthetic biology.
Collapse
|
4
|
Giustini M, Parente M, Mallardi A, Palazzo G. Effect of ionic strength on intra-protein electron transfer reactions: The case study of charge recombination within the bacterial reaction center. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1541-1549. [PMID: 27297026 DOI: 10.1016/j.bbabio.2016.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 11/27/2022]
Abstract
It is a common believe that intra-protein electron transfer (ET) involving reactants and products that are overall electroneutral are not influenced by the ions of the surrounding solution. The results presented here show an electrostatic coupling between the ionic atmosphere surrounding a membrane protein (the reaction center (RC) from the photosynthetic bacterium Rhodobacter sphaeroides) and two very different intra-protein ET processes taking place within it. Specifically we have studied the effect of salt concentration on: i) the kinetics of the charge recombination between the reduced primary quinone acceptor QA(-) and the primary photoxidized donor P(+); ii) the thermodynamic equilibrium (QA(-)↔QB(-)) for the ET between QA(-) and the secondary quinone acceptor QB. A distinctive point of this investigation is that reactants and products are overall electroneutral. The protein electrostatics has been described adopting the lowest level of complexity sufficient to grasp the experimental phenomenology and the impact of salt on the relative free energy level of reactants and products has been evaluated according to suitable thermodynamic cycles. The ionic strength effect was found to be independent on the ion nature for P(+)QA(-) charge recombination where the leading electrostatic term was the dipole moment. In the case of the QA(-)↔QB(-) equilibrium, the relative stability of QA(-) and QB(-) was found to depend on the salt concentration in a fashion that is different for chaotropic and kosmotropic ions. In such a case both dipole moment and quadrupole moments of the RC must be considered.
Collapse
Affiliation(s)
- Mauro Giustini
- Chemistry Department, University of Rome "La Sapienza", Italy; CSGI (Center for Colloid and Surface Science), c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy.
| | - Matteo Parente
- Dutch Institute for Fundamental Energy Research (DIFFER), De Zaale 20, 5612, AJ, Eindhoven, The Netherlands
| | - Antonia Mallardi
- CNR-IPCF, Istituto per i processi chimico fisici, c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| | - Gerardo Palazzo
- Chemistry Department, University of Bari, via Orabona 4, 70125 Bari, Italy; CSGI (Center for Colloid and Surface Science), c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
5
|
The binding of quinone to the photosynthetic reaction centers: kinetics and thermodynamics of reactions occurring at the QB-site in zwitterionic and anionic liposomes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:301-15. [PMID: 24824111 DOI: 10.1007/s00249-014-0963-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/07/2014] [Accepted: 04/25/2014] [Indexed: 12/29/2022]
Abstract
Liposomes represent a versatile biomimetic environment for studying the interaction between integral membrane proteins and hydrophobic ligands. In this paper, the quinone binding to the QB-site of the photosynthetic reaction centers (RC) from Rhodobacter sphaeroides has been investigated in liposomes prepared with either the zwitterionic phosphatidylcholine (PC) or the negatively charged phosphatidylglycerol (PG) to highlight the role of the different phospholipid polar heads. Quinone binding (K Q) and interquinone electron transfer (L AB) equilibrium constants in the two type of liposomes were obtained by charge recombination reaction of QB-depleted RC in the presence of increasing amounts of ubiquinone-10 over the temperature interval 6-35 °C. The kinetic of the charge recombination reactions has been fitted by numerically solving the ordinary differential equations set associated with a detailed kinetic scheme involving electron transfer reactions coupled with quinone release and uptake. The entire set of traces at each temperature was accurately fitted using the sole quinone release constants (both in a neutral and a charge separated state) as adjustable parameters. The temperature dependence of the quinone exchange rate at the QB-site was, hence, obtained. It was found that the quinone exchange regime was always fast for PC while it switched from slow to fast in PG as the temperature rose above 20 °C. A new method was introduced in this paper for the evaluation of constant K Q using the area underneath the charge recombination traces as the indicator of the amount of quinone bound to the QB-site.
Collapse
|
6
|
Szabó T, Bencsik G, Magyar M, Visy C, Gingl Z, Nagy K, Váró G, Hajdu K, Kozák G, Nagy L. Photosynthetic reaction centers/ITO hybrid nanostructure. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012; 33:769-73. [PMID: 25427486 DOI: 10.1016/j.msec.2012.10.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/03/2012] [Accepted: 10/31/2012] [Indexed: 11/17/2022]
Abstract
Photosynthetic reaction center proteins purified from Rhodobacter sphaeroides purple bacterium were deposited on the surface of indium tin oxide (ITO), a transparent conductive oxide, and the photochemical/-physical properties of the composite were investigated. The kinetics of the light induced absorption change indicated that the RC was active in the composite and there was an interaction between the protein cofactors and the ITO. The electrochromic response of the bacteriopheophytine absorption at 771 nm showed an increased electric field perturbation around this chromophore on the surface of ITO compared to the one measured in solution. This absorption change is associated with the charge-compensating relaxation events inside the protein. Similar life time, but smaller magnitude of this absorption change was measured on the surface of borosilicate glass. The light induced change in the conductivity of the composite as a function of the concentration showed the typical sigmoid saturation characteristics unlike if the photochemically inactive chlorophyll was layered on the ITO. In this later case the light induced change in the conductivity was oppositely proportional to the chlorophyll concentration due to the thermal dissipation of the excitation energy. The sensitivity of the measurement is very high; few picomole RC can change the light induced resistance of the composite.
Collapse
Affiliation(s)
- Tibor Szabó
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Bencsik
- Department of Physical Chemistry and Materials Science, University of Szeged, Szeged, Hungary
| | - Melinda Magyar
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Csaba Visy
- Department of Physical Chemistry and Materials Science, University of Szeged, Szeged, Hungary
| | - Zoltán Gingl
- Department of Technical Informatics, University of Szeged, Szeged, Hungary
| | - Krisztina Nagy
- Institute of Biophysics, Hungarian Academy of Sciences, Biological Research Center, Szeged, Hungary
| | - György Váró
- Institute of Biophysics, Hungarian Academy of Sciences, Biological Research Center, Szeged, Hungary
| | - Kata Hajdu
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Kozák
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - László Nagy
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary.
| |
Collapse
|
7
|
|
8
|
Pia Donzello M, Viola E, Giustini M, Ercolani C, Monacelli F. Tetrakis(thiadiazole)porphyrazines. 8. Singlet oxygen production, fluorescence response and liposomal incorporation of tetrakis(thiadiazole)porphyrazine macrocycles [TTDPzM] (M = MgII(H2O), ZnII, AlIIICl, GaIIICl, CdII, CuII, 2HI). Dalton Trans 2012; 41:6112-21. [DOI: 10.1039/c2dt12381a] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
9
|
Berti D, Caminati G, Baglioni P. Functional liposomes and supported lipid bilayers: towards the complexity of biological archetypes. Phys Chem Chem Phys 2011; 13:8769-82. [DOI: 10.1039/c0cp02400g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Palazzo G, Lopez F, Mallardi A. Effect of detergent concentration on the thermal stability of a membrane protein: The case study of bacterial reaction center solubilized by N,N-dimethyldodecylamine-N-oxide. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:137-46. [DOI: 10.1016/j.bbapap.2009.09.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/17/2009] [Accepted: 09/21/2009] [Indexed: 11/29/2022]
|
11
|
The local electric field within phospholipid membranes modulates the charge transfer reactions in reaction centres. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1039-49. [DOI: 10.1016/j.bbabio.2009.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 03/03/2009] [Accepted: 03/05/2009] [Indexed: 11/19/2022]
|
12
|
Palazzo G, Francia F, Mallardi A, Giustini M, Lopez F, Venturoli G. Water Activity Regulates the QA− to QB Electron Transfer in Photosynthetic Reaction Centers from Rhodobacter sphaeroides. J Am Chem Soc 2008; 130:9353-63. [DOI: 10.1021/ja801963a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Gerardo Palazzo
- Dipartimento di Chimica and CSGI, Università di Bari, via Orabona 4, I-70126, Bari, Italy, Dipartimento di Biologia and CNISM, Università di Bologna, Italy, Istituto per i Processi Chimico-Fisici, CNR, via Orabona 4, 70126 Bari, Italy, and CSGI and Dipartimento di Chimica, Università “La Sapienza”, I-00185 Roma, Italy
| | - Francesco Francia
- Dipartimento di Chimica and CSGI, Università di Bari, via Orabona 4, I-70126, Bari, Italy, Dipartimento di Biologia and CNISM, Università di Bologna, Italy, Istituto per i Processi Chimico-Fisici, CNR, via Orabona 4, 70126 Bari, Italy, and CSGI and Dipartimento di Chimica, Università “La Sapienza”, I-00185 Roma, Italy
| | - Antonia Mallardi
- Dipartimento di Chimica and CSGI, Università di Bari, via Orabona 4, I-70126, Bari, Italy, Dipartimento di Biologia and CNISM, Università di Bologna, Italy, Istituto per i Processi Chimico-Fisici, CNR, via Orabona 4, 70126 Bari, Italy, and CSGI and Dipartimento di Chimica, Università “La Sapienza”, I-00185 Roma, Italy
| | - Mauro Giustini
- Dipartimento di Chimica and CSGI, Università di Bari, via Orabona 4, I-70126, Bari, Italy, Dipartimento di Biologia and CNISM, Università di Bologna, Italy, Istituto per i Processi Chimico-Fisici, CNR, via Orabona 4, 70126 Bari, Italy, and CSGI and Dipartimento di Chimica, Università “La Sapienza”, I-00185 Roma, Italy
| | - Francesco Lopez
- Dipartimento di Chimica and CSGI, Università di Bari, via Orabona 4, I-70126, Bari, Italy, Dipartimento di Biologia and CNISM, Università di Bologna, Italy, Istituto per i Processi Chimico-Fisici, CNR, via Orabona 4, 70126 Bari, Italy, and CSGI and Dipartimento di Chimica, Università “La Sapienza”, I-00185 Roma, Italy
| | - Giovanni Venturoli
- Dipartimento di Chimica and CSGI, Università di Bari, via Orabona 4, I-70126, Bari, Italy, Dipartimento di Biologia and CNISM, Università di Bologna, Italy, Istituto per i Processi Chimico-Fisici, CNR, via Orabona 4, 70126 Bari, Italy, and CSGI and Dipartimento di Chimica, Università “La Sapienza”, I-00185 Roma, Italy
| |
Collapse
|
13
|
Salvati A, Ristori S, Oberdisse J, Spalla O, Ricciardi G, Pietrangeli D, Giustini M, Martini G. Small Angle Scattering and Zeta Potential of Liposomes Loaded with Octa(carboranyl)porphyrazine. J Phys Chem B 2007; 111:10357-64. [PMID: 17696389 DOI: 10.1021/jp0731710] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, the physicochemical characterization of liposomes loaded with a newly synthesized carboranyl porphyrazine (H2HECASPz) is described. This molecule represents a potential drug for different anticancer therapies, such as boron neutron capture therapy and for photodynamic therapy or photothermal therapy. Different loading methods and different lipid mixtures were tested. The corresponding loaded vectors were studied by small angle scattering, light scattering, and zeta potential. The combined analysis of structural data at various lengths of scales and the measurement of the surface charge allowed us to obtain a detailed characterization of the investigated systems. The mechanisms underlying the onset of differences in relevant physicochemical parameters (size, polydispersity, and charge) were also critically discussed.
Collapse
Affiliation(s)
- Anna Salvati
- University of Firenze, Department of Chemistry, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy, Laboratoire des Colloïdes, Verres et Nanomatériaux (LCVN), Université Montpellier II, 34095 Montpellier Cedex 05 France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Dezi M, Francia F, Mallardi A, Colafemmina G, Palazzo G, Venturoli G. Stabilization of charge separation and cardiolipin confinement in antenna-reaction center complexes purified from Rhodobacter sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1041-56. [PMID: 17588528 DOI: 10.1016/j.bbabio.2007.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Revised: 05/19/2007] [Accepted: 05/22/2007] [Indexed: 10/23/2022]
Abstract
The reaction center-light harvesting complex 1 (RC-LH1) purified from the photosynthetic bacterium Rhodobacter sphaeroides has been studied with respect to the kinetics of charge recombination and to the phospholipid and ubiquinone (UQ) complements tightly associated with it. In the antenna-RC complexes, at 6.5<pH<9.0, P(+)Q(B)(-) recombines with a pH independent average rate constant <k> more than three times smaller than that measured in LH1-deprived RCs. At increasing pH values, for which <k> increases, the deceleration observed in RC-LH1 complexes is reduced, vanishing at pH >11.0. In both systems kinetics are described by a continuous rate distribution, which broadens at pH >9.5, revealing a strong kinetic heterogeneity, more pronounced in the RC-LH1 complex. In the presence of the antenna the Q(A)Q(B)(-) state is stabilized by about 40 meV at 6.5<pH<9.0, while it is destabilized at pH >11. The phospholipid/RC and UQ/RC ratios have been compared in chromatophore membranes, in RC-LH1 complexes and in the isolated peripheral antenna (LH2). The UQ concentration in the lipid phase of the RC-LH1 complexes is about one order of magnitude larger than the average concentration in chromatophores and in LH2 complexes. Following detergent washing RC-LH1 complexes retain 80-90 phospholipid and 10-15 ubiquinone molecules per monomer. The fractional composition of the lipid domain tightly bound to the RC-LH1 (determined by TLC and (31)P-NMR) differs markedly from that of chromatophores and of the peripheral antenna. The content of cardiolipin, close to 10% weight in chromatophores and LH2 complexes, becomes dominant in the RC-LH1 complexes. We propose that the quinone and cardiolipin confinement observed in core complexes reflects the in vivo heterogeneous distributions of these components. Stabilization of the charge separated state in the RC-LH1 complexes is tentatively ascribed to local electrostatic perturbations due to cardiolipin.
Collapse
Affiliation(s)
- Manuela Dezi
- Dipartimento di Biologia, Laboratorio di Biochimica e Biofisica, Università di Bologna, 40126 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Dorogi M, Balint Z, Mikó C, Vileno B, Milas M, Hernadi K, Forró L, Varó G, Nagy L. Stabilization effect of single-walled carbon nanotubes on the functioning of photosynthetic reaction centers. J Phys Chem B 2007; 110:21473-9. [PMID: 17064097 DOI: 10.1021/jp060828t] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction between single-walled carbon nanotubes and photosynthetic reaction centers purified from purple bacterium Rhodobacter sphaeroides R-26 has been investigated. Atomic force microscopy studies provide evidence that reaction center protein can be attached effectively to the nanotubes. The typical diameter of the nanotube is 1-4 nm and 15 +/- 2 nm without and with the reaction centers, respectively. Light-induced absorption change measurements indicate the stabilization of the P+(Q(A)Q(B))- charge pair, which is formed after single saturating light excitation after the attachment to nanotubes. The separation of light-induced charges is followed by slow reorganization of the protein structure. The stabilization effect of light-initiated charges by the carbon nanotubes opens a possible direction of several applications, the most promising being in energy conversion and storage devices.
Collapse
Affiliation(s)
- Marta Dorogi
- Institute of Medical Physics and Biophysics, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Forti G, Agostiano A, Barbato R, Bassi R, Brugnoli E, Finazzi G, Garlaschi FM, Jennings RC, Melandri BA, Trotta M, Venturoli G, Zanetti G, Zannoni D, Zucchelli G. Photosynthesis research in Italy: a review. PHOTOSYNTHESIS RESEARCH 2006; 88:211-40. [PMID: 16755326 DOI: 10.1007/s11120-006-9054-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 02/24/2006] [Indexed: 05/10/2023]
Abstract
This historical review was compiled and edited by Giorgio Forti, whereas the other authors of the different sections are listed alphabetically after his name, below the title of the paper; they are also listed in the individual sections. This review deals with the research on photosynthesis performed in several Italian laboratories during the last 50 years; it includes research done, in collaboration, at several international laboratories, particularly USA, UK, Switzerland, Hungary, Germany, France, Finland, Denmark, and Austria. Wherever pertinent, references are provided, especially to other historical papers in Govindjee et al. [Govindjee, Beatty JT, Gest H, Allen JF (eds) (2005) Discoveries in Photosynthesis. Springer, Dordrecht]. This paper covers the physical and chemical events starting with the absorption of a quantum of light by a pigment molecule to the conversion of the radiation energy into the stable chemical forms of the reducing power and of ATP. It describes the work done on the structure, function and regulation of the photosynthetic apparatus in higher plants, unicellular algae and in photosynthetic bacteria. Phenomena such as photoinhibition and the protection from it are also included. Research in biophysics of photosynthesis in Padova (Italy) is discussed by G.M. Giacometti and G. Giacometti (2006).
Collapse
Affiliation(s)
- Giorgio Forti
- Istituto di Biofisica del CNR, Sezione di Milano e Dipartimento di Biologia dell'Università degli Studi di Milano, Via Celoria 26, Milan 20133, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Giustini M, Castelli F, Husu I, Giomini M, Mallardi A, Palazzo G. Influence of Cardiolipin on the Functionality of the QA Site of the Photosynthetic Bacterial Reaction Center. J Phys Chem B 2005; 109:21187-96. [PMID: 16853745 DOI: 10.1021/jp054104d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effect of cardiolipin on the functionality of the Q(A) site of a photosynthetic reaction center (RC) was studied in RCs from the purple non-sulfur bacterium Rhodobacter sphaeroides by means of time-resolved absorbance measurements. The binding of the ubiquinone-10 to the Q(A) site of the RC embedded in cardiolipin or lecithin liposomes has been followed at different temperatures and phospholipid loading. A global fit of the experimental data allowed us to get quite reliable values of the thermodynamic parameters joined to the binding process. The presence of cardiolipin does not affect the affinity of the Q(A) site for ubiquinone but has a marked influence on the rate of P+QA(-) --> PQA electron transfer. The P+QA(-) charge recombination kinetics has been examined in liposomes made of cardiolipin/lecithin mixtures and in detergent (DDAO) micelles doped with cardiolipin. The electron-transfer rate constant increases upon cardiolipin loading. It appears that the main effect of cardiolipin on the electron transfer can be ascribed to a destabilization of the charge-separated state. Results obtained in micelles and vesicles follow the same titration curve when cardiolipin concentration evaluated with respect to the apolar phase is used as a relevant variable. The dependence of the P+QA(-) recombination rate on cardiolipin loading suggests two classes of binding sites. In addition to a high-affinity site (compatible with previous crystallographic studies), a cooperative binding, involving about four cardiolipin molecules, takes place at high cardiolipin loading.
Collapse
Affiliation(s)
- Mauro Giustini
- Dipartimento di Chimica, Università La Sapienza, via Orabona 4, I-00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Agostiano A, Milano F, Trotta M. Trapping of a long-living charge separated state of photosynthetic reaction centers in proteoliposomes of negatively charged phospholipids. PHOTOSYNTHESIS RESEARCH 2005; 83:53-61. [PMID: 16143907 DOI: 10.1007/s11120-004-3197-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Accepted: 09/13/2004] [Indexed: 05/04/2023]
Abstract
Reaction centers from the purple bacterium Rhodobacter sphaeroides strain R-26.1 were purified and reconstituted in proteoliposomes formed by the anionic phospholipids phosphatidylglycerol, phosphatidylserine and phosphatidylinositol and by the zwitterionic phospholipid phosphatidylcholine by size-exclusion chromatography in the dark and under illumination. We report the large stabilizing effect induced by anionic phospholipids on the protein charge separated state which results trapped in a long-living (up to tens of minutes) state with a yield up to 80%. This fully reversible state is formed in oxygenic conditions regardless the presence of the secondary quinone QB and its lifetime and relative yield increase at low pH. In proteoliposomes formed with QA-depleted reaction centers (RCs) the resulting protein is very light-sensitive and the long living charge separated state is not observed. The data collected in negatively charged proteoliposomes are discussed in terms of the electrostatic effect on the primary quinone acceptor and compared with similar long living species reported in literature and obtained in anionic, zwitterionic, and non-ionic detergents.
Collapse
Affiliation(s)
- Angela Agostiano
- Istituto per i Processi Chimico-Fisici, Sezione di Bari, Università di Bari, Via Orabona 4, Bari, 70126, Italy
| | | | | |
Collapse
|
19
|
Francia F, Dezi M, Rebecchi A, Mallardi A, Palazzo G, Melandri BA, Venturoli G. Light-Harvesting Complex 1 Stabilizes P+QB- Charge Separation in Reaction Centers of Rhodobacter sphaeroides. Biochemistry 2004; 43:14199-210. [PMID: 15518570 DOI: 10.1021/bi048629s] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The kinetics of charge recombination following photoexcitation by a laser pulse have been analyzed in the reaction center-light harvesting complex 1 (RC-LH1) purified from the photosynthetic bacterium Rhodobacter sphaeroides. In RC-LH1 core complexes isolated from photosynthetically grown cells P(+)Q(B)(-) recombines with an average rate constant, k approximately 0.3 s(-1), more than three times smaller than that measured in RC deprived of the LH1 (k approximately 1 s(-1)). A comparable, slowed recombination kinetics is observed in RC-LH1 complexes purified from a pufX-deleted strain. Slowing of the charge recombination kinetics is even more pronounced in RC-LH1 complexes isolated from wild-type semiaerobically grown cells (k approximately 0.2 s(-1)). Since the kinetics of P(+)Q(A)(-) recombination is unaffected by the presence of the antenna, the P(+)Q(B)(-) state appears to be energetically stabilized in core complexes. Determinations of the ubiquinone-10 (UQ(10)) complement associated with the purified RC-LH1 complexes always yield UQ(10)/RC ratios larger than 10. These quinone molecules are functionally coupled to the RC-LH1 complex, as judged from the extent of exogenous cytochrome c(2) rapidly oxidized under continuous light excitation. Analysis of P(+)Q(B)(-) recombination, based on a kinetic model which considers fast quinone equilibrium at the Q(B) binding site, indicates that the slowing down of charge recombination kinetics observed in RC-LH1 complexes cannot be explained solely by a quinone concentration effect and suggests that stabilization of the light-induced charge separation is predominantly due to interaction of the Q(B) site with the LH1 complex. The high UQ(10) complements detected in RC-LH1 core complexes, but not in purified light-harvesting complex 2 and in RC, are proposed to reflect an in vivo heterogeneity in the distribution of the quinone pool within the chromatophore bilayer.
Collapse
Affiliation(s)
- Francesco Francia
- Dipartimento di Biologia, Laboratorio di Biochimica e Biofisica, Università di Bologna, 40126 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
20
|
Laia CAT, Costa SMB. Interactions of a Sulfonated Aluminum Phthalocyanine and Cytochrome c in Micellar Systems: Binding and Electron-Transfer Kinetics. J Phys Chem B 2004. [DOI: 10.1021/jp047616l] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- César A. T. Laia
- Centro de Química-Estrutural, Complexo 1, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| | - Sílvia M. B. Costa
- Centro de Química-Estrutural, Complexo 1, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| |
Collapse
|
21
|
Nagy L, Milano F, Dorogi M, Agostiano A, Laczkó G, Szebényi K, Váró G, Trotta M, Maróti P. Protein/Lipid Interaction in the Bacterial Photosynthetic Reaction Center: Phosphatidylcholine and Phosphatidylglycerol Modify the Free Energy Levels of the Quinones. Biochemistry 2004; 43:12913-23. [PMID: 15461464 DOI: 10.1021/bi0489356] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of characteristic phospholipids of native membranes, phosphatidylcholine (PC), phosphatidylglycerol (PG), and cardiolipin (CL), was studied in the energetics of the acceptor quinone side in photosynthetic reaction centers of Rhodobacter sphaeroides. The rates of the first, k(AB)(1), and the second, k(AB)(2), electron transfer and that of the charge recombination, k(BP), the free energy levels of Q(A)(-)Q(B) and Q(A)Q(B)(-) states, and the changes of charge compensating protein relaxation were determined in RCs incorporated into artificial lipid bilayer membranes. In RCs embedded in the PC vesicle, k(AB)(1) and k(AB)(2) increased (from 3100 to 4100 s(-1) and from 740 to 3300 s(-1), respectively) and k(BP) decreased (from 0.77 to 0.39 s(-1)) compared to those measured in detergent at pH 7. In PG, k(AB)(1) and k(BP) decreased (to values of 710 and 0.26 s(-1), respectively), while k(AB)(2) increased to 1506 s(-1) at pH 7. The free energy between the Q(A)(-)Q(B) and Q(A)Q(B)(-) states decreased in PC and PG (DeltaG degrees (Q)A-(Q)B(-->)(Q)A(Q)B- = -76.9 and -88.5 meV, respectively) compared to that measured in detergent (-61.8 meV). The changes of the Q(A)/Q(A)(-) redox potential measured by delayed luminescence showed (1) a differential effect of lipids whether RC incorporated in micelles or vesicles, (2) an altered binding interaction between anionic lipids and RC, (3) a direct influence of PC and PG on the free energy levels of the primary and secondary quinones probably through the intraprotein hydrogen-bonding network, and (4) a larger increase of the Q(A)/Q(A)(-) free energy in PG than in PC both in detergent micelles and in single-component vesicles. On the basis of recent structural data, implications of the binding properties of phospholipids to RC and possible interactions between lipids and electron transfer components will be discussed.
Collapse
Affiliation(s)
- László Nagy
- Department of Biophysics, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Francia F, Palazzo G, Mallardi A, Cordone L, Venturoli G. Residual water modulates QA- -to-QB electron transfer in bacterial reaction centers embedded in trehalose amorphous matrices. Biophys J 2004; 85:2760-75. [PMID: 14507738 PMCID: PMC1303499 DOI: 10.1016/s0006-3495(03)74698-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The role of protein dynamics in the electron transfer from the reduced primary quinone, Q(A)(-), to the secondary quinone, Q(B), was studied at room temperature in isolated reaction centers (RC) from the photosynthetic bacterium Rhodobacter sphaeroides by incorporating the protein in trehalose water systems of different trehalose/water ratios. The effects of dehydration on the reaction kinetics were examined by analyzing charge recombination after different regimes of RC photoexcitation (single laser pulse, double flash, and continuous light) as well as by monitoring flash-induced electrochromic effects in the near infrared spectral region. Independent approaches show that dehydration of RC-containing matrices causes reversible, inhomogeneous inhibition of Q(A)(-)-to-Q(B) electron transfer, involving two subpopulations of RCs. In one of these populations (i.e., active), the electron transfer to Q(B) is slowed but still successfully competing with P(+)Q(A)(-) recombination, even in the driest samples; in the other (i.e., inactive), electron transfer to Q(B) after a laser pulse is hindered, inasmuch as only recombination of the P(+)Q(A)(-) state is observed. Small residual water variations ( approximately 7 wt %) modulate fully the relative fraction of the two populations, with the active one decreasing to zero in the driest samples. Analysis of charge recombination after continuous illumination indicates that, in the inactive subpopulation, the conformational changes that rate-limit electron transfer can be slowed by >4 orders of magnitude. The reported effects are consistent with conformational gating of the reaction and demonstrate that the conformational dynamics controlling electron transfer to Q(B) is strongly enslaved to the structure and dynamics of the surrounding medium. Comparing the effects of dehydration on P(+)Q(A)(-)-->PQ(A) recombination and Q(A)(-)Q(B)-->Q(A)Q(B)(-) electron transfer suggests that conformational changes gating the latter process are distinct from those stabilizing the primary charge-separated state.
Collapse
Affiliation(s)
- Francesco Francia
- Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Milano F, Agostiano A, Mavelli F, Trotta M. Kinetics of the quinone binding reaction at the QB site of reaction centers from the purple bacteria Rhodobacter sphaeroides reconstituted in liposomes. ACTA ACUST UNITED AC 2003; 270:4595-605. [PMID: 14622246 DOI: 10.1046/j.1432-1033.2003.03845.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transmembrane proton translocation in the photosynthetic membranes of the purple bacterium Rhodobacter sphaeroides is driven by light and performed by two transmembrane complexes; the photosynthetic reaction center and the ubiquinol-cytochrome c oxidoreductase complex, coupled by two mobile electron carriers; the cytochrome and the quinone. This paper focuses on the kinetics and thermodynamics of the interaction between the lipophylic electron carrier ubiquinone-10 and the photosynthetic enzyme reconstituted in liposomes. The collected data were simulated with an existing recognized kinetic scheme and the kinetic constants of the uptake (7.2 x 107 M(-1) x s(-1)) and release (40 s(-1)) processes of the ligand were inferred. The results obtained for the quinone release kinetic constant are comparable to the rate of the charge recombination reaction from the state D(+)QA(-). Values for the kinetic constants are discussed as part of the overall photocycle, suggesting that its bottleneck may not be the quinone uptake reaction in agreement with a previous report.
Collapse
Affiliation(s)
- Francesco Milano
- CNR, Istituto per i Processi Chimico-Fisici - Sezione di Bari Dipartimento di Chimica, Universitá di Bari, Italy
| | | | | | | |
Collapse
|
25
|
Palazzo G, Mallardi A, Hochkoeppler A, Cordone L, Venturoli G. Electron transfer kinetics in photosynthetic reaction centers embedded in trehalose glasses: trapping of conformational substates at room temperature. Biophys J 2002; 82:558-68. [PMID: 11806901 PMCID: PMC1301868 DOI: 10.1016/s0006-3495(02)75421-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report on room temperature electron transfer in the reaction center (RC) complex purified from Rhodobacter sphaeroides. The protein was embedded in trehalose-water systems of different trehalose/water ratios. This enabled us to get new insights on the relationship between RC conformational dynamics and long-range electron transfer. In particular, we measured the kinetics of electron transfer from the primary reduced quinone acceptor (Q(A)(-)) to the primary photo oxidized donor (P(+)), by time-resolved absorption spectroscopy, as a function of the matrix composition. The composition was evaluated either by weighing (liquid samples) or by near infrared spectroscopy (highly viscous or solid glasses). Deconvolution of the observed, nonexponential kinetics required a continuous spectrum of rate constants. The average rate constant (<k> = 8.7 s(-1) in a 28% (w/w) trehalose solution) increases smoothly by increasing the trehalose/water ratio. In solid glasses, at trehalose/water ratios > or = 97%, an abrupt <k> increase is observed (<k> = 26.6 s(-1) in the driest solid sample). A dramatic broadening of the rate distribution function parallels the above sudden <k> increase. Both effects fully revert upon rehydration of the glass. We compared the kinetics observed at room temperature in extensively dried water-trehalose matrices with the ones measured in glycerol-water mixtures at cryogenic temperatures and conclude that, in solid trehalose-water glasses, the thermal fluctuations among conformational substates are inhibited. This was inferred from the large broadening of the rate constant distribution for electron transfer obtained in solid glasses, which was due to the free energy distribution barriers having become quasi static. Accordingly, the RC relaxation from dark-adapted to light-adapted conformation, which follows primary charge separation at room temperature, is progressively hindered over the time scale of P(+)Q(A)(-) charge recombination, upon decreasing the water content. In solid trehalose-water glasses the electron transfer process resulted much more affected than in RC dried in the absence of sugar. This indicated a larger hindering of the internal dynamics in trehalose-coated RC, notwithstanding the larger amount of residual water present in comparison with samples dried in the absence of sugar.
Collapse
Affiliation(s)
- Gerardo Palazzo
- Dipartimento di Chimica, Università di Bari, 70126 Bari, Italy
| | | | | | | | | |
Collapse
|
26
|
Hucke O, Schmid R, Labahn A. Exploring the primary electron acceptor (QA)-site of the bacterial reaction center from Rhodobacter sphaeroides. Binding mode of vitamin K derivatives. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1096-108. [PMID: 11856340 DOI: 10.1046/j.0014-2956.2001.02699.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The functional replacement of the primary ubiquinone (QA) in the photosynthetic reaction center (RC) from Rhodobacter sphaeroides with synthetic vitamin K derivatives has provided a powerful tool to investigate the electron transfer mechanism. To investigate the binding mode of these quinones to the QA binding site we have determined the binding free energy and charge recombination rate from QA(-) to D+ (kAD) of 29 different 1,4-naphthoquinone derivatives with systematically altered structures. The most striking result was that none of the eight tested compounds carrying methyl groups in both positions 5 and 8 of the aromatic ring exhibited functional binding. To understand the binding properties of these quinones on a molecular level, the structures of the reaction center-naphthoquinone complexes were predicted with ligand docking calculations. All protein--ligand structures show hydrogen bonds between the carbonyl oxygens of the quinone and AlaM260 and HisM219 as found for the native ubiquinone-10 in the X-ray structure. The center-to-center distance between the naphthoquinones at QA and the native ubiquinone-10 at QB (the secondary electron acceptor) is essentially the same, compared to the native structure. A detailed analysis of the docking calculations reveals that 5,8-disubstitution prohibits binding due to steric clashes of the 5-methyl group with the backbone atoms of AlaM260 and AlaM249. The experimentally determined binding free energies were reproduced with an rmsd of approximately 4 kJ x mol(-1) in most cases providing a valuable tool for the design of new artificial electron acceptors and inhibitors.
Collapse
Affiliation(s)
- Oliver Hucke
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| | | | | |
Collapse
|
27
|
Gopta OA, Semenov AY, Bloch DA. Electrogenic proton transfer in Rhodobacter sphaeroides reaction centers: effect of coenzyme Q(10) substitution by decylubiquinone in the Q(B) binding site. FEBS Lett 2001; 499:116-20. [PMID: 11418124 DOI: 10.1016/s0014-5793(01)02537-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An electrometric technique was used to investigate the effect of coenzyme Q(10) (UQ), substitution by decylubiquinone (dQ) at the Q(B) binding site of reaction centers (UQ-RC and dQ-RC, respectively) on the electrogenic proton transfer kinetics upon Q(B) reduction in Rhodobacter sphaeroides chromatophores. Unlike dQ-RC, the kinetics of the second flash-induced proton uptake in UQ-RC clearly deviated from the mono-exponential one. The activation energy (about 30 kJ/mol) and the pH profile of the kinetics in dQ-RC were similar to those in UQ-RC, with the power law approximation used in the latter case. The interpretation of the data presumed the quinone translocation between the two binding positions within the Q(B) site. It is proposed that the native isoprenyl side chain (in contrast to decyl chain) favors the equilibrium binding of neutral quinone at the redox-active 'proximal' position, but causes a higher barrier for the hydroquinone movement from 'proximal' to 'distal' position.
Collapse
Affiliation(s)
- O A Gopta
- Department of Bioenergetics, A.N. Belozersky Institute of Physico-Chemical Biology, Building 'A', Moscow State University, Vorobyevy Gory, 119899, Moscow, Russia
| | | | | |
Collapse
|