1
|
Yu G, Liu Y, Li Z, Deng S, Wu Z, Zhang X, Chen W, Yang J, Chen X, Yang JR. Genome-wide probing of eukaryotic nascent RNA structure elucidates cotranscriptional folding and its antimutagenic effect. Nat Commun 2023; 14:5853. [PMID: 37730811 PMCID: PMC10511511 DOI: 10.1038/s41467-023-41550-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/08/2023] [Indexed: 09/22/2023] Open
Abstract
The transcriptional intermediates of RNAs fold into secondary structures with multiple regulatory roles, yet the details of such cotranscriptional RNA folding are largely unresolved in eukaryotes. Here, we present eSPET-seq (Structural Probing of Elongating Transcripts in eukaryotes), a method to assess the cotranscriptional RNA folding in Saccharomyces cerevisiae. Our study reveals pervasive structural transitions during cotranscriptional folding and overall structural similarities between nascent and mature RNAs. Furthermore, a combined analysis with genome-wide R-loop and mutation rate approximations provides quantitative evidence for the antimutator effect of nascent RNA folding through competitive inhibition of the R-loops, known to facilitate transcription-associated mutagenesis. Taken together, we present an experimental evaluation of cotranscriptional folding in eukaryotes and demonstrate the antimutator effect of nascent RNA folding. These results suggest genome-wide coupling between the processing and transmission of genetic information through RNA folding.
Collapse
Affiliation(s)
- Gongwang Yu
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yao Liu
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zizhang Li
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuyun Deng
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhuoxing Wu
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoyu Zhang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenbo Chen
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Junnan Yang
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoshu Chen
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jian-Rong Yang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Peng Y, Wang Y, Wang X. Exploring the Thermodynamics of 7-Amino Actinomycin D-Induced Single-Stranded DNA Hairpin by Spectroscopic Techniques and Computational Simulations. J Phys Chem B 2020; 124:10007-10013. [PMID: 33136398 DOI: 10.1021/acs.jpcb.0c05593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
NMR studies have indicated that the anti-tumor therapeutic agent actinomycin D (ACTD) can induce seemingly single-stranded DNA (ssDNA) oligomer 5'-CCGTT3GTGG-3' to form a hairpin structure with tandem GT mismatches at the stem region next to a loop of three stacked thymine bases. In an effort to uncover the preference of binding sequence and to elucidate the thermodynamics properties of the binding, a combination of spectroscopic techniques and computational simulation studies was performed with d(CCGTTnGTGG) and d(CCGAAnGAGG) (denoted as GTTn and GAAn, respectively; n = 3, 5, and 7) sequences. In the presence of 7-amino actinomycin D (7AACTD), all the six oligomers formed stable hairpin structures. The GTT5-7AACTD/GAA5-7AACTD hairpin structure was more stable than the corresponding GTTn-7AACTD and GAAn-7AACTD (n = 3, 7). No significant ΔG difference was observed between GTTn-7AACTD and GAAn-7AACTD complexes with the same loop length. In agreement with the 7AACTD-induced hairpin stability results, the binding affinity of GTTn and GAAn with 7AACTD increased from n = 3 to n = 5 and then decreased when n is 7. Moreover, GTTn and GAAn with the same loop length showed comparable binding affinities to 7AACTD. Furthermore, molecular dynamics simulations found that van der Waals interactions between GTTn/GAAn and 7AACTD were the primary attractive forces for 7AACTD binding, and the electrostatic interactions between the carbonyl groups of 7AACTD and bases in the hairpin were the major unfavorable forces. These findings furthered our understanding that 7AACTD is sensitive to the loop size and sequence as well as tandem GT/GA mismatches of their deoxyribonucleic acid (DNA) targets. A deep understanding of the thermodynamics and the molecular recognition mechanism of 7AACTD with ssDNAs would further the development of ACTD-like antitumor agents.
Collapse
Affiliation(s)
- Yinghua Peng
- Key Laboratory of Special Animal Molecular Biology of Jilin Province, Specialty Research Institute of Chinese Academy of Agricultural Sciences, Changchun, Jilin 130022, China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Luchsinger C, Aguilar M, Burgos PV, Ehrenfeld P, Mardones GA. Functional disruption of the Golgi apparatus protein ARF1 sensitizes MDA-MB-231 breast cancer cells to the antitumor drugs Actinomycin D and Vinblastine through ERK and AKT signaling. PLoS One 2018; 13:e0195401. [PMID: 29614107 PMCID: PMC5882166 DOI: 10.1371/journal.pone.0195401] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/21/2018] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence indicates that the Golgi apparatus plays active roles in cancer, but a comprehensive understanding of its functions in the oncogenic transformation has not yet emerged. At the same time, the Golgi is becoming well recognized as a hub that integrates its functions of protein and lipid biosynthesis to signal transduction for cell proliferation and migration in cancer cells. Nevertheless, the active function of the Golgi apparatus in cancer cells has not been fully evaluated as a target for combined treatment. Here, we analyzed the effect of perturbing the Golgi apparatus on the sensitivity of the MDA-MB-231 breast cancer cell line to the drugs Actinomycin D and Vinblastine. We disrupted the function of ARF1, a protein necessary for the homeostasis of the Golgi apparatus. We found that the expression of the ARF1-Q71L mutant increased the sensitivity of MDA-MB-231 cells to both Actinomycin D and Vinblastine, resulting in decreased cell proliferation and cell migration, as well as in increased apoptosis. Likewise, the combined treatment of cells with Actinomycin D or Vinblastine and Brefeldin A or Golgicide A, two disrupting agents of the ARF1 function, resulted in similar effects on cell proliferation, cell migration and apoptosis. Interestingly, each combined treatment had distinct effects on ERK1/2 and AKT signaling, as indicated by the decreased levels of either phospho-ERK1/2 or phospho-AKT. Our results suggest that disruption of Golgi function could be used as a strategy for the sensitization of cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Charlotte Luchsinger
- Department of Physiology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Marcelo Aguilar
- Department of Physiology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Patricia V. Burgos
- Department of Physiology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Center for Cell Biology and Biomedicine (CEBICEM), School of Medicine and Science, Universidad San Sebastián, Santiago, Chile
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pamela Ehrenfeld
- Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Department of Anatomy, Histology and Pathology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Gonzalo A. Mardones
- Department of Physiology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Center for Cell Biology and Biomedicine (CEBICEM), School of Medicine and Science, Universidad San Sebastián, Santiago, Chile
- * E-mail:
| |
Collapse
|
4
|
Kovalev VI, Vekshin NL. Fluorescence Analysis of 7-Aminoactinomycin–Telomeric Oligonucleotide d[AGGG(TTAGGG)3] Complexes. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
5
|
Khairetdinova MM, Vekshin NL. [Energy of interaction in actinomycin-nucleotide complexes]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 40:64-9. [PMID: 25898724 DOI: 10.1134/s1068162014010063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Variety of different compounds has been used for delivery of antibiotics to the tumor cells. In this work, using the highly sensitive spectrophotometry, the natural complexes of heterocyclic antibiotic actinomycin D (AMD) with such possible curriers like purine and pyrimidine nucleotides as well as fragmented DNA and phospholipid liposomes were studied. The antibiotic is not only adsorbed on the surface of purine clusters, but also is embedded in them. The antibiotic is especially well integrated into the unwound DNA regions. Embedding is accompanied by a long-wavelength shift in the absorption spectrum. The magnitude of the shift was used for calculation of the interaction energy. In the case of AMD with caffeine and adenosine, the value of energy is 2.4 and 2.7 kcal/mol and in the case of guanosine and fragmented DNA--considerably higher: 3.3 and 3.7 kcal/mol. It can be assumed that guanosine, adenosine, caffeine, and the fragmented DNA could serve as carriers of antibiotic.
Collapse
|
6
|
Investigating actinomycin D binding to G-quadruplex, i-motif and double-stranded DNA in 27-nt segment of c-MYC gene promoter. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 58:1188-93. [PMID: 26478420 DOI: 10.1016/j.msec.2015.09.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 09/13/2015] [Accepted: 09/18/2015] [Indexed: 01/03/2023]
Abstract
c-MYC DNA is an attractive target for drug design, especially for cancer chemotherapy. Around 90% of c-MYC transcription is controlled by NHE III1, whose 27-nt purine-rich strand has the ability to form G-quadruplex structure. In this investigation, interaction of ActD with 27-nt G-rich strand (G/c-MYC) and its equimolar mixture with the complementary sequence, (GC/c-MYC) as well as related C-rich oligonucleotide (C/c-MYC) was evaluated. Molecular dynamic simulations showed that phenoxazine and lactone rings of ActD come close to the outer G-tetrad nucleotides indicating that ActD binds through end-stacking to the quadruplex DNA. RMSD and RMSF revealed that fluctuation of the quadruplex DNA increases upon interaction with the drug. The results of spectrophotometry and spectrofluorometry indicated that ActD most probably binds to the c-MYC quadruplex and duplex DNA via end-stacking and intercalation, respectively and polarity of ActD environment decreases due to the interaction. It was also found that binding of ActD to the GC-rich DNA is stronger than the two other forms of DNA. Circular dichroism results showed that the type of the three forms of DNA structures doesn't change, but their compactness alters due to their interaction with ActD. Finally, it can be concluded that ActD binds differently to double stranded DNA, quadruplex DNA and i-motif.
Collapse
|
7
|
Vekshin NL, Kovalev VI. Nucleotide carriers for anti-tumour actinomycin antibiotics. J Biochem 2015; 159:59-66. [PMID: 26254482 DOI: 10.1093/jb/mvv075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/23/2015] [Indexed: 11/14/2022] Open
Abstract
We have investigated a number of complexes of 7-aminoactinomycin D (7AAMD), with its potential carriers: caffeine, folic acid (FA), purine bases-guanine and adenine, pyrimidine base-thymine and with fragmented DNA to determine more stable and suitable complex. The process of binding of the fluorescent antibiotic with clusters of caffeine, guanine, adenine, thymine and with fragmented DNA was accompanied by a considerable long-wavelength shift in excitation spectrum. The energy of interaction between phenoxazine hetero-cycle of 7AAMD and chromophores of the carriers studied has been found. In the case of 7AAMD with guanine, adenine, thymine and caffeine, the energy is about of 7 kcal/mol, which is a little lower than in the case with DNA (7.7 kcal/mol). On the basis of emission spectra, in all examined compounds, with the exception DNA, the 7AAMD molecule emits photons from water phase, not from a cluster, since photo-excitation leads to desorption of the antibiotic from a cluster surface. We observed also the mutual fluorescence quenching of 7AAMD and FA in their complex. It may well be that this complex forms due to interaction of peptide-lactone rings of 7AAMD with system of FA. In the case of DNA, the complex with 7AAMD has very high stability that is determined not only by interaction between phenoxazine of 7AAMD and the DNA bases, but it is largely owing to the interaction between two peptide-lactone rings of 7AAMD and the DNA deoxyribose-phosphate chains.
Collapse
Affiliation(s)
- N L Vekshin
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - V I Kovalev
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
8
|
Kovalev VI, Vekshin NL. [Fluorescence study of energetics in nucleotide-actinomycin complexes]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 40:588-94. [PMID: 25895354 DOI: 10.1134/s1068162014040074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Variety of different compounds use for delivery of antibiotics to the tumor cells. In this work, using a highly sensitive fluorescence analysis, we have studied complexes of fluorescent analog of the natural heterocyclic antibiotic actinomycin D (7-aminoactinomycin D) with potential carriers: purine bases and fragmented DNA. The antibiotic is not only adsorbed on the surface ofpurine clusters, but also is embedded in them. The antibiotic is especially well integrated into the unwound DNA regions. Embedding is accompanied by a long-wavelength shift in the excitation spectrum. The magnitude of the shift was used for calculation of the interaction energy. In the case of AMD with guanine, caffeine and adenine, the value of energy was about of 7 kcal/mol and in the case of fragmented DNA it was only a bit higher: 7.7 kcal/mol. It can be assumed that guanine, adenine, caffeine, and the fragmented DNA could apply as carriers of antibiotic.
Collapse
|
9
|
Viefhues M, Regtmeier J, Anselmetti D. Fast and continuous-flow separation of DNA-complexes and topological DNA variants in microfluidic chip format. Analyst 2013; 138:186-96. [DOI: 10.1039/c2an36056j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Alexander CM, Dabrowiak JC, Maye MM. Investigation of the Drug Binding Properties and Cytotoxicity of DNA-Capped Nanoparticles Designed as Delivery Vehicles for the Anticancer Agents Doxorubicin and Actinomycin D. Bioconjug Chem 2012; 23:2061-70. [DOI: 10.1021/bc3002634] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Colleen M. Alexander
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244-4100, United States
| | - James C. Dabrowiak
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244-4100, United States
| | - Mathew M. Maye
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244-4100, United States
| |
Collapse
|
11
|
Kang HJ, Park HJ. Novel molecular mechanism for actinomycin D activity as an oncogenic promoter G-quadruplex binder. Biochemistry 2009; 48:7392-8. [PMID: 19496619 DOI: 10.1021/bi9006836] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Actinomycin D (ActD) is a natural antibiotic that inhibits the transcription of genes by interacting with a GC-rich duplex, a single-stranded or hairpin form of DNA, and then interfering with the action of RNA polymerase. In this study, we identified a novel molecular mechanism of anticancer activity of ActD as an oncogenic c-Myc promoter G-quadruplex binder. ActD selectively inhibits the elongation of oligonucleotides containing c-Myc promoter G-quadruplex sequence in PCR-stop assays. UV-vis spectroscopic and circular dichroism studies suggest that ActD interacts with c-Myc promoter G-quadruplex via a surface end stacking interaction, inducing a mixed-type conformation of the G-quadruplex. ActD selectively inhibits the cellular growth and synthesis of c-Myc mRNA in Ramos cells having the NHEIII(1) region in the translocated c-Myc gene. In addition, the results of promoter assays using two kinds of NHEIII(1) region mutants and wild-type constructs strongly support the idea that binding of ActD with G-quadruplex formed in the promoter region results in the reporter gene being turned off. Our study reveals a novel mechanism underlying the anticancer activity of ActD, whereby ActD interacts with oncogenic promoter G-quadruplex DNA to repress gene expression.
Collapse
Affiliation(s)
- Hyun-Jin Kang
- College of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | |
Collapse
|
12
|
Biver T, Venturini M, Jares-Erijman EA, Jovin TM, Secco F. 7-Aminoactinomycin Binding to DNA Sequences Lacking GpC Sites: A Thermodynamic and Kinetic Study. Biochemistry 2008; 48:173-9. [DOI: 10.1021/bi801671c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tarita Biver
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, 56126 Pisa, Italy, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II/3, 1428 Buenos Aires, Argentina, and Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, am Fassberg 11, 37077 Göttingen, Germany
| | - Marcella Venturini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, 56126 Pisa, Italy, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II/3, 1428 Buenos Aires, Argentina, and Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, am Fassberg 11, 37077 Göttingen, Germany
| | - Elizabeth A. Jares-Erijman
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, 56126 Pisa, Italy, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II/3, 1428 Buenos Aires, Argentina, and Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, am Fassberg 11, 37077 Göttingen, Germany
| | - Thomas M. Jovin
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, 56126 Pisa, Italy, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II/3, 1428 Buenos Aires, Argentina, and Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, am Fassberg 11, 37077 Göttingen, Germany
| | - Fernando Secco
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, 56126 Pisa, Italy, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II/3, 1428 Buenos Aires, Argentina, and Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
13
|
Chen FM, Sha F, Chin KH, Chou SH. The nature of actinomycin D binding to d(AACCAXYG) sequence motifs. Nucleic Acids Res 2004; 32:271-7. [PMID: 14715925 PMCID: PMC373288 DOI: 10.1093/nar/gkh178] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Earlier studies by others had indicated that actinomycin D (ACTD) binds well to d(AACCATAG) and the end sequence TAG-3' is essential for its strong binding. In an effort to verify these assertions and to uncover other possible strong ACTD binding sequences as well as to elucidate the nature of their binding, systematic studies have been carried out with oligomers of d(AACCAXYG) sequence motifs, where X and Y can be any DNA base. The results indicate that in addition to TAG-3', oligomers ending with XAG-3' and XCG-3' all provide binding constants > or =1 x 10(7) M(-1) and even sequences ending with XTG-3' and XGG-3' exhibit binding affinities in the range 1-8 x 10(6) M(-1). The nature of the strong ACTD affinity of the sequences d(A1A2C3C4A5X6Y7G8) was delineated via comparative binding studies of d(AACCAAAG), d(AGCCAAAG) and their base substituted derivatives. Two binding modes are proposed to coexist, with the major component consisting of the 3'-terminus G base folding back to base pair with C4 and the ACTD inserting at A2C3C4 by looping out the C3 while both faces of the chromophore are stacked by A and G bases, respectively. The minor mode is for the G to base pair with C3 and to have the same A/chromophore/G stacking but without a looped out base. These assertions are supported by induced circular dichroic and fluorescence spectral measurements.
Collapse
Affiliation(s)
- Fu-Ming Chen
- Department of Chemistry, Tennessee State University, Nashville, TN 37209-1561, USA.
| | | | | | | |
Collapse
|
14
|
Chen FM, Sha F, Chin KH, Chou SH. Unique actinomycin D binding to self-complementary d(CXYGGCCY'X'G) sequences: duplex disruption and binding to a nominally base-paired hairpin. Nucleic Acids Res 2003; 31:4238-46. [PMID: 12853642 PMCID: PMC167638 DOI: 10.1093/nar/gkg477] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Actinomycin D (ACTD) has been shown to bind weakly to the sequence -GGCC-, despite the presence of a GpC site. It was subsequently found, however, that d(CATGGCCATG) binds relatively well to ACTD but exhibits unusually slow association kinetics, contrary to the strong-binding -XGCY- sites. In an effort to elucidate the nature of such binding and to delineate the origin of its interesting kinetic behavior, studies have now been extended to include oligomers with the general sequence motifs of d(CXYGGCCY'X'G)(2). It was found that analogous binding characteristics are observed for these self-duplex decamers and comparative studies with progressively base-truncated oligomers from the 5'-end led to the finding that d(GGCCY'X'G) oligomers bind ACTD considerably stronger than their parent decamers and exhibit 1:1 drug/strand binding stoichiometry. Melting profiles monitored at the drug spectral region indicated additional drug binding prior to the onset of eventual complex disruptions with near identical melting temperatures for all the oligomers studied. These results are consistent with the notion that the related oligomers share a common strong binding mode of a hairpin-type, with the 3'-terminus G folding back to base-pair with the C base of GGC. A binding scheme is proposed in which the oligomers d(CXYGGCCY'X'G) exist predominantly in the duplex form and bind ACTD initially at the central GGCC weak site but subsequently disrupt to accommodate the stronger hairpin binding and thus the slow association kinetics. Such a mechanism is supported by the observation of distinct biphasic fluorescence kinetic traces in the binding of 7-amino-ACTD to these duplexes.
Collapse
Affiliation(s)
- Fu-Ming Chen
- Department of Chemistry, Tennessee State University, Nashville, TN 37209-1561, USA.
| | | | | | | |
Collapse
|
15
|
Chin KH, Chen FM, Chou SH. Solution structure of the ActD-5'-CCGTT3GTGG-3' complex: drug interaction with tandem G.T mismatches and hairpin loop backbone. Nucleic Acids Res 2003; 31:2622-9. [PMID: 12736312 PMCID: PMC156035 DOI: 10.1093/nar/gkg353] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Binding of actinomycin D (ActD) to the seemingly single-stranded DNA (ssDNA) oligomer 5'-CCGTT3 GTGG-3' has been studied in solution using high-resolution nuclear magnetic resonance (NMR) techniques. A strong binding constant (8 x 10(6) M(-1)) and high quality NMR spectra have allowed us to determine the initial DNA structure using distance geometry as well as the final ActD-5'-CCGTT3 GTGG-3' complex structure using constrained molecular dynamics calculations. The DNA oligomer 5'-CCGTT3GTGG-3' in the complex forms a hairpin structure with tandem G.T mismatches at the stem region next to a loop of three stacked thymine bases pointing toward the major groove. Bipartite T2O-GH1 and T2O-G2NH2 hydrogen bonds were detected for the G.T mismatches that further stabilize this unusual DNA hairpin. The phenoxazone chromophore of ActD intercalates nicely between the tandem G.T mismatches in essentially one major orientation. Additional hydrophobic interactions between the ActD quinoid amino acid residues with the loop T5-T6-T7 backbone protons were also observed. The hydrophobic G-phenoxazone-G interaction in the ActD-5'-CCGTT3GTGG-3' complex is more robust than that of the classical ActD- 5'-CCGCT3GCGG-3' complex, consistent with the roughly 2-fold stronger binding of ActD to the 5'-CCGTT3GTGG-3' sequence than to its 5'-CCG CT3GCGG-3' counterpart. Stabilization by ActD of a hairpin containing non-canonical stem base pairs further strengthens the notion that ActD or other related compounds may serve as a sequence- specific ssDNA-binding agent that inhibits human immunodeficiency virus (HIV) and other retroviruses replicating through ssDNA intermediates.
Collapse
Affiliation(s)
- Ko-Hsin Chin
- Institute of Biochemistry, National Chung-Hsing University, Taichung, 40227, Taiwan
| | | | | |
Collapse
|