1
|
Levintov L, Vashisth H. Structural and computational studies of HIV-1 RNA. RNA Biol 2024; 21:1-32. [PMID: 38100535 PMCID: PMC10730233 DOI: 10.1080/15476286.2023.2289709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Viruses remain a global threat to animals, plants, and humans. The type 1 human immunodeficiency virus (HIV-1) is a member of the retrovirus family and carries an RNA genome, which is reverse transcribed into viral DNA and further integrated into the host-cell DNA for viral replication and proliferation. The RNA structures from the HIV-1 genome provide valuable insights into the mechanisms underlying the viral replication cycle. Moreover, these structures serve as models for designing novel therapeutic approaches. Here, we review structural data on RNA from the HIV-1 genome as well as computational studies based on these structural data. The review is organized according to the type of structured RNA element which contributes to different steps in the viral replication cycle. This is followed by an overview of the HIV-1 transactivation response element (TAR) RNA as a model system for understanding dynamics and interactions in the viral RNA systems. The review concludes with a description of computational studies, highlighting the impact of biomolecular simulations in elucidating the mechanistic details of various steps in the HIV-1's replication cycle.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering & Bioengineering, University of New Hampshire, Durham, USA
| | - Harish Vashisth
- Department of Chemical Engineering & Bioengineering, University of New Hampshire, Durham, USA
| |
Collapse
|
2
|
Mathivanan J, Bai Z, Chen A, Sheng J. Design, Synthesis, and Characterization of a Novel 2'-5'-Linked Amikacin-Binding Aptamer: An Experimental and MD Simulation Study. ACS Chem Biol 2022; 17:3478-3488. [PMID: 36453647 PMCID: PMC10400016 DOI: 10.1021/acschembio.2c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
To extend the approach of using RNA aptamers as transient protective groups for the synthesis of novel small-molecule drug derivatives from the existing aminoglycosides, we incorporated 2'-5' phosphodiester backbone modification in a structurally known neomycin RNA aptamer and studied the binding of a series of aminoglycosides using isothermal calorimetry (ITC) and molecular dynamics (MD) simulation. Experimental characterization of amikacin, a commercially available and widely used aminoglycoside for treating bacterial infections, shows that the aptamer A1 with a 2'-5' linkage between G15 and U16 exhibits a sevenfold increase in binding affinity with a lower binding energy compared to the native aptamer. Molecular dynamics (MD) simulation studies rationalize that this noncanonical linkage generates a narrower binding pocket by creating a superspiral RNA helical structure, which improves the ligand's fit in the binding pocket. These results provide new insights into applying 2'-5' linkages to diversify functional RNA aptamers as noncovalent protective groups in the synthesis of aminoglycoside derivatives, which can be further extended to other current drug molecules and complex natural compounds to make new pools of drug candidates more efficiently.
Collapse
Affiliation(s)
- Johnsi Mathivanan
- Department of Chemistry and the RNA Institute, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Zhixue Bai
- Department of Chemistry and the RNA Institute, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Alan Chen
- Department of Chemistry and the RNA Institute, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Jia Sheng
- Department of Chemistry and the RNA Institute, University at Albany, State University of New York, Albany, NY, 12222, USA
| |
Collapse
|
3
|
Levintov L, Vashisth H. Role of salt-bridging interactions in recognition of viral RNA by arginine-rich peptides. Biophys J 2021; 120:5060-5073. [PMID: 34710377 PMCID: PMC8633718 DOI: 10.1016/j.bpj.2021.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/17/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022] Open
Abstract
Interactions between RNA molecules and proteins are critical to many cellular processes and are implicated in various diseases. The RNA-peptide complexes are good model systems to probe the recognition mechanism of RNA by proteins. In this work, we report studies on the binding-unbinding process of a helical peptide from a viral RNA element using nonequilibrium molecular dynamics simulations. We explored the existence of various dissociation pathways with distinct free-energy profiles that reveal metastable states and distinct barriers to peptide dissociation. We also report the free-energy differences for each of the four pathways to be 96.47 ± 12.63, 96.1 ± 10.95, 91.83 ± 9.81, and 92 ± 11.32 kcal/mol. Based on the free-energy analysis, we further propose the preferred pathway and the mechanism of peptide dissociation. The preferred pathway is characterized by the formation of sequential hydrogen-bonding and salt-bridging interactions between several key arginine amino acids and the viral RNA nucleotides. Specifically, we identified one arginine amino acid (R8) of the peptide to play a significant role in the recognition mechanism of the peptide by the viral RNA molecule.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire.
| |
Collapse
|
4
|
Unveiling functional motions based on point mutations in biased signaling systems: A normal mode study on nerve growth factor bound to TrkA. PLoS One 2020; 15:e0231542. [PMID: 32497034 PMCID: PMC7272051 DOI: 10.1371/journal.pone.0231542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/26/2020] [Indexed: 11/19/2022] Open
Abstract
Many receptors elicit signal transduction by activating multiple intracellular pathways. This transduction can be triggered by a non-specific ligand, which simultaneously activates all the signaling pathways of the receptors. However, the binding of one biased ligand preferentially trigger one pathway over another, in a process called biased signaling. The identification the functional motions related to each of these distinct pathways has a direct impact on the development of new effective and specific drugs. We show here how to detect specific functional motions by considering the case of the NGF/TrkA-Ig2 complex. NGF-mediated TrkA receptor activation is dependent on specific structural motions that trigger the neuronal growth, development, and survival of neurons in nervous system. The R221W mutation in the ngf gene impairs nociceptive signaling. We discuss how the large-scale structural effects of this mutation lead to the suppression of collective motions necessary to induce TrkA activation of nociceptive signaling. Our results suggest that subtle changes in the NGF interaction network due to the point mutation are sufficient to inhibit the motions of TrkA receptors putatively linked to nociception. The methodological approach presented in this article, based jointly on the normal mode analysis and the experimentally observed functional alterations due to point mutations provides an essential tool to reveal the structural changes and motions linked to the disease, which in turn could be necessary for a drug design study.
Collapse
|
5
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
6
|
Coskuner O, Uversky VN. BMP-2 and BMP-9 binding specificities with ALK-3 in aqueous solution with dynamics. J Mol Graph Model 2017; 77:181-188. [DOI: 10.1016/j.jmgm.2017.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 01/09/2023]
|
7
|
Peddi SR, Sivan SK, Manga V. Molecular dynamics and MM/GBSA-integrated protocol probing the correlation between biological activities and binding free energies of HIV-1 TAR RNA inhibitors. J Biomol Struct Dyn 2017; 36:486-503. [PMID: 28081678 DOI: 10.1080/07391102.2017.1281762] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The interaction of HIV-1 transactivator protein Tat with its cognate transactivation response (TAR) RNA has emerged as a promising target for developing antiviral compounds and treating HIV infection, since it is a crucial step for efficient transcription and replication. In the present study, molecular dynamics (MD) simulations and MM/GBSA calculations have been performed on a series of neamine derivatives in order to estimate appropriate MD simulation time for acceptable correlation between ΔGbind and experimental pIC50 values. Initially, all inhibitors were docked into the active site of HIV-1 TAR RNA. Later to explore various conformations and examine the docking results, MD simulations were carried out. Finally, binding free energies were calculated using MM/GBSA method and were correlated with experimental pIC50 values at different time scales (0-1 to 0-10 ns). From this study, it is clear that in case of neamine derivatives as simulation time increased the correlation between binding free energy and experimental pIC50 values increased correspondingly. Therefore, the binding energies which can be interpreted at longer simulation times can be used to predict the bioactivity of new neamine derivatives. Moreover, in this work, we have identified some plausible critical nucleotide interactions with neamine derivatives that are responsible for potent inhibitory activity. Furthermore, we also provide some insights into a new class of oxadiazole-based back bone cyclic peptides designed by incorporating the structural features of neamine derivatives. On the whole, this approach can provide a valuable guidance for designing new potent inhibitors and modify the existing compounds targeting HIV-1 TAR RNA.
Collapse
Affiliation(s)
- Saikiran Reddy Peddi
- a Molecular Modeling and Medicinal Chemistry Group, Department of Chemistry , University College of Science, Osmania University , Hyderabad 500 007 , Telangana , India
| | - Sree Kanth Sivan
- b Department of Chemistry , Nizam College, Osmania University , Hyderabad 500 001 , Telangana , India
| | - Vijjulatha Manga
- a Molecular Modeling and Medicinal Chemistry Group, Department of Chemistry , University College of Science, Osmania University , Hyderabad 500 007 , Telangana , India
| |
Collapse
|
8
|
SURESH GORLE, PRIYAKUMAR UDEVA. Atomistic details of the molecular recognition of DNA-RNA hybrid duplex by ribonuclease H enzyme. J CHEM SCI 2015. [DOI: 10.1007/s12039-015-0942-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Goel T, Kumar S, Maiti S. Thermodynamics and solvation dynamics of BIV TAR RNA-Tat peptide interaction. MOLECULAR BIOSYSTEMS 2012; 9:88-98. [PMID: 23114563 DOI: 10.1039/c2mb25357g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The interaction of the trans-activation responsive (TAR) region of bovine immunodeficiency virus (BIV) RNA with the Tat peptide is known to play important role in viral replication. Despite being thoroughly studied through a structural point of view, the nature of binding between BIV TAR RNA and the BIV Tat peptide requires information related to its thermodynamics and the nature of hydration around the TAR-Tat complex. In this context, we carried out the thermodynamic study of binding of the Tat peptide to the BIV TAR RNA hairpin through different calorimetric and spectroscopic measurements. Fluorescence titration of 2-aminopurine tagged BIV TAR RNA with the Tat peptide gives their binding affinity. The isothermal titration calorimetric experiment reveals the enthalpy of binding between BIV TAR RNA and the Tat peptide to be largely exothermic with the value of -11.7 (SEM 0.2) kcal mol(-1). Solvation dynamics measurements of BIV TAR RNA having 2-AP located at the bulge region have been carried out in the absence and presence of the BIV Tat peptide using the time correlated single photon counting technique. The solvent cage around the Tat binding site of RNA appears to be more rigid in the presence of the Tat peptide as compared to the free RNA. The displacement of solvent and ions on RNA due to peptide binding influences the entropic contributions to the total binding energy.
Collapse
Affiliation(s)
- Teena Goel
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Mall Road, New Delhi 110 007, India
| | | | | |
Collapse
|
10
|
Li CH, Zuo ZC, Su JG, Xu XJ, Wang CX. The interactions and recognition of cyclic peptide mimetics of Tat with HIV-1 TAR RNA: a molecular dynamics simulation study. J Biomol Struct Dyn 2012; 31:276-87. [PMID: 22943434 DOI: 10.1080/07391102.2012.698248] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The interaction of HIV-1 trans-activator protein Tat with its cognate trans-activation response element (TAR) RNA is critical for viral transcription and replication. Therefore, it has long been considered as an attractive target for the development of antiviral compounds. Recently, the conformationally constrained cyclic peptide mimetics of Tat have been tested to be a promising family of lead peptides. Here, we focused on two representative cyclic peptides termed as L-22 and KP-Z-41, both of which exhibit excellent inhibitory potency against Tat and TAR interaction. By means of molecular dynamics simulations, we obtained a detailed picture of the interactions between them and HIV-1 TAR RNA. In results, it is found that the binding modes of the two cyclic peptides to TAR RNA are almost identical at or near the bulge regions, whereas the binding interfaces at the apical loop exhibit large conformational heterogeneity. In addition, it is revealed that electrostatic interaction energy contributes much more to KP-Z-41 complex formation than to L-22 complex, which is the main source of energy that results in a higher binding affinity of KP-Z-41 over-22 for TAR RNA. Furthermore, we identified a conserved motif RRK (Arg-Arg-Lys) that is shown to be essential for specific binding of this class of cyclic peptides to TAR RNA. This work can provide a useful insight into the design and modification of cyclic peptide inhibitors targeting the association of HIV-1 Tat and TAR RNA.
Collapse
Affiliation(s)
- Chun Hua Li
- College of Life Science and Bioengineering, Beijing University of Technology, Pingleyuan 100, Chaoyang District, Beijing 100124, China.
| | | | | | | | | |
Collapse
|
11
|
|
12
|
Fulle S, Gohlke H. Molecular recognition of RNA: challenges for modelling interactions and plasticity. J Mol Recognit 2010; 23:220-31. [PMID: 19941322 DOI: 10.1002/jmr.1000] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There is growing interest in molecular recognition processes of RNA because of RNA's widespread involvement in biological processes. Computational approaches are increasingly used for analysing and predicting binding to RNA, fuelled by encouraging progress in developing simulation, free energy and docking methods for nucleic acids. These developments take into account challenges regarding the energetics of RNA-ligand binding, RNA plasticity, and the presence of water molecules and ions in the binding interface. Accordingly, we will detail advances in force field and scoring function development for molecular dynamics (MD) simulations, free energy computations and docking calculations of nucleic acid complexes. Furthermore, we present methods that can detect moving parts within RNA structures based on graph-theoretical approaches or normal mode analysis (NMA). As an example of the successful use of these developments, we will discuss recent structure-based drug design approaches that focus on the bacterial ribosomal A-site RNA as a drug target.
Collapse
Affiliation(s)
- Simone Fulle
- Department of Biological Sciences, Molecular Bioinformatics Group, Goethe-University, Frankfurt, Germany
| | | |
Collapse
|
13
|
Su Y, Deng G, Gai Y, Li Y, Gao Y, Du J, Geng Y, Chen Q, Qiao W. Comparative functional analysis of Jembrana disease virus Tat protein on lentivirus long terminal repeat promoters: evidence for flexibility at its N-terminus. Virol J 2009; 6:179. [PMID: 19860923 PMCID: PMC2775740 DOI: 10.1186/1743-422x-6-179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Accepted: 10/28/2009] [Indexed: 11/11/2022] Open
Abstract
Background Jembrana disease virus (JDV) encodes a potent regulatory protein Tat that strongly stimulates viral expression by transactivating the long terminal repeat (LTR) promoter. JDV Tat (jTat) promotes the transcription from its own LTR as well as non-cognate LTRs, by recruiting host transcription factors and facilitating transcriptional elongation. Here, we compared the sequence requirements of jTat for transactivation of JDV, bovine immunodeficiency virus (BIV) and human immunodeficiency virus (HIV) LTRs. Results In this study, we identified the minimal protein sequence for LTR activation using jTat truncation mutants. We found that jTat N-terminal residues were indispensable for transactivating the HIV LTR. In contrast, transactivation of BIV and JDV LTRs depended largely on an arginine-rich motif and some flanking residues. Competitive inhibition assay and knockdown analysis showed that P-TEFb was required for jTat-mediated LTR transactivation, and a mammalian two-hybrid assay revealed the robust interaction of jTat with cyclin T1. In addition, HIV LTR transactivation was largely affected by fusion protein at the jTat N-terminus despite the fact that the cyclin T1-binding affinity was not altered. Furthermore, the jTat N-terminal sequence enabled HIV Tat to transactivate BIV and JDV LTRs, suggesting the flexibility at the jTat N-terminus. Conclusion This study showed the distinct sequence requirements of jTat for HIV, BIV and JDV LTR activation. Residues responsible for interaction with cyclin T1 and transactivation response element are the key determinants for transactivation of its cognate LTR. N-terminal residues in jTat may compensate for transactivation of the HIV LTR, based on the flexibility.
Collapse
Affiliation(s)
- Yang Su
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education), College of Life Sciences, Nankai University, Tianjin 300071, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Michael LA, Chenault JA, Miller BR, Knolhoff AM, Nagan MC. Water, Shape Recognition, Salt Bridges, and Cation–Pi Interactions Differentiate Peptide Recognition of the HIV Rev-Responsive Element. J Mol Biol 2009; 392:774-86. [DOI: 10.1016/j.jmb.2009.07.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 07/06/2009] [Accepted: 07/16/2009] [Indexed: 10/20/2022]
|
15
|
Konidala P, Niemeyer B. Molecular dynamics simulations of pea (Pisum sativum) lectin structure with octyl glucoside detergents: the ligand interactions and dynamics. Biophys Chem 2007; 128:215-30. [PMID: 17532552 DOI: 10.1016/j.bpc.2007.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Revised: 04/18/2007] [Accepted: 04/18/2007] [Indexed: 11/23/2022]
Abstract
The mitogenic pea (Pisum sativum) lectin is a legume protein of non-immunoglobulin nature capable of specific recognition of glucose derivatives without altering its structure. Molecular dynamics simulations were performed in a realistic environment to investigate the structure and interaction properties of pea lectin with various concentrations of n-octyl-beta-d-glucopyranoside (OG) detergent monomers distributed inside explicit solvent cell. In addition, the diffusion coefficients of the ligands (OG, Ca2+, Mn2+, and Cl-) and the water molecules were also reported. The structural flexibility of the lectin was conserved in all simulations. The self-assembly of OG monomers into a small micelle at the hydrophobic site of the lectin was noticed in the simulation with 20 OG monomers. The interaction energy analysis concludes that the lectin was appropriately termed an adaptive structure. One or rarely two binding sites were observed at an instant in each simulation that were electrostatically favoured for the OG to interact with the surface amino acid residues. Enhanced binding of OG to the pea lectin was quantified in the system containing only Ca2+ divalent ions. Interestingly, no binding was observed in the simulation without divalent ions. Furthermore, the lectin-ligand complex was stabilized by multiple hydrogen bonds and at least one water bridge. Finally, the work was also in accordance with the published work elsewhere that the simulations performed with different initial conditions and using higher nonbonded cutoffs for the van der Waals and electrostatic interactions provide more accurate information and clues than the single large simulation of the biomolecular system of interest.
Collapse
Affiliation(s)
- Praveen Konidala
- Institute of Thermodynamics, Helmut-Schmidt-University / University of the Federal Armed Forces Hamburg, Holstenhofweg 85, D-22043 Hamburg, Germany
| | | |
Collapse
|
16
|
McDowell SE, Špačková N, Šponer J, Walter NG. Molecular dynamics simulations of RNA: an in silico single molecule approach. Biopolymers 2007; 85:169-84. [PMID: 17080418 PMCID: PMC2018183 DOI: 10.1002/bip.20620] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RNA molecules are now known to be involved in the processing of genetic information at all levels, taking on a wide variety of central roles in the cell. Understanding how RNA molecules carry out their biological functions will require an understanding of structure and dynamics at the atomistic level, which can be significantly improved by combining computational simulation with experiment. This review provides a critical survey of the state of molecular dynamics (MD) simulations of RNA, including a discussion of important current limitations of the technique and examples of its successful application. Several types of simulations are discussed in detail, including those of structured RNA molecules and their interactions with the surrounding solvent and ions, catalytic RNAs, and RNA-small molecule and RNA-protein complexes. Increased cooperation between theorists and experimentalists will allow expanded judicious use of MD simulations to complement conceptually related single molecule experiments. Such cooperation will open the door to a fundamental understanding of the structure-function relationships in diverse and complex RNA molecules. .
Collapse
Affiliation(s)
- S. Elizabeth McDowell
- Biophysics Research Division, Single Molecule Analysis Group, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055
| | - Nad'a Špačková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague
| | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055
| |
Collapse
|
17
|
Zhang Q, Schlick T. Stereochemistry and position-dependent effects of carcinogens on TATA/TBP binding. Biophys J 2006; 90:1865-77. [PMID: 16387764 PMCID: PMC1386768 DOI: 10.1529/biophysj.105.074344] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 11/21/2005] [Indexed: 01/25/2023] Open
Abstract
The TATA-box binding protein (TBP) is required by eukaryotic RNA polymerases to bind to the TATA box, an eight-basepair DNA promoter element, to initiate transcription. Carcinogen adducts that bind to the TATA box can hamper this important process. Benzo[a]pyrene (BP) is a representative chemical carcinogen that can be metabolically converted to highly reactive benzo[a]pyrene diol epoxides (BPDE), which in turn can form chemically stereoisomeric BP-DNA adducts. Depending on the TATA-bound adduct's location and stereochemistry, TATA/TBP binding can be decreased or increased. Our previous study interpreted the location-dependent effect in terms of conformational freedom and major-groove space available to BP. Here we further explore specific structural changes of the TATA/TBP complex to help interpret the stereochemical effect in terms of the flexibility of the TATA bases that frame the intercalated adduct. Thermodynamic analyses using molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) yield large standard deviations, which make the computed binding free energies the same within the error bars and point to current limitations of free energy calculations of large and highly charged systems like DNA/protein complexes.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, New York, New York, USA
| | | |
Collapse
|
18
|
Cojocaru V, Klement R, Jovin TM. Loss of G-A base pairs is insufficient for achieving a large opening of U4 snRNA K-turn motif. Nucleic Acids Res 2005; 33:3435-46. [PMID: 15956103 PMCID: PMC1150281 DOI: 10.1093/nar/gki664] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Upon binding to the 15.5K protein, two tandem-sheared G–A base pairs are formed in the internal loop of the kink-turn motif of U4 snRNA (Kt-U4). We have reported that the folding of Kt-U4 is assisted by protein binding. Unstable interactions that contribute to a large opening of the free RNA (‘k–e motion’) were identified using locally enhanced sampling molecular dynamics simulations, results that agree with experiments. A detailed analysis of the simulations reveals that the k–e motion in Kt-U4 is triggered both by loss of G–A base pairs in the internal loop and backbone flexibility in the stems. Essential dynamics show that the loss of G–A base pairs is correlated along the first mode but anti-correlated along the third mode with the k–e motion. Moreover, when enhanced sampling was confined to the internal loop, the RNA adopted an alternative conformation characterized by a sharper kink, opening of G–A base pairs and modified stacking interactions. Thus, loss of G–A base pairs is insufficient for achieving a large opening of the free RNA. These findings, supported by previously published RNA structure probing experiments, suggest that G–A base pair formation occurs upon protein binding, thereby stabilizing a selective orientation of the stems.
Collapse
Affiliation(s)
| | | | - Thomas M. Jovin
- To whom correspondence should be addressed. Tel: +49 551 2011382; Fax: +49 551 2011467;
| |
Collapse
|
19
|
Tok JBH, Bi L, Huang S. A comparative binding study of modified bovine immunodeficiency virus TAR RNA against its TAT peptide. Bioorg Med Chem Lett 2005; 14:6101-5. [PMID: 15546738 DOI: 10.1016/j.bmcl.2004.09.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2003] [Accepted: 09/20/2004] [Indexed: 11/22/2022]
Abstract
Besides generating novel binding peptides or small molecules to their RNA target, successful design of chemically modified RNA constructs capable of tighter binding with their binding peptides is also of significant importance. Herein, the synthesis and binding studies of a series of both wt and mutant bovine immunodeficiency virus (BIV) TAR RNA constructs against its Tat peptide are reported. Understanding the requirements that enable RNA construct binding properties, especially at the hairpin loop or internal bulge, would afford potential therapeutic approaches to control the BIV life cycle.
Collapse
Affiliation(s)
- Jeffrey B-H Tok
- Department of Chemistry & Natural Sciences, York College and Graduate Center, The City University of New York (CUNY), 94-20 Guy R. Brewer Blvd., Jamaica, NY 11451, USA.
| | | | | |
Collapse
|
20
|
Cojocaru V, Nottrott S, Klement R, Jovin TM. The snRNP 15.5K protein folds its cognate K-turn RNA: a combined theoretical and biochemical study. RNA (NEW YORK, N.Y.) 2005; 11:197-209. [PMID: 15659359 PMCID: PMC1370708 DOI: 10.1261/rna.7149605] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Accepted: 11/05/2004] [Indexed: 05/19/2023]
Abstract
The human 15.5K protein binds to the 5' stem-loop of U4 snRNA, promotes the assembly of the spliceosomal U4/U6 snRNP, and is required for the recruitment of the 61K protein and the 20/60/90K protein complex to the U4 snRNA. In the crystallographic structure of the 15.5K-U4 snRNA complex, the conformation of the RNA corresponds to the family of kink-turn (K-turn) structural motifs. We simulated the complex and the free RNA, showing how the protein binding and the intrinsic flexibility contribute to the RNA folding process. We found that the RNA is significantly more flexible in the absence of the 15.5K protein. Conformational transitions such as the interconversion between alternative purine stacking schemes, the loss of G-A base pairs, and the opening of the K-turn occur only in the free RNA. Furthermore, the stability of one canonical G-C base pair is influenced both by the binding of the 15.5K protein and the nature of the adjacent structural element in the RNA. We performed chemical RNA modification experiments and observed that the free RNA lacks secondary structure elements, a result in excellent agreement with the simulations. Based on these observations, we propose a protein-assisted RNA folding mechanism in which the RNA intrinsic flexibility functions as a catalyst.
Collapse
MESH Headings
- Base Sequence
- Humans
- In Vitro Techniques
- Macromolecular Substances
- Models, Molecular
- Nucleic Acid Conformation
- Protein Binding
- Protein Conformation
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribonucleoprotein, U4-U6 Small Nuclear/chemistry
- Ribonucleoprotein, U4-U6 Small Nuclear/genetics
- Ribonucleoprotein, U4-U6 Small Nuclear/metabolism
- Ribonucleoproteins, Small Nuclear/chemistry
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Thermodynamics
Collapse
Affiliation(s)
- Vlad Cojocaru
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | | | | | | |
Collapse
|
21
|
Robertson MP, Knudsen SM, Ellington AD. In vitro selection of ribozymes dependent on peptides for activity. RNA (NEW YORK, N.Y.) 2004; 10:114-27. [PMID: 14681590 PMCID: PMC1370523 DOI: 10.1261/rna.5900204] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Accepted: 09/22/2003] [Indexed: 05/20/2023]
Abstract
A peptide-dependent ribozyme ligase (aptazyme ligase) has been selected from a random sequence population based on the small L1 ligase. The aptazyme ligase is activated > 18,000-fold by its cognate peptide effector, the HIV-1 Rev arginine-rich motif (ARM), and specifically recognizes the Rev ARM relative to other peptides containing arginine-rich motifs. Moreover, the aptazyme ligase can preferentially recognize the Rev ARM in the context of the full-length HIV-1 Rev protein. The only cross-reactivity exhibited by the aptazyme is toward the Tat ARM. Reselection of peptide- and protein-dependent aptazymes from a partially randomized population yielded aptazymes that could readily discriminate against the Tat ARM. These results have important implications for the development of aptazymes that can be used in arrays for the detection and quantitation of multiple cellular proteins (proteome arrays).
Collapse
MESH Headings
- Amino Acid Motifs
- Arginine/metabolism
- Base Sequence
- Binding Sites
- Gene Products, rev/metabolism
- Gene Products, tat/metabolism
- HIV-1/genetics
- HIV-1/metabolism
- Humans
- In Vitro Techniques
- Ligases/chemical synthesis
- Ligases/genetics
- Ligases/metabolism
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Nucleic Acid Conformation
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- RNA, Catalytic/chemical synthesis
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Viral
- Selection, Genetic
- Sequence Homology, Nucleic Acid
- Substrate Specificity
- rev Gene Products, Human Immunodeficiency Virus
- tat Gene Products, Human Immunodeficiency Virus
Collapse
|
22
|
Abstract
Computations are now an integrated part of structural biology and are used in data gathering, data processing, and data storage as well as in a full spectrum of theoretical pursuits. In this review, we focus on areas of great promise and call attention to important issues of internal consistency and error analysis.
Collapse
Affiliation(s)
- Irwin D Kuntz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-2440, USA
| | | |
Collapse
|
23
|
Kulinski T, Olejniczak M, Huthoff H, Bielecki L, Pachulska-Wieczorek K, Das AT, Berkhout B, Adamiak RW. The apical loop of the HIV-1 TAR RNA hairpin is stabilized by a cross-loop base pair. J Biol Chem 2003; 278:38892-901. [PMID: 12882959 DOI: 10.1074/jbc.m301939200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TAR hairpin of the HIV-1 RNA genome is indispensable for trans-activation of the viral promoter and virus replication. The TAR structure has been studied extensively, but most attention has been directed at the three-nucleotide bulge that constitutes the binding site of the viral Tat protein. In contrast, the conformational properties of the apical loop have remained elusive. We performed biochemical studies and molecular dynamics simulations, which indicate that the TAR loop is structured and stabilized by a cross-loop base pair between residues C30 and G34. Mutational disruption of the cross-loop base pair results in reduced Tat response of the LTR promoter, which can be rescued by compensatory mutations that restore the base pair. Thus, Tat-mediated transcriptional activation depends on the structure of the TAR apical loop. The C30-G34 cross-loop base pair classes TAR in a growing family of hairpins with a structured loop that was recently identified in ribosomal RNA, tRNA, and several viral and cellular mRNAs.
Collapse
Affiliation(s)
- Tadeusz Kulinski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12-14, 61-704 Poznañ, Poland
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Beaurain F, Di Primo C, Toulmé JJ, Laguerre M. Molecular dynamics reveals the stabilizing role of loop closing residues in kissing interactions: comparison between TAR-TAR* and TAR-aptamer. Nucleic Acids Res 2003; 31:4275-84. [PMID: 12853646 PMCID: PMC165981 DOI: 10.1093/nar/gkg467] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2002] [Revised: 01/21/2003] [Accepted: 05/10/2003] [Indexed: 11/12/2022] Open
Abstract
A RNA aptamer (R06) raised against the trans- activation responsive (TAR) element of HIV-1 was previously shown to generate a loop-loop complex whose stability is strongly dependent on the selected G and A residues closing the aptamer loop. The rationally designed TAR* RNA hairpin with a loop sequence fully complementary to the TAR element, closed by U,A residues, also engages in a loop-loop association with TAR, but with a lower stability compared with the TAR-R06 complex. UV absorption monitored thermal denaturation showed that TAR-TAR*(GA), in which the U,A kissing residues were exchanged for G,A, is as stable as the selected TAR-R06 complex. Consequently, we used the TAR-TAR* structure deduced from NMR studies to model the TAR-R06 complex with either GA, CA or UA loop closing residues. The results of the molecular dynamics trajectories correlate well with the thermal denaturation experiments and show that the increased stability of the GA variant results from an optimized stacking of the bases at the stem-loop junction and from stable interbackbone hydrogen bonds.
Collapse
Affiliation(s)
- François Beaurain
- Institut Européen de Chimie et Biologie, CNRS UMR 5144, 16 Avenue Pey Berland, F-33607 Pessac Cedex, France.
| | | | | | | |
Collapse
|
25
|
Gouda H, Kuntz ID, Case DA, Kollman PA. Free energy calculations for theophylline binding to an RNA aptamer: Comparison of MM-PBSA and thermodynamic integration methods. Biopolymers 2003; 68:16-34. [PMID: 12579577 DOI: 10.1002/bip.10270] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have applied the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method (J. Srinivasan, T. E. Cheatham, P. Cieplak, P. A. Kollman, and D. A. Case, Journal of the American Chemical Society, 1998, Vol. 120, pp. 9401-9409) to study the interaction of an RNA aptamer with theophylline and its analogs. The MM-PBSA free energy analysis provides a reasonable absolute binding free energy for the RNA aptamer-theophylline complex formation. Energetic analysis reveals that the van der Waals interaction and the nonpolar contribution to solvation provide the basis for the favorable absolute free energy of complex. This trend is similar to other protein-ligand interactions studied previously. The MM-PBSA method also ranks the relative binding energies of five theophylline analogs approximately correctly, but not as well as the more conventional thermodynamic integration calculations, which were carried out to convert theophylline into its analogs. The comparison of MM-PBSA with TI suggests that the MM-PBSA method has some difficulties with the first-solvation-shell energetics.
Collapse
Affiliation(s)
- Hiroaki Gouda
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
26
|
Hsieh M, Collins ED, Blomquist T, Lustig B. Flexibility of BIV TAR-Tat: models of peptide binding. J Biomol Struct Dyn 2002; 20:243-51. [PMID: 12354076 DOI: 10.1080/07391102.2002.10506840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A new approach in determining local residue flexibility from base-amino acid contact frequencies is applied to the twelve million lattice chains modeling BIV Tat peptide binding to TAR RNA fragment. Many of the resulting key features in flexibility correspond to RMSD calculations derived from a set of five NMR derived structures (X. Ye, R. A. Kumar, and D. J. Patel, Protein Data Bank: Database of three-dimensional structures determined from NMR (1996)) and binding studies of mutants (L. Chen and A. D. Frankel, Proc. Natl. Acad. Sci. USA 92, 5077-5081 (1995)). The lattice and RMSD calculations facilitate the identification of peptide hinge regions that can best utilize the introduction of Gly or other flexible residues. This approach for identifying potential sites amenable to substitution of more flexible residues to enhance peptide binding to RNA targets could be a useful design tool.
Collapse
Affiliation(s)
- Mark Hsieh
- Department of Chemistry, San Jose State University, CA 95192-0101, USA
| | | | | | | |
Collapse
|
27
|
Abstract
We have used a combination of in vitro selection and rational design to generate ribozymes that form a stable phosphoamide bond between the 5' terminus of an RNA and a specific polypeptide. This reaction differs from that of previously identified ribozymes, although the product is analogous to the enzyme-nucleotidyl intermediates isolated during the reactions of certain proteinaceous enzymes, such as guanyltransferase, DNA ligase, and RNA ligase. Comparative sequence analysis of the isolated ribozymes revealed that they share a compact secondary structure containing six stems arranged in a four-helix junction and branched pseudoknot. An optimized version of the ribozyme reacts with substrate-fusion proteins, allowing it to be used to attach RNA tags to proteins both in vitro and within bacterial cells, suggesting a simple way to tag a specific protein with amplifiable information.
Collapse
Affiliation(s)
- Scott Baskerville
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|