1
|
Fujii K, Kondo T, Kimura A. Enucleation of the C. elegans embryo revealed dynein-dependent spacing between microtubule asters. Life Sci Alliance 2024; 7:e202302427. [PMID: 37931957 PMCID: PMC10627822 DOI: 10.26508/lsa.202302427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
The intracellular positioning of the centrosome, a major microtubule-organizing center, is important for cellular functions. One of the features of centrosome positioning is the spacing between centrosomes; however, the underlying mechanisms are not fully understood. To characterize the spacing activity in Caenorhabditis elegans embryos, a genetic setup was developed to produce enucleated embryos. The centrosome was duplicated multiple times in the enucleated embryo, which enabled us to characterize the chromosome-independent spacing activity between sister and non-sister centrosome pairs. We found that the timely spacing depended on cytoplasmic dynein, and we propose a stoichiometric model of cortical and cytoplasmic pulling forces for the spacing between centrosomes. We also observed dynein-independent but non-muscle myosin II-dependent movement of centrosomes in the later cell cycle phase. The spacing mechanisms revealed in this study are expected to function between centrosomes in general, regardless of the presence of a chromosome/nucleus between them, including centrosome separation and spindle elongation.
Collapse
Affiliation(s)
- Ken Fujii
- https://ror.org/0516ah480 Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies) Mishima, Japan
- https://ror.org/02xg1m795 Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan
| | - Tomo Kondo
- https://ror.org/02xg1m795 Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan
| | - Akatsuki Kimura
- https://ror.org/0516ah480 Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies) Mishima, Japan
- https://ror.org/02xg1m795 Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan
| |
Collapse
|
2
|
Li X, Bloomfield M, Bridgeland A, Cimini D, Chen J. A fine balance among key biophysical factors is required for recovery of bipolar mitotic spindle from monopolar and multipolar abnormalities. Mol Biol Cell 2023; 34:ar90. [PMID: 37342878 PMCID: PMC10398891 DOI: 10.1091/mbc.e22-10-0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023] Open
Abstract
During mitosis, equal partitioning of chromosomes into two daughter cells requires assembly of a bipolar mitotic spindle. Because the spindle poles are each organized by a centrosome in animal cells, centrosome defects can lead to monopolar or multipolar spindles. However, the cell can effectively recover the bipolar spindle by separating the centrosomes in monopolar spindles and clustering them in multipolar spindles. To interrogate how a cell can separate and cluster centrosomes as needed to form a bipolar spindle, we developed a biophysical model, based on experimental data, which uses effective potential energies to describe key mechanical forces driving centrosome movements during spindle assembly. Our model identified general biophysical factors crucial for robust bipolarization of spindles that start as monopolar or multipolar. These factors include appropriate force fluctuation between centrosomes, balance between repulsive and attractive forces between centrosomes, exclusion of the centrosomes from the cell center, proper cell size and geometry, and a limited centrosome number. Consistently, we found experimentally that bipolar centrosome clustering is promoted as mitotic cell aspect ratio and volume decrease in tetraploid cancer cells. Our model provides mechanistic explanations for many more experimental phenomena and a useful theoretical framework for future studies of spindle assembly.
Collapse
Affiliation(s)
- Xiaochu Li
- Department of Biological Sciences, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
- BIOTRANS Graduate Program, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
| | - Mathew Bloomfield
- Department of Biological Sciences, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
- Fralin Life Sciences Institute, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
| | - Alexandra Bridgeland
- Fralin Life Sciences Institute, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
- Systems Biology Program, College of Science, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
| | - Daniela Cimini
- Department of Biological Sciences, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
- Fralin Life Sciences Institute, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
| | - Jing Chen
- Department of Biological Sciences, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
- Fralin Life Sciences Institute, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
- Center for Soft Matter and Biological Physics, Virginia Tech, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
3
|
Abstract
Coupling of motor proteins within arrays drives muscle contraction, flagellar beating, chromosome segregation, and other biological processes. Current models of motor coupling invoke either direct mechanical linkage or protein crowding, which rely on short-range motor-motor interactions. In contrast, coupling mechanisms that act at longer length scales remain largely unexplored. Here we report that microtubules can physically couple motor movement in the absence of detectable short-range interactions. The human kinesin-4 Kif4A changes the run length and velocity of other motors on the same microtubule in the dilute binding limit, when approximately 10-nm-sized motors are much farther apart than the motor size. This effect does not depend on specific motor-motor interactions because similar changes in Kif4A motility are induced by kinesin-1 motors. A micrometer-scale attractive interaction potential between motors is sufficient to recreate the experimental results in a biophysical model. Unexpectedly, our theory suggests that long-range microtubule-mediated coupling affects not only binding kinetics but also motor mechanochemistry. Therefore, the model predicts that motors can sense and respond to motors bound several micrometers away on a microtubule. Our results are consistent with a paradigm in which long-range motor interactions along the microtubule enable additional forms of collective motor behavior, possibly due to changes in the microtubule lattice.
Collapse
|
4
|
Mercadante DL, Manning AL, Olson SD. Modeling reveals cortical dynein-dependent fluctuations in bipolar spindle length. Biophys J 2021; 120:3192-3210. [PMID: 34197801 DOI: 10.1016/j.bpj.2021.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 04/26/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022] Open
Abstract
Proper formation and maintenance of the mitotic spindle is required for faithful cell division. Although much work has been done to understand the roles of the key molecular components of the mitotic spindle, identifying the consequences of force perturbations in the spindle remains a challenge. We develop a computational framework accounting for the minimal force requirements of mitotic progression. To reflect early spindle formation, we model microtubule dynamics and interactions with major force-generating motors, excluding chromosome interactions that dominate later in mitosis. We directly integrate our experimental data to define and validate the model. We then use simulations to analyze individual force components over time and their relationship to spindle dynamics, making it distinct from previously published models. We show through both model predictions and biological manipulation that rather than achieving and maintaining a constant bipolar spindle length, fluctuations in pole-to-pole distance occur that coincide with microtubule binding and force generation by cortical dynein. Our model further predicts that high dynein activity is required for spindle bipolarity when kinesin-14 (HSET) activity is also high. To the best of our knowledge, our results provide novel insight into the role of cortical dynein in the regulation of spindle bipolarity.
Collapse
Affiliation(s)
- Dayna L Mercadante
- Bioinformatics and Computational Biology Program, Worcester, Massachusetts
| | - Amity L Manning
- Department of Biology and Biotechnology, Worcester, Massachusetts.
| | - Sarah D Olson
- Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, Massachusetts.
| |
Collapse
|
5
|
Pandey H, Popov M, Goldstein-Levitin A, Gheber L. Mechanisms by Which Kinesin-5 Motors Perform Their Multiple Intracellular Functions. Int J Mol Sci 2021; 22:6420. [PMID: 34203964 PMCID: PMC8232732 DOI: 10.3390/ijms22126420] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
Bipolar kinesin-5 motor proteins perform multiple intracellular functions, mainly during mitotic cell division. Their specialized structural characteristics enable these motors to perform their essential functions by crosslinking and sliding apart antiparallel microtubules (MTs). In this review, we discuss the specialized structural features of kinesin-5 motors, and the mechanisms by which these features relate to kinesin-5 functions and motile properties. In addition, we discuss the multiple roles of the kinesin-5 motors in dividing as well as in non-dividing cells, and examine their roles in pathogenetic conditions. We describe the recently discovered bidirectional motility in fungi kinesin-5 motors, and discuss its possible physiological relevance. Finally, we also focus on the multiple mechanisms of regulation of these unique motor proteins.
Collapse
Affiliation(s)
| | | | | | - Larisa Gheber
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel; (H.P.); (M.P.); (A.G.-L.)
| |
Collapse
|
6
|
Nunes V, Ferreira JG. From the cytoskeleton to the nucleus: An integrated view on early spindle assembly. Semin Cell Dev Biol 2021; 117:42-51. [PMID: 33726956 DOI: 10.1016/j.semcdb.2021.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/01/2022]
Abstract
Accurate chromosome segregation requires a complete restructuring of cellular organization. Microtubules remodel to assemble a mitotic spindle and the actin cytoskeleton rearranges to form a stiff actomyosin cortex. These cytoplasmic events must be spatially and temporally coordinated with mitotic chromosome condensation and nuclear envelope permeabilization, in order to ensure mitotic timing and fidelity. Here, we discuss the main cytoskeletal and nuclear events that occur during mitotic entry in proliferating animal cells, focusing on their coordinated contribution for early mitotic spindle assembly. We will also explore recent progress in understanding their regulatory biochemical and mechanical pathways.
Collapse
Affiliation(s)
- Vanessa Nunes
- Instituto de Investigação e Inovação em Saúde - i3S, University of Porto, Porto, Portugal; BiotechHealth PhD Programe, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Jorge G Ferreira
- Instituto de Investigação e Inovação em Saúde - i3S, University of Porto, Porto, Portugal; Departamento de Biomedicina, Faculdade de Medicina, University of Porto, Porto, Portugal.
| |
Collapse
|
7
|
Nunes V, Dantas M, Castro D, Vitiello E, Wang I, Carpi N, Balland M, Piel M, Aguiar P, Maiato H, Ferreira JG. Centrosome-nuclear axis repositioning drives the assembly of a bipolar spindle scaffold to ensure mitotic fidelity. Mol Biol Cell 2020; 31:1675-1690. [PMID: 32348198 PMCID: PMC7521851 DOI: 10.1091/mbc.e20-01-0047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
During the initial stages of cell division, the cytoskeleton is extensively reorganized so that a bipolar mitotic spindle can be correctly assembled. This process occurs through the action of molecular motors, cytoskeletal networks, and the nucleus. How the combined activity of these different components is spatiotemporally regulated to ensure efficient spindle assembly remains unclear. To investigate how cell shape, cytoskeletal organization, and molecular motors cross-talk to regulate initial spindle assembly, we use a combination of micropatterning with high-resolution imaging and 3D cellular reconstruction. We show that during prophase, centrosomes and nucleus reorient so that centrosomes are positioned on the shortest nuclear axis at nuclear envelope (NE) breakdown. We also find that this orientation depends on a combination of centrosome movement controlled by Arp2/3-mediated regulation of microtubule dynamics and Dynein-generated forces on the NE that regulate nuclear reorientation. Finally, we observe this centrosome configuration favors the establishment of an initial bipolar spindle scaffold, facilitating chromosome capture and accurate segregation, without compromising division plane orientation.
Collapse
Affiliation(s)
- Vanessa Nunes
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal.,Instituto de Biologia Celular e Molecular (IBMC), 4200-135 Porto, Portugal.,BiotechHealth PhD program, Instituto de Ciências Biomédicas (ICBAS), 4050-313 Porto, Portugal
| | - Margarida Dantas
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal.,Instituto de Biologia Celular e Molecular (IBMC), 4200-135 Porto, Portugal.,BiotechHealth PhD program, Instituto de Ciências Biomédicas (ICBAS), 4050-313 Porto, Portugal
| | - Domingos Castro
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal.,Instituto Nacional de Engenharia Biomédica (INEB), 4200-135 Porto, Portugal
| | - Elisa Vitiello
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1) 38058, France
| | - Irène Wang
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1) 38058, France
| | - Nicolas Carpi
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Martial Balland
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1) 38058, France
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Paulo Aguiar
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal.,Instituto Nacional de Engenharia Biomédica (INEB), 4200-135 Porto, Portugal
| | - Helder Maiato
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal.,Instituto de Biologia Celular e Molecular (IBMC), 4200-135 Porto, Portugal.,Departamento de Biomedicina, Faculdade de Medicina do Porto, 4200-450 Porto, Portugal
| | - Jorge G Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal.,Instituto de Biologia Celular e Molecular (IBMC), 4200-135 Porto, Portugal.,Departamento de Biomedicina, Faculdade de Medicina do Porto, 4200-450 Porto, Portugal
| |
Collapse
|
8
|
Torisawa T, Kimura A. The Generation of Dynein Networks by Multi-Layered Regulation and Their Implication in Cell Division. Front Cell Dev Biol 2020; 8:22. [PMID: 32083077 PMCID: PMC7004958 DOI: 10.3389/fcell.2020.00022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cytoplasmic dynein-1 (hereafter referred to as dynein) is a major microtubule-based motor critical for cell division. Dynein is essential for the formation and positioning of the mitotic spindle as well as the transport of various cargos in the cell. A striking feature of dynein is that, despite having a wide variety of functions, the catalytic subunit is coded in a single gene. To perform various cellular activities, there seem to be different types of dynein that share a common catalytic subunit. In this review, we will refer to the different kinds of dynein as “dyneins.” This review attempts to classify the mechanisms underlying the emergence of multiple dyneins into four layers. Inside a cell, multiple dyneins generated through the multi-layered regulations interact with each other to form a network of dyneins. These dynein networks may be responsible for the accurate regulation of cellular activities, including cell division. How these networks function inside a cell, with a focus on the early embryogenesis of Caenorhabditis elegans embryos, is discussed, as well as future directions for the integration of our understanding of molecular layering to understand the totality of dynein’s function in living cells.
Collapse
Affiliation(s)
- Takayuki Torisawa
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan.,Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Japan
| | - Akatsuki Kimura
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan.,Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Japan
| |
Collapse
|
9
|
Edelmaier C, Lamson AR, Gergely ZR, Ansari S, Blackwell R, McIntosh JR, Glaser MA, Betterton MD. Mechanisms of chromosome biorientation and bipolar spindle assembly analyzed by computational modeling. eLife 2020; 9:48787. [PMID: 32053104 PMCID: PMC7311174 DOI: 10.7554/elife.48787] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 02/12/2020] [Indexed: 01/19/2023] Open
Abstract
The essential functions required for mitotic spindle assembly and chromosome biorientation and segregation are not fully understood, despite extensive study. To illuminate the combinations of ingredients most important to align and segregate chromosomes and simultaneously assemble a bipolar spindle, we developed a computational model of fission-yeast mitosis. Robust chromosome biorientation requires progressive restriction of attachment geometry, destabilization of misaligned attachments, and attachment force dependence. Large spindle length fluctuations can occur when the kinetochore-microtubule attachment lifetime is long. The primary spindle force generators are kinesin-5 motors and crosslinkers in early mitosis, while interkinetochore stretch becomes important after biorientation. The same mechanisms that contribute to persistent biorientation lead to segregation of chromosomes to the poles after anaphase onset. This model therefore provides a framework to interrogate key requirements for robust chromosome biorientation, spindle length regulation, and force generation in the spindle. Before a cell divides, it must make a copy of its genetic material and then promptly split in two. This process, called mitosis, is coordinated by many different molecular machines. The DNA is copied, then the duplicated chromosomes line up at the middle of the cell. Next, an apparatus called the mitotic spindle latches onto the chromosomes before pulling them apart. The mitotic spindle is a bundle of long, thin filaments called microtubules. It attaches to chromosomes at the kinetochore, the point where two copied chromosomes are cinched together in their middle. Proper cell division is vital for the healthy growth of all organisms, big and small, and yet some parts of the process remain poorly understood despite extensive study. Specifically, there is more to learn about how the mitotic spindle self-assembles, and how microtubules and kinetochores work together to correctly orient and segregate chromosomes into two sister cells. These nanoscale processes are happening a hundred times a minute, so computer simulations are a good way to test what we know. Edelmaier et al. developed a computer model to simulate cell division in fission yeast, a species of yeast often used to study fundamental processes in the cell. The model simulates how the mitotic spindle assembles, how its microtubules attach to the kinetochore and the force required to pull two sister chromosomes apart. Building the simulation involved modelling interactions between the mitotic spindle and kinetochore, their movement and forces applied. To test its accuracy, model simulations were compared to recordings of the mitotic spindle – including its length, structure and position – imaged from dividing yeast cells. Running the simulation, Edelmaier et al. found that several key effects are essential for the proper movement of chromosomes in mitosis. This includes holding chromosomes in the correct orientation as the mitotic spindle assembles and controlling the relative position of microtubules as they attach to the kinetochore. Misaligned attachments must also be readily deconstructed and corrected to prevent any errors. The simulations also showed that kinetochores must begin to exert more force (to separate the chromosomes) once the mitotic spindle is attached correctly. Altogether, these findings improve the current understanding of how the mitotic spindle and its counterparts control cell division. Errors in chromosome segregation are associated with birth defects and cancer in humans, and this new simulation could potentially now be used to help make predictions about how to correct mistakes in the process.
Collapse
Affiliation(s)
| | - Adam R Lamson
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - Zachary R Gergely
- Department of Physics, University of Colorado Boulder, Boulder, United States.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Saad Ansari
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - Robert Blackwell
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - J Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Matthew A Glaser
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - Meredith D Betterton
- Department of Physics, University of Colorado Boulder, Boulder, United States.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| |
Collapse
|
10
|
Kinesin-5 Is Dispensable for Bipolar Spindle Formation and Elongation in Candida albicans, but Simultaneous Loss of Kinesin-14 Activity Is Lethal. mSphere 2019; 4:4/6/e00610-19. [PMID: 31722992 PMCID: PMC6854041 DOI: 10.1128/msphere.00610-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitotic spindles assume a bipolar architecture through the concerted actions of microtubules, motors, and cross-linking proteins. In most eukaryotes, kinesin-5 motors are essential to this process, and cells will fail to form a bipolar spindle without kinesin-5 activity. Remarkably, inactivation of kinesin-14 motors can rescue this kinesin-5 deficiency by reestablishing the balance of antagonistic forces needed to drive spindle pole separation and spindle assembly. We show that the yeast form of the opportunistic fungus Candida albicans assembles bipolar spindles in the absence of its sole kinesin-5, CaKip1, even though this motor exhibits stereotypical cell-cycle-dependent localization patterns within the mitotic spindle. However, cells lacking CaKip1 function have shorter metaphase spindles and longer and more numerous astral microtubules. They also show defective hyphal development. Interestingly, a small population of CaKip1-deficient spindles break apart and reform two bipolar spindles in a single nucleus. These spindles then separate, dividing the nucleus, and then elongate simultaneously in the mother and bud or across the bud neck, resulting in multinucleate cells. These data suggest that kinesin-5-independent mechanisms drive assembly and elongation of the mitotic spindle in C. albicans and that CaKip1 is important for bipolar spindle integrity. We also found that simultaneous loss of kinesin-5 and kinesin-14 (CaKar3Cik1) activity is lethal. This implies a divergence from the antagonistic force paradigm that has been ascribed to these motors, which could be linked to the high mitotic error rate that C. albicans experiences and often exploits as a generator of diversity.IMPORTANCE Candida albicans is one of the most prevalent fungal pathogens of humans and can infect a broad range of niches within its host. This organism frequently acquires resistance to antifungal agents through rapid generation of genetic diversity, with aneuploidy serving as a particularly important adaptive mechanism. This paper describes an investigation of the sole kinesin-5 in C. albicans, which is a major regulator of chromosome segregation. Contrary to other eukaryotes studied thus far, C. albicans does not require kinesin-5 function for bipolar spindle assembly or spindle elongation. Rather, this motor protein associates with the spindle throughout mitosis to maintain spindle integrity. Furthermore, kinesin-5 loss is synthetically lethal with loss of kinesin-14-canonically an opposing force producer to kinesin-5 in spindle assembly and anaphase. These results suggest a significant evolutionary rewiring of microtubule motor functions in the C. albicans mitotic spindle, which may have implications in the genetic instability of this pathogen.
Collapse
|
11
|
Leary A, Sim S, Nazarova E, Shulist K, Genthial R, Yang SK, Bui KH, Francois P, Vogel J. Successive Kinesin-5 Microtubule Crosslinking and Sliding Promote Fast, Irreversible Formation of a Stereotyped Bipolar Spindle. Curr Biol 2019; 29:3825-3837.e3. [DOI: 10.1016/j.cub.2019.09.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 07/24/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
|
12
|
Dutta S, Djabrayan NJV, Torquato S, Shvartsman SY, Krajnc M. Self-Similar Dynamics of Nuclear Packing in the Early Drosophila Embryo. Biophys J 2019; 117:743-750. [PMID: 31378311 DOI: 10.1016/j.bpj.2019.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/18/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022] Open
Abstract
Embryonic development starts with cleavages, a rapid sequence of reductive divisions that result in an exponential increase of cell number without changing the overall size of the embryo. In Drosophila, the final four rounds of cleavages occur at the surface of the embryo and give rise to ∼6000 nuclei under a common plasma membrane. We use live imaging to study the dynamics of this process and to characterize the emergent nuclear packing in this system. We show that the characteristic length scale of the internuclear interaction scales with the density, which allows the densifying embryo to sustain the level of structural order at progressively smaller length scales. This is different from nonliving materials, which typically undergo disorder-order transition upon compression. To explain this dynamics, we use a particle-based model that accounts for density-dependent nuclear interactions and synchronous divisions. We reproduce the pair statistics of the disordered packings observed in embryos and recover the scaling relation between the characteristic length scale and the density both in real and reciprocal space. This result reveals how the embryo can robustly preserve the nuclear-packing structure while being densified. In addition to providing quantitative description of self-similar dynamics of nuclear packings, this model generates dynamic meshes for the computational analysis of pattern formation and tissue morphogenesis.
Collapse
Affiliation(s)
- Sayantan Dutta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - Nareg J-V Djabrayan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Salvatore Torquato
- Department of Chemistry, Princeton University, Princeton, New Jersey; Department of Physics, Princeton University, Princeton, New Jersey; Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey; Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey; Department of Molecular Biology, Princeton University, Princeton, New Jersey.
| | - Matej Krajnc
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey.
| |
Collapse
|
13
|
Prelogović M, Winters L, Milas A, Tolić IM, Pavin N. Pivot-and-bond model explains microtubule bundle formation. Phys Rev E 2019; 100:012403. [PMID: 31499770 DOI: 10.1103/physreve.100.012403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Indexed: 06/10/2023]
Abstract
During mitosis, microtubules form a spindle, which is responsible for proper segregation of the genetic material. A common structural element in a mitotic spindle is a parallel bundle, consisting of two or more microtubules growing from the same origin and held together by cross-linking proteins. An interesting question is what are the physical principles underlying the formation and stability of such microtubule bundles. Here we show, by introducing the pivot-and-bond model, that random angular movement of microtubules around the spindle pole and forces exerted by cross-linking proteins can explain the formation of microtubule bundles as observed in our experiments. The model predicts that stable parallel bundles can form in the presence of either passive crosslinkers or plus-end directed motors, but not minus-end directed motors. In the cases where bundles form, the time needed for their formation depends mainly on the concentration of cross-linking proteins and the angular diffusion of the microtubule. In conclusion, the angular motion drives the alignment of microtubules, which in turn allows the cross-linking proteins to connect the microtubules into a stable bundle.
Collapse
Affiliation(s)
- Marcel Prelogović
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
| | - Lora Winters
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Ana Milas
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Iva M Tolić
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
| |
Collapse
|
14
|
Lamson AR, Edelmaier CJ, Glaser MA, Betterton MD. Theory of Cytoskeletal Reorganization during Cross-Linker-Mediated Mitotic Spindle Assembly. Biophys J 2019; 116:1719-1731. [PMID: 31010665 PMCID: PMC6507341 DOI: 10.1016/j.bpj.2019.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 11/29/2022] Open
Abstract
Cells grow, move, and respond to outside stimuli by large-scale cytoskeletal reorganization. A prototypical example of cytoskeletal remodeling is mitotic spindle assembly, during which microtubules nucleate, undergo dynamic instability, bundle, and organize into a bipolar spindle. Key mechanisms of this process include regulated filament polymerization, cross-linking, and motor-protein activity. Remarkably, using passive cross-linkers, fission yeast can assemble a bipolar spindle in the absence of motor proteins. We develop a torque-balance model that describes this reorganization because of dynamic microtubule bundles, spindle-pole bodies, the nuclear envelope, and passive cross-linkers to predict spindle-assembly dynamics. We compare these results to those obtained with kinetic Monte Carlo-Brownian dynamics simulations, which include cross-linker-binding kinetics and other stochastic effects. Our results show that rapid cross-linker reorganization to microtubule overlaps facilitates cross-linker-driven spindle assembly, a testable prediction for future experiments. Combining these two modeling techniques, we illustrate a general method for studying cytoskeletal network reorganization.
Collapse
Affiliation(s)
- Adam R Lamson
- Department of Physics, University of Colorado, Boulder, Colorado
| | | | - Matthew A Glaser
- Department of Physics, University of Colorado, Boulder, Colorado
| | | |
Collapse
|
15
|
Jain K, Khetan N, Athale CA. Collective effects of yeast cytoplasmic dynein based microtubule transport. SOFT MATTER 2019; 15:1571-1581. [PMID: 30664145 DOI: 10.1039/c8sm01434e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Teams of cortically anchored dyneins pulling at microtubules (MTs) are known to be essential for aster, spindle and nuclear positioning during cell division and fertilization. While the single-molecule basis of dynein processivity is now better understood, the effect of increasing numbers of motors on transport is not clear. Here, we examine the collective transport properties of a Saccharomyces cerevisiae cytoplasmic dynein fragment, widely used as a minimal model, by a combination of quantitative MT gliding assays and stochastic simulations. We find both MT lengths and motor densities qualitatively affect the degree of randomness of MT transport. However, the directionality and velocity of MTs increase above a threshold number of motors (N) interacting with a filament. To better understand this behavior, we simulate a gliding assay based on a model of uniformly distributed immobilized motors transporting semi-flexible MTs. Each dynein dimer is modeled as an effective stochastic stepper with asymmetric force dependent detachment dynamics, based on single-molecule experiments. Simulations predict increasing numbers of motors (N) result in a threshold dependent transition in directionality and transport velocity and a monotonic decrease in effective diffusivity. Thus both experiment and theory show qualitative agreement in the emergence of coordination in transport above a threshold number of motor heads. We hypothesize that the phase-transition like property of this dynein could play a role in vivo during yeast mitosis, when this dynein localizes to the cortex and pulls astral MTs of increasing length, resulting in correct positioning and orientation of the nucleus at the bud-neck.
Collapse
Affiliation(s)
- Kunalika Jain
- Div. of Biology, IISER Pune, Dr Homi Bhabha Road, Pune, India.
| | | | | |
Collapse
|
16
|
Singh SK, Pandey H, Al-Bassam J, Gheber L. Bidirectional motility of kinesin-5 motor proteins: structural determinants, cumulative functions and physiological roles. Cell Mol Life Sci 2018; 75:1757-1771. [PMID: 29397398 PMCID: PMC11105280 DOI: 10.1007/s00018-018-2754-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/03/2018] [Accepted: 01/17/2018] [Indexed: 01/27/2023]
Abstract
Mitotic kinesin-5 bipolar motor proteins perform essential functions in mitotic spindle dynamics by crosslinking and sliding antiparallel microtubules (MTs) apart within the mitotic spindle. Two recent studies have indicated that single molecules of Cin8, the Saccharomyces cerevisiae kinesin-5 homolog, are minus end-directed when moving on single MTs, yet switch directionality under certain experimental conditions (Gerson-Gurwitz et al., EMBO J 30:4942-4954, 2011; Roostalu et al., Science 332:94-99, 2011). This finding was unexpected since the Cin8 catalytic motor domain is located at the N-terminus of the protein, and such kinesins have been previously thought to be exclusively plus end-directed. In addition, the essential intracellular functions of kinesin-5 motors in separating spindle poles during mitosis can only be accomplished by plus end-directed motility during antiparallel sliding of the spindle MTs. Thus, the mechanism and possible physiological role of the minus end-directed motility of kinesin-5 motors remain unclear. Experimental and theoretical studies from several laboratories in recent years have identified additional kinesin-5 motors that are bidirectional, revealed structural determinants that regulate directionality, examined the possible mechanisms involved and have proposed physiological roles for the minus end-directed motility of kinesin-5 motors. Here, we summarize our current understanding of the remarkable ability of certain kinesin-5 motors to switch directionality when moving along MTs.
Collapse
Affiliation(s)
- Sudhir Kumar Singh
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, 84105, Beer-Sheva, Israel
| | - Himanshu Pandey
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, 84105, Beer-Sheva, Israel
| | - Jawdat Al-Bassam
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, 95616, USA
| | - Larisa Gheber
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, 84105, Beer-Sheva, Israel.
| |
Collapse
|
17
|
Feng Y, Mitran S. Data-driven reduced-order model of microtubule mechanics. Cytoskeleton (Hoboken) 2017; 75:45-60. [PMID: 29125701 DOI: 10.1002/cm.21419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/16/2017] [Accepted: 11/01/2017] [Indexed: 11/11/2022]
Abstract
A beam element is constructed for microtubules based upon data reduction of the results from atomistic simulation of the carbon backbone chain of αβ-tubulin dimers. The database of mechanical responses to various types of loads from atomistic simulation is reduced to dominant modes. The dominant modes are subsequently used to construct the stiffness matrix of a beam element that captures the anisotropic behavior and deformation mode coupling that arises from a microtubule's spiral structure. In contrast to standard Euler-Bernoulli or Timoshenko beam elements, the link between forces and node displacements results not from hypothesized deformation behavior, but directly from the data obtained by molecular scale simulation. Differences between the resulting microtubule data-driven beam model (MTDDBM) and standard beam elements are presented, with a focus on coupling of bending, stretch, shear deformations. The MTDDBM is just as economical to use as a standard beam element, and allows accurate reconstruction of the mechanical behavior of structures within a cell as exemplified in a simple model of a component element of the mitotic spindle.
Collapse
Affiliation(s)
- Yan Feng
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3250
| | - Sorin Mitran
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3250
| |
Collapse
|
18
|
Ifuji A, Kuga T, Kaibori Y, Saito Y, Nakayama Y. A novel immunofluorescence method to visualize microtubules in the antiparallel overlaps of microtubule-plus ends in the anaphase and telophase midzone. Exp Cell Res 2017; 360:347-357. [PMID: 28942021 DOI: 10.1016/j.yexcr.2017.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 11/19/2022]
Abstract
Cell division, in which duplicated chromosomes are separated into two daughter cells, is the most dynamic event during cell proliferation. Chromosome movement is powered mainly by microtubules, which vary in morphology and are organized into characteristic structures according to mitotic progression. During the later stages of mitosis, antiparallel microtubules form the spindle midzone, and the irregular formation of the midzone often leads to failure of cytokinesis, giving rise to the unequal segregation of chromosomes. However, it is difficult to analyze the morphology of these microtubules because microtubules in the antiparallel overlaps of microtubule-plus ends in the midzone are embedded in highly electron-dense matrices, impeding the access of anti-tubulin antibodies to their epitopes during immunofluorescence staining. Here, we developed a novel method to visualize selectively antiparallel microtubule overlaps in the midzone. When cells are air-dried before fixation, aligned α-tubulin staining is observed and colocalized with PRC1 in the center of the midzone of anaphase and telophase cells, suggesting that antiparallel microtubule overlaps can be visualized by this method. In air-dried cells, mCherry-α-tubulin fluorescence and β-tubulin staining show almost the same pattern as α-tubulin staining in the midzone, suggesting that the selective visualization of antiparallel microtubule overlaps in air-dried cells is not attributed to an alteration of the antigenicity of α-tubulin. Taxol treatment extends the microtubule filaments of the midzone in air-dried cells, and nocodazole treatment conversely decreases the number of microtubules, suggesting that unstable microtubules are depolymerized during the air-drying method. It is of note that the air-drying method enables the detection of the disruption of the midzone and premature midzone formation upon Aurora B and Plk1 inhibition, respectively. These results suggest that the air-drying method is suitable for visualizing microtubules in the antiparallel overlaps of microtubule-plus ends of the midzone and for detecting their effects on midzone formation.
Collapse
Affiliation(s)
- Aya Ifuji
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Takahisa Kuga
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Yuichiro Kaibori
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Youhei Saito
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Yuji Nakayama
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| |
Collapse
|
19
|
Ghosh S, Pradeep VNS, Muhuri S, Pagonabarraga I, Chaudhuri D. Bidirectional motion of filaments: the role of motor proteins and passive cross linkers. SOFT MATTER 2017; 13:7129-7140. [PMID: 28858369 DOI: 10.1039/c7sm01110e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In eukaryotic cells, motor proteins (MPs) bind to cytoskeletal filaments and move along them in a directed manner generating active stresses. During cell division a spindle structure of overlapping antiparallel microtubules forms whose stability and dynamics under the influence of MPs have been studied extensively. Although passive cross linkers (PCLs) are known to provide structural stability to a filamentous network, consequences of the interplay between ATP dependent active forces of MPs and passive entropic forces of PCLs on filamentous overlap remain largely unexplored. Here, we formulate and characterize a model to study this, using linear stability analysis and numerical integration. In the presence of PCLs, we find dynamic phase transitions with changing activity exhibiting regimes of stable partial overlap with or without oscillations, instability towards complete overlap, and stable limit cycle oscillations that emerge via a supercritical Hopf bifurcation characterized by an oscillation frequency determined by the MP and PCL parameters. We show that the overlap dynamics and stability depend crucially on whether both the filaments of an overlapping pair are movable or one is immobilized, having potential implications for in vivo and in vitro studies.
Collapse
Affiliation(s)
- Subhadip Ghosh
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India.
| | | | | | | | | |
Collapse
|
20
|
Vukušić K, Buđa R, Bosilj A, Milas A, Pavin N, Tolić IM. Microtubule Sliding within the Bridging Fiber Pushes Kinetochore Fibers Apart to Segregate Chromosomes. Dev Cell 2017; 43:11-23.e6. [PMID: 29017027 PMCID: PMC5637169 DOI: 10.1016/j.devcel.2017.09.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/21/2017] [Accepted: 09/13/2017] [Indexed: 01/06/2023]
Abstract
During cell division, mitotic spindle microtubules segregate chromosomes by exerting forces on kinetochores. What forces drive chromosome segregation in anaphase remains a central question. The current model for anaphase in human cells includes shortening of kinetochore fibers and separation of spindle poles. Both processes require kinetochores to be linked with the poles. Here we show, by combining laser ablation, photoactivation, and theoretical modeling, that kinetochores can separate without any attachment to one spindle pole. This separation requires the bridging fiber, a microtubule bundle that connects sister kinetochore fibers. Bridging fiber microtubules in intact spindles slide apart with kinetochore fibers, indicating strong crosslinks between them. We conclude that sliding of microtubules within the bridging fibers drives pole separation and pushes kinetochore fibers poleward by the friction of passive crosslinks between these fibers. Thus, sliding within the bridging fiber works together with the shortening of kinetochore fibers to segregate chromosomes.
Collapse
Affiliation(s)
- Kruno Vukušić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Renata Buđa
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Agneza Bosilj
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
| | - Ana Milas
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia.
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
21
|
Vleugel M, Kok M, Dogterom M. Understanding force-generating microtubule systems through in vitro reconstitution. Cell Adh Migr 2017; 10:475-494. [PMID: 27715396 PMCID: PMC5079405 DOI: 10.1080/19336918.2016.1241923] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Microtubules switch between growing and shrinking states, a feature known as dynamic instability. The biochemical parameters underlying dynamic instability are modulated by a wide variety of microtubule-associated proteins that enable the strict control of microtubule dynamics in cells. The forces generated by controlled growth and shrinkage of microtubules drive a large range of processes, including organelle positioning, mitotic spindle assembly, and chromosome segregation. In the past decade, our understanding of microtubule dynamics and microtubule force generation has progressed significantly. Here, we review the microtubule-intrinsic process of dynamic instability, the effect of external factors on this process, and how the resulting forces act on various biological systems. Recently, reconstitution-based approaches have strongly benefited from extensive biochemical and biophysical characterization of individual components that are involved in regulating or transmitting microtubule-driven forces. We will focus on the current state of reconstituting increasingly complex biological systems and provide new directions for future developments.
Collapse
Affiliation(s)
- Mathijs Vleugel
- a Department of Bionanoscience , Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft Institute of Technology , Delft , The Netherlands
| | - Maurits Kok
- a Department of Bionanoscience , Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft Institute of Technology , Delft , The Netherlands
| | - Marileen Dogterom
- a Department of Bionanoscience , Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft Institute of Technology , Delft , The Netherlands
| |
Collapse
|
22
|
Blackwell R, Edelmaier C, Sweezy-Schindler O, Lamson A, Gergely ZR, O’Toole E, Crapo A, Hough LE, McIntosh JR, Glaser MA, Betterton MD. Physical determinants of bipolar mitotic spindle assembly and stability in fission yeast. SCIENCE ADVANCES 2017; 3:e1601603. [PMID: 28116355 PMCID: PMC5249259 DOI: 10.1126/sciadv.1601603] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/05/2016] [Indexed: 05/10/2023]
Abstract
Mitotic spindles use an elegant bipolar architecture to segregate duplicated chromosomes with high fidelity. Bipolar spindles form from a monopolar initial condition; this is the most fundamental construction problem that the spindle must solve. Microtubules, motors, and cross-linkers are important for bipolarity, but the mechanisms necessary and sufficient for spindle assembly remain unknown. We describe a physical model that exhibits de novo bipolar spindle formation. We began with physical properties of fission-yeast spindle pole body size and microtubule number, kinesin-5 motors, kinesin-14 motors, and passive cross-linkers. Our model results agree quantitatively with our experiments in fission yeast, thereby establishing a minimal system with which to interrogate collective self-assembly. By varying the features of our model, we identify a set of functions essential for the generation and stability of spindle bipolarity. When kinesin-5 motors are present, their bidirectionality is essential, but spindles can form in the presence of passive cross-linkers alone. We also identify characteristic failed states of spindle assembly-the persistent monopole, X spindle, separated asters, and short spindle, which are avoided by the creation and maintenance of antiparallel microtubule overlaps. Our model can guide the identification of new, multifaceted strategies to induce mitotic catastrophes; these would constitute novel strategies for cancer chemotherapy.
Collapse
Affiliation(s)
- Robert Blackwell
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
- PULS Group, Department of Physics and Cluster of Excellence: Engineering of Advanced Materials, Friedrich-Alexander University Erlangen-Nurnberg, Nagelsbachstr. 49b, Erlangen, Germany
| | | | | | - Adam Lamson
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Zachary R. Gergely
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Eileen O’Toole
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Ammon Crapo
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Loren E. Hough
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - J. Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Matthew A. Glaser
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Meredith D. Betterton
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
23
|
Vleugel M, Roth S, Groenendijk CF, Dogterom M. Reconstitution of Basic Mitotic Spindles in Spherical Emulsion Droplets. J Vis Exp 2016. [PMID: 27584979 DOI: 10.3791/54278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mitotic spindle assembly, positioning and orientation depend on the combined forces generated by microtubule dynamics, microtubule motor proteins and cross-linkers. Growing microtubules can generate pushing forces, while depolymerizing microtubules can convert the energy from microtubule shrinkage into pulling forces, when attached, for example, to cortical dynein or chromosomes. In addition, motor proteins and diffusible cross-linkers within the spindle contribute to spindle architecture by connecting and sliding anti-parallel microtubules. In vivo, it has proven difficult to unravel the relative contribution of individual players to the overall balance of forces. Here we present the methods that we recently developed in our efforts to reconstitute basic mitotic spindles bottom-up in vitro. Using microfluidic techniques, centrosomes and tubulin are encapsulated in water-in-oil emulsion droplets, leading to the formation of geometrically confined (double) microtubule asters. By additionally introducing cortically anchored dynein, plus-end directed microtubule motors and diffusible cross-linkers, this system is used to reconstitute spindle-like structures. The methods presented here provide a starting point for reconstitution of more complete mitotic spindles, allowing for a detailed study of the contribution of each individual component, and for obtaining an integrated quantitative view of the force-balance within the mitotic spindle.
Collapse
Affiliation(s)
- Mathijs Vleugel
- Department of Bionanoscience, Delft University of Technology
| | - Sophie Roth
- Department of Bionanoscience, Delft University of Technology
| | | | | |
Collapse
|
24
|
Affiliation(s)
- Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| | - Iva M. Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| |
Collapse
|
25
|
Gergely ZR, Crapo A, Hough LE, McIntosh JR, Betterton MD. Kinesin-8 effects on mitotic microtubule dynamics contribute to spindle function in fission yeast. Mol Biol Cell 2016; 27:3490-3514. [PMID: 27146110 PMCID: PMC5221583 DOI: 10.1091/mbc.e15-07-0505] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 04/26/2016] [Indexed: 11/17/2022] Open
Abstract
Kinesin-8 motor proteins destabilize microtubules and increase chromosome loss in mitosis. In fission yeast, aberrant microtubule-driven kinetochore pushing movements, tripolar mitotic spindles, and fluctuations in metaphase spindle length occurred in kinesin-8–deletion mutants. A mathematical model can explain these results. Kinesin-8 motor proteins destabilize microtubules. Their absence during cell division is associated with disorganized mitotic chromosome movements and chromosome loss. Despite recent work studying effects of kinesin-8s on microtubule dynamics, it remains unclear whether the kinesin-8 mitotic phenotypes are consequences of their effect on microtubule dynamics, their well-established motor activity, or additional, unknown functions. To better understand the role of kinesin-8 proteins in mitosis, we studied the effects of deletion of the fission yeast kinesin-8 proteins Klp5 and Klp6 on chromosome movements and spindle length dynamics. Aberrant microtubule-driven kinetochore pushing movements and tripolar mitotic spindles occurred in cells lacking Klp5 but not Klp6. Kinesin-8–deletion strains showed large fluctuations in metaphase spindle length, suggesting a disruption of spindle length stabilization. Comparison of our results from light microscopy with a mathematical model suggests that kinesin-8–induced effects on microtubule dynamics, kinetochore attachment stability, and sliding force in the spindle can explain the aberrant chromosome movements and spindle length fluctuations seen.
Collapse
Affiliation(s)
- Zachary R Gergely
- Department of Physics, University of Colorado at Boulder, Boulder, CO 80309.,Department of MCD Biology, University of Colorado at Boulder, Boulder, CO 80309
| | - Ammon Crapo
- Department of Physics, University of Colorado at Boulder, Boulder, CO 80309
| | - Loren E Hough
- Department of Physics, University of Colorado at Boulder, Boulder, CO 80309
| | - J Richard McIntosh
- Department of MCD Biology, University of Colorado at Boulder, Boulder, CO 80309
| | | |
Collapse
|
26
|
Sutradhar S, Basu S, Paul R. Intercentrosomal angular separation during mitosis plays a crucial role for maintaining spindle stability. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042714. [PMID: 26565279 DOI: 10.1103/physreve.92.042714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Indexed: 06/05/2023]
Abstract
Cell division through proper spindle formation is one of the key puzzles in cell biology. In most mammalian cells, chromosomes spontaneously arrange to achieve a stable bipolar spindle during metaphase which eventually ensures proper segregation of the DNA into the daughter cells. In this paper, we present a robust three-dimensional mechanistic model to investigate the formation and maintenance of a bipolar mitotic spindle in mammalian cells under different physiological constraints. Using realistic parameters, we test spindle viability by measuring the spindle length and studying the chromosomal configuration. The model strikingly predicts a feature of the spindle instability arising from the insufficient intercentrosomal angular separation and impaired sliding of the interpolar microtubules. In addition, our model successfully reproduces chromosomal patterns observed in mammalian cells, when activity of different motor proteins is perturbed.
Collapse
Affiliation(s)
- S Sutradhar
- Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - S Basu
- Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - R Paul
- Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
27
|
Mechanical aspects of microtubule bundling in taxane-treated circulating tumor cells. Biophys J 2015; 107:1236-1246. [PMID: 25185559 DOI: 10.1016/j.bpj.2014.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/15/2014] [Accepted: 07/01/2014] [Indexed: 01/23/2023] Open
Abstract
Microtubules play an important role in many cellular processes, including mitotic spindle formation and cell division. Taxane-based anticancer treatments lead to the stabilization of microtubules, thus preventing the uncontrolled proliferation of tumor cells. One of the striking physical features of taxane-treated cells is the localization of their microtubules, which can be observed via fluorescent microscopy as an intense fluorescent band and are referred to as a microtubule bundle. With the recent advances in capturing and analyzing tumor cells circulating in a patient's blood system, there is increasing interest in using these cells to examine a patient's response to treatment. This includes taxanes that are used routinely in clinics to treat prostate, breast, lung, and other cancers. Here, we have used a computational model of microtubule mechanics to investigate self-arrangement patterns of stabilized microtubules, which allowed for the identification of specific combinations of three physical parameters: microtubule stiffness, intracellular viscosity, and cell shape, that can prevent the formation of microtubule bundles in cells with stabilized microtubules, such as taxane-treated cells. We also developed a method to quantify bundling in the whole microtubule aster structure and a way to compare the simulated results to fluorescent images from experimental data. Moreover, we investigated microtubule rearrangement in both suspended and attached cells and showed that the observed final microtubule patterns depend on the experimental protocol. The results from our computational studies can explain the heterogeneous bundling phenomena observed via fluorescent immunostaining from a mechanical point of view without relying on heterogeneous cellular responses to the microtubule-stabilizing drug.
Collapse
|
28
|
Vasquez PA, Forest MG. Complex Fluids and Soft Structures in the Human Body. COMPLEX FLUIDS IN BIOLOGICAL SYSTEMS 2015. [DOI: 10.1007/978-1-4939-2065-5_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
29
|
Maly IV. Equilibria of idealized confined astral microtubules and coupled spindle poles. PLoS One 2012; 7:e38921. [PMID: 22719988 PMCID: PMC3375304 DOI: 10.1371/journal.pone.0038921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 05/15/2012] [Indexed: 12/03/2022] Open
Abstract
Positioning of the mitotic spindle through the interaction of astral microtubules with the cell boundary often determines whether the cell division will be symmetric or asymmetric. This process plays a crucial role in development. In this paper, a numerical model is presented that deals with the force exerted on the spindle by astral microtubules that are bent by virtue of their confinement within the cell boundary. It is found that depending on parameters, the symmetric position of the spindle can be stable or unstable. Asymmetric stable equilibria also exist, and two or more stable positions can exist simultaneously. The theory poses new types of questions for experimental research. Regarding the cases of symmetric spindle positioning, it is necessary to ask whether the microtubule parameters are controlled by the cell so that the bending mechanics favors symmetry. If they are not, then it is necessary to ask what forces external to the microtubule cytoskeleton counteract the bending effects sufficiently to actively establish symmetry. Conversely, regarding the cases with asymmetry, it is now necessary to investigate whether the cell controls the microtubule parameters so that the bending favors asymmetry apart from any forces that are external to the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America.
| |
Collapse
|
30
|
Vladimirou E, Harry E, Burroughs N, McAinsh AD. Springs, clutches and motors: driving forward kinetochore mechanism by modelling. Chromosome Res 2011; 19:409-21. [PMID: 21331796 PMCID: PMC3078324 DOI: 10.1007/s10577-011-9191-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
As a mechanical system, the kinetochore can be viewed as a set of interacting springs, clutches and motors; the problem of kinetochore mechanism is now one of understanding how these functional modules assemble, disassemble and interact with one another to give rise to the emergent properties of the system. The sheer complexity of the kinetochore system points to a future requirement for data-driven mathematical modelling and statistical analysis based on quantitative empirical measurement of sister kinetochore trajectories. Here, we review existing models of chromosome motion in the context of recent advances in our understanding of kinetochore molecular biology.
Collapse
Affiliation(s)
- Elina Vladimirou
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| | - Ed Harry
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
- Molecular Organisation and Assembly in Cells (MOAC) Doctoral Training Centre, University of Warwick, Coventry, UK
- Warwick Systems Biology Centre, University of Warwick, Coventry, UK
| | - Nigel Burroughs
- Warwick Systems Biology Centre, University of Warwick, Coventry, UK
| | - Andrew D. McAinsh
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
31
|
Tanenbaum ME, Medema RH. Mechanisms of centrosome separation and bipolar spindle assembly. Dev Cell 2011; 19:797-806. [PMID: 21145497 DOI: 10.1016/j.devcel.2010.11.011] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 11/17/2010] [Accepted: 11/18/2010] [Indexed: 11/29/2022]
Abstract
Accurate segregation of chromosomes during cell division is accomplished through the assembly of a bipolar microtubule-based structure called the mitotic spindle. Work over the past two decades has identified a core regulator of spindle bipolarity, the microtubule motor protein kinesin-5. However, an increasing body of evidence has emerged demonstrating that kinesin-5-independent mechanisms driving bipolar spindle assembly exist as well. Here, we discuss different pathways that promote initial centrosome separation and bipolar spindle assembly.
Collapse
Affiliation(s)
- Marvin E Tanenbaum
- Department of Medical Oncology, University Medical Center, CG Utrecht, the Netherlands
| | | |
Collapse
|
32
|
Abstract
The mitotic spindle accurately segregates genetic instructions by moving chromosomes to spindle poles (anaphase A) and separating the poles (anaphase B) so that, in general, the chromosomes and poles are positioned near the centers of the nascent daughter cell products of each cell division. Because the size of different types of dividing cells, and thus the spacing of their daughter cell centers, can vary significantly, the length of the metaphase or postanaphase B spindle often scales with cell size. However, significant exceptions to this scaling rule occur, revealing the existence of cell size–independent, spindle-associated mechanisms of spindle length control. The control of spindle length reflects the action of mitotic force-generating mechanisms, and its study may illuminate general principles by which cells regulate the size of internal structures. Here we review molecules and mechanisms that control spindle length, how these mechanisms are deployed in different systems, and some quantitative models that describe the control of spindle length.
Collapse
Affiliation(s)
- Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
| | | |
Collapse
|
33
|
Civelekoglu-Scholey G, Scholey JM. Mitotic force generators and chromosome segregation. Cell Mol Life Sci 2010; 67:2231-50. [PMID: 20221784 PMCID: PMC2883081 DOI: 10.1007/s00018-010-0326-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 02/17/2010] [Indexed: 10/31/2022]
Abstract
The mitotic spindle uses dynamic microtubules and mitotic motors to generate the pico-Newton scale forces that are needed to drive the mitotic movements that underlie chromosome capture, alignment and segregation. Here, we consider the biophysical and molecular basis of force-generation for chromosome movements in the spindle, and, with reference to the Drosophila embryo mitotic spindle, we briefly discuss how mathematical modeling can complement experimental analysis to illuminate the mechanisms of chromosome-to-pole motility during anaphase A and spindle elongation during anaphase B.
Collapse
Affiliation(s)
- Gul Civelekoglu-Scholey
- Department of Molecular and Cell Biology, University of California at Davis, 149 Briggs Hall, One Shields Avenue, Davis, CA 95616 USA
| | - Jonathan M. Scholey
- Department of Molecular and Cell Biology, University of California at Davis, 149 Briggs Hall, One Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|
34
|
Sommi P, Ananthakrishnan R, Cheerambathur DK, Kwon M, Morales-Mulia S, Brust-Mascher I, Mogilner A. A mitotic kinesin-6, Pav-KLP, mediates interdependent cortical reorganization and spindle dynamics in Drosophila embryos. J Cell Sci 2010; 123:1862-72. [PMID: 20442250 DOI: 10.1242/jcs.064048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
We investigated the role of Pav-KLP, a kinesin-6, in the coordination of spindle and cortical dynamics during mitosis in Drosophila embryos. In vitro, Pav-KLP behaves as a dimer. In vivo, it localizes to mitotic spindles and furrows. Inhibition of Pav-KLP causes defects in both spindle dynamics and furrow ingression, as well as causing changes in the distribution of actin and vesicles. Thus, Pav-KLP stabilizes the spindle by crosslinking interpolar microtubule bundles and contributes to actin furrow formation possibly by transporting membrane vesicles, actin and/or actin regulatory molecules along astral microtubules. Modeling suggests that furrow ingression during cellularization depends on: (1) a Pav-KLP-dependent force driving an initial slow stage of ingression; and (2) the subsequent Pav-KLP-driven transport of actin- and membrane-containing vesicles to the furrow during a fast stage of ingression. We hypothesize that Pav-KLP is a multifunctional mitotic motor that contributes both to bundling of interpolar microtubules, thus stabilizing the spindle, and to a biphasic mechanism of furrow ingression by pulling down the furrow and transporting vesicles that deliver new material to the descending furrow.
Collapse
Affiliation(s)
- Patrizia Sommi
- LCCB, Center for Genetics and Development, University of California at Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Modeling Microtubule-Mediated Forces and Centrosome Positioning in Caenorhabditis elegans Embryos. Methods Cell Biol 2010; 97:437-53. [DOI: 10.1016/s0091-679x(10)97023-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
36
|
Goshima G, Kimura A. New look inside the spindle: microtubule-dependent microtubule generation within the spindle. Curr Opin Cell Biol 2009; 22:44-9. [PMID: 20022736 DOI: 10.1016/j.ceb.2009.11.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 11/20/2009] [Accepted: 11/23/2009] [Indexed: 10/20/2022]
Abstract
The structure, dynamics, and mechanics of mitotic and meiotic spindles have been progressively elucidated through the advancements in microscopic technology, identification of the genes involved, and construction of theoretical frameworks. Here, we review recent works that have utilized quantitative image analysis to advance our understanding of the complex spindle structure of animal cells. In particular, we discuss how microtubules (MTs) are nucleated and distributed inside the spindle. Accumulating evidence supports the presence of MT-dependent MT generation within the spindle. This mechanism would produce dense arrays of intraspindle MTs with various lengths, which may contribute to efficient spindle assembly and stabilize the metaphase spindle. RNA interference (RNAi) screens with quantitative image analysis led to the identification of the augmin complex that plays a key role in this MT generation process.
Collapse
Affiliation(s)
- Gohta Goshima
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | | |
Collapse
|
37
|
Gaspar I, Szabad J. Glu415 in the alpha-tubulins plays a key role in stabilizing the microtubule-ADP-kinesin complexes. J Cell Sci 2009; 122:2857-65. [PMID: 19622631 DOI: 10.1242/jcs.050252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kavar(21g), a dominant female-sterile mutation of Drosophila, identifies the alphaTubulin67C gene that encodes alpha4-tubulin, the maternally provided alpha-tubulin isoform. Although alpha4-tubulin is synthesized during oogenesis, its function is required only in the early cleavage embryos. However, once present in the developing oocyte, much of the alpha4-tubulin and the Kavar(21g)-encoded E426K-alpha4-tubulin molecules become incorporated into the microtubules. We analyzed ooplasmic streaming and lipid-droplet transport, with confocal reflection microscopy, in the developing egg primordia in the presence and absence of alpha4-tubulin and E426K-alpha4-tubulin and learnt that the E426K-alpha4-tubulin molecules eliminate ooplasmic streaming and alter lipid-droplet transport. Apparently, Glu426 is involved in stabilization of the microtubule-kinesin complexes when the kinesins are in the most labile, ADP-bound state. Replacement of Glu426 by Lys results in frequent detachments of the kinesins from the microtubules leading to reduced transport efficiency and death of the embryos derived from the Kavar(21g)-carrying females. Glu426 is a component of the twelfth alpha-helix, which is the landing and binding platform for the mechanoenzymes. Since the twelfth alpha-helix is highly conserved in the alpha-tubulin family, Glu415, which corresponds to Glu426 in the constitutively expressed alpha-tubulins, seems be a key component of microtubule-kinesin interaction and thus the microtubule-based transport.
Collapse
Affiliation(s)
- Imre Gaspar
- University of Szeged, Faculty of Medicine, Department of Biology, Szeged, Hungary
| | | |
Collapse
|
38
|
Delattre M, Félix MA. The evolutionary context of robust and redundant cell biological mechanisms. Bioessays 2009; 31:537-45. [DOI: 10.1002/bies.200800215] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
39
|
Bouck DC, Joglekar AP, Bloom KS. Design features of a mitotic spindle: balancing tension and compression at a single microtubule kinetochore interface in budding yeast. Annu Rev Genet 2009; 42:335-59. [PMID: 18680435 DOI: 10.1146/annurev.genet.42.110807.091620] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Accurate segregation of duplicated chromosomes ensures that daughter cells get one and only one copy of each chromosome. Errors in chromosome segregation result in aneuploidy and have severe consequences on human health. Incorrect chromosome number and chromosomal instability are hallmarks of tumor cells. Hence, segregation errors are thought to be a major cause of tumorigenesis. A study of the physical mechanical basis of chromosome segregation is essential to understand the processes that can lead to errors. Tremendous progress has been made in recent years in identifying the proteins necessary for chromosome movement and segregation, but the mechanism and structure of critical force generating components and the molecular basis of centromere stiffness remain poorly understood.
Collapse
Affiliation(s)
- David C Bouck
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA.
| | | | | |
Collapse
|
40
|
Kim M, Maly IV. Deterministic mechanical model of T-killer cell polarization reproduces the wandering of aim between simultaneously engaged targets. PLoS Comput Biol 2009; 5:e1000260. [PMID: 19132078 PMCID: PMC2603019 DOI: 10.1371/journal.pcbi.1000260] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 11/24/2008] [Indexed: 01/02/2023] Open
Abstract
T-killer cells of the immune system eliminate virus-infected and tumorous cells through direct cell-cell interactions. Reorientation of the killing apparatus inside the T cell to the T-cell interface with the target cell ensures specificity of the immune response. The killing apparatus can also oscillate next to the cell-cell interface. When two target cells are engaged by the T cell simultaneously, the killing apparatus can oscillate between the two interface areas. This oscillation is one of the most striking examples of cell movements that give the microscopist an unmechanistic impression of the cell's fidgety indecision. We have constructed a three-dimensional, numerical biomechanical model of the molecular-motor-driven microtubule cytoskeleton that positions the killing apparatus. The model demonstrates that the cortical pulling mechanism is indeed capable of orienting the killing apparatus into the functional position under a range of conditions. The model also predicts experimentally testable limitations of this commonly hypothesized mechanism of T-cell polarization. After the reorientation, the numerical solution exhibits complex, multidirectional, multiperiodic, and sustained oscillations in the absence of any external guidance or stochasticity. These computational results demonstrate that the strikingly animate wandering of aim in T-killer cells has a purely mechanical and deterministic explanation.
Collapse
Affiliation(s)
- Mun Ju Kim
- Department of Computational Biology, University of Pittsburgh School of
Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Ivan V. Maly
- Department of Computational Biology, University of Pittsburgh School of
Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
41
|
An experimental and computational study of effects of microtubule stabilization on T-cell polarity. PLoS One 2008; 3:e3861. [PMID: 19060950 PMCID: PMC2586653 DOI: 10.1371/journal.pone.0003861] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 11/12/2008] [Indexed: 12/20/2022] Open
Abstract
T-killer cells eliminate infected and cancerous cells with precision by positioning their centrosome near the interface (immunological synapse) with the target cell. The mechanism of centrosome positioning has remained controversial, in particular the role of microtubule dynamics in it. We re-examined the issue in the experimental model of Jurkat cells presented with a T cell receptor-binding artificial substrate, which permits controlled stimulation and reproducible measurements. Neither 1-µM taxol nor 100-nM nocodazole inhibited the centrosome positioning at the “synapse” with the biomimetic substrate. At the same time, in micromolar taxol but not in nanomolar nocodazole the centrosome adopted a distinct peripheral rather than the normally central position within the synapse. This effect was reproduced in a computational energy-minimization model that assumed no microtubule dynamics, but only a taxol-induced increase in the length of the microtubules. Together, the experimental and computational results indicate that microtubule dynamics are not essential for the centrosome positioning, but that the fit of the microtubule array in the deformed body of the conjugated T cell is a major factor. The possibility of modulating the T-cell centrosome position with well-studied drugs and of predicting their effects in silico appears attractive for designing anti-cancer and antiviral therapies.
Collapse
|
42
|
Reverse engineering of force integration during mitosis in the Drosophila embryo. Mol Syst Biol 2008; 4:195. [PMID: 18463619 PMCID: PMC2424291 DOI: 10.1038/msb.2008.23] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 03/07/2008] [Indexed: 11/30/2022] Open
Abstract
The mitotic spindle is a complex macromolecular machine that coordinates accurate chromosome segregation. The spindle accomplishes its function using forces generated by microtubules (MTs) and multiple molecular motors, but how these forces are integrated remains unclear, since the temporal activation profiles and the mechanical characteristics of the relevant motors are largely unknown. Here, we developed a computational search algorithm that uses experimental measurements to ‘reverse engineer' molecular mechanical machines. Our algorithm uses measurements of length time series for wild-type and experimentally perturbed spindles to identify mechanistic models for coordination of the mitotic force generators in Drosophila embryo spindles. The search eliminated thousands of possible models and identified six distinct strategies for MT–motor integration that agree with available data. Many features of these six predicted strategies are conserved, including a persistent kinesin-5-driven sliding filament mechanism combined with the anaphase B-specific inhibition of a kinesin-13 MT depolymerase on spindle poles. Such conserved features allow predictions of force–velocity characteristics and activation–deactivation profiles of key mitotic motors. Identified differences among the six predicted strategies regarding the mechanisms of prometaphase and anaphase spindle elongation suggest future experiments.
Collapse
|
43
|
Théry M, Bornens M. Get round and stiff for mitosis. HFSP JOURNAL 2008; 2:65-71. [PMID: 19404473 DOI: 10.2976/1.2895661] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Indexed: 01/06/2023]
Abstract
Cell rounding is a common feature of cell division. The spherical shape that cells adopt during mitosis is apparently neither a simple detachment nor a global softening or stiffening that allows cells to adopt what seems to be a mechanical equilibrium. It is a highly complex mechanical transformation by which membrane folding and peripheral signals focusing can match spindle size in order to ensure a proper cell division. Recent new insight into the mechanism involved will prompt the scientific community to focus on the regulation of the physical links that exist between the lipid bilayer membrane and the underlying actin cytoskeleton since it now appears that these will strongly influence some crucial cellular events such as the spatial organization of cell division.
Collapse
|
44
|
Buttrick GJ, Beaumont LMA, Leitch J, Yau C, Hughes JR, Wakefield JG. Akt regulates centrosome migration and spindle orientation in the early Drosophila melanogaster embryo. ACTA ACUST UNITED AC 2008; 180:537-48. [PMID: 18268102 PMCID: PMC2234228 DOI: 10.1083/jcb.200705085] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Correct positioning and morphology of the mitotic spindle is achieved through regulating the interaction between microtubules (MTs) and cortical actin. Here we find that, in the Drosophila melanogaster early embryo, reduced levels of the protein kinase Akt result in incomplete centrosome migration around cortical nuclei, bent mitotic spindles, and loss of nuclei into the interior of the embryo. We show that Akt is enriched at the embryonic cortex and is required for phosphorylation of the glycogen synthase kinase-3β homologue Zeste-white 3 kinase (Zw3) and for the cortical localizations of the adenomatosis polyposis coli (APC)–related protein APC2/E-APC and the MT + Tip protein EB1. We also show that reduced levels of Akt result in mislocalization of APC2 in postcellularized embryonic mitoses and misorientation of epithelial mitotic spindles. Together, our results suggest that Akt regulates a complex containing Zw3, Armadillo, APC2, and EB1 and that this complex has a role in stabilizing MT–cortex interactions, facilitating both centrosome separation and mitotic spindle orientation.
Collapse
Affiliation(s)
- Graham J Buttrick
- Department of Zoology, University of Oxford, Oxford OX1 3PS, England, UK
| | | | | | | | | | | |
Collapse
|
45
|
Castillo A, Morse HC, Godfrey VL, Naeem R, Justice MJ. Overexpression of Eg5 causes genomic instability and tumor formation in mice. Cancer Res 2007; 67:10138-47. [PMID: 17974955 DOI: 10.1158/0008-5472.can-07-0326] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Proper chromosome segregation in eukaryotes is driven by a complex superstructure called the mitotic spindle. Assembly, maintenance, and function of the spindle depend on centrosome migration, organization of microtubule arrays, and force generation by microtubule motors. Spindle pole migration and elongation are controlled by the unique balance of forces generated by antagonistic molecular motors that act upon microtubules of the mitotic spindle. Defects in components of this complex structure have been shown to lead to chromosome missegregation and genomic instability. Here, we show that overexpression of Eg5, a member of the Bim-C class of kinesin-related proteins, leads to disruption of normal spindle development, as we observe both monopolar and multipolar spindles in Eg5 transgenic mice. Our findings show that perturbation of the mitotic spindle leads to chromosomal missegregation and the accumulation of tetraploid cells. Aging of these mice revealed a higher incidence of tumor formation with a mixed array of tumor types appearing in mice ages 3 to 30 months with the mean age of 20 months. Analysis of the tumors revealed widespread aneuploidy and genetic instability, both hallmarks of nearly all solid tumors. Together with previous findings, our results indicate that Eg5 overexpression disrupts the unique balance of forces associated with normal spindle assembly and function, and thereby leads to the development of spindle defects, genetic instability, and tumors.
Collapse
Affiliation(s)
- Andrew Castillo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
46
|
Krzysiak TC, Grabe M, Gilbert SP. Getting in sync with dimeric Eg5. Initiation and regulation of the processive run. J Biol Chem 2007; 283:2078-87. [PMID: 18037705 DOI: 10.1074/jbc.m708354200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eg5/KSP is the kinesin-related motor protein that generates the major plus-end directed force for mitotic spindle assembly and dynamics. Recent work using a dimeric form of Eg5 has found it to be a processive motor; however, its mechanochemical cycle is different from that of conventional Kinesin-1. Dimeric Eg5 appears to undergo a conformational change shortly after collision with the microtubule that primes the motor for its characteristically short processive runs. To better understand this conformational change as well as head-head communication during processive stepping, equilibrium and transient kinetic approaches have been used. By contrast to the mechanism of Kinesin-1, microtubule association triggers ADP release from both motor domains of Eg5. One motor domain releases ADP rapidly, whereas ADP release from the other occurs after a slow conformational change at approximately 1 s(-1). Therefore, dimeric Eg5 begins its processive run with both motor domains associated with the microtubule and in the nucleotide-free state. During processive stepping however, ATP binding and potentially ATP hydrolysis signals rearward head advancement 16 nm forward to the next microtubule-binding site. This alternating cycle of processive stepping is proposed to terminate after a few steps because the head-head communication does not sufficiently control the timing to prevent both motor domains from entering the ADP-bound state simultaneously.
Collapse
Affiliation(s)
- Troy C Krzysiak
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
47
|
Zhang J, Megraw TL. Proper recruitment of gamma-tubulin and D-TACC/Msps to embryonic Drosophila centrosomes requires Centrosomin Motif 1. Mol Biol Cell 2007; 18:4037-49. [PMID: 17671162 PMCID: PMC1995719 DOI: 10.1091/mbc.e07-05-0474] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Centrosomes are microtubule-organizing centers and play a dominant role in assembly of the microtubule spindle apparatus at mitosis. Although the individual binding steps in centrosome maturation are largely unknown, Centrosomin (Cnn) is an essential mitotic centrosome component required for assembly of all other known pericentriolar matrix (PCM) proteins to achieve microtubule-organizing activity at mitosis in Drosophila. We have identified a conserved motif (Motif 1) near the amino terminus of Cnn that is essential for its function in vivo. Cnn Motif 1 is necessary for proper recruitment of gamma-tubulin, D-TACC (the homolog of vertebrate transforming acidic coiled-coil proteins [TACC]), and Minispindles (Msps) to embryonic centrosomes but is not required for assembly of other centrosome components including Aurora A kinase and CP60. Centrosome separation and centrosomal satellite formation are severely disrupted in Cnn Motif 1 mutant embryos. However, actin organization into pseudocleavage furrows, though aberrant, remains partially intact. These data show that Motif 1 is necessary for some but not all of the activities conferred on centrosome function by intact Cnn.
Collapse
Affiliation(s)
- Jiuli Zhang
- Department of Pharmacology and The Cecil and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9051
| | - Timothy L. Megraw
- Department of Pharmacology and The Cecil and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9051
| |
Collapse
|
48
|
Rejniak KA. An immersed boundary framework for modelling the growth of individual cells: an application to the early tumour development. J Theor Biol 2007; 247:186-204. [PMID: 17416390 DOI: 10.1016/j.jtbi.2007.02.019] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 02/22/2007] [Accepted: 02/26/2007] [Indexed: 10/23/2022]
Abstract
A biomechanical approach in modelling the growth and division of a single fully deformable cell by using an immersed boundary method with distributed sources is presented, and its application to model the early tumour development is discussed. This mathematical technique couples a continuous description of a viscous incompressible cytoplasm with the dynamics of separate elastic cells, containing their own point nuclei, elastic plasma membranes with membrane receptors, and individually regulated cell processes. This model enables one to focus on the biomechanical properties of individual cells and on communication between cells and their microenvironment, simultaneously allowing for the formation of clusters or sheets of cells that act together as one complex tissue. Several examples of early tumours growing in various geometrical configurations and with distinct conditions of their initiation and progression are also presented to show the strength of our approach in modelling different topologies of the growing tissues in distinct biochemical conditions of the surrounding media.
Collapse
Affiliation(s)
- Katarzyna A Rejniak
- Division of Mathematics, University of Dundee, Dundee DD1 4HN, Scotland, UK.
| |
Collapse
|
49
|
Tao L, Mogilner A, Civelekoglu-Scholey G, Wollman R, Evans J, Stahlberg H, Scholey JM. A homotetrameric kinesin-5, KLP61F, bundles microtubules and antagonizes Ncd in motility assays. Curr Biol 2007; 16:2293-302. [PMID: 17141610 DOI: 10.1016/j.cub.2006.09.064] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2006] [Revised: 09/26/2006] [Accepted: 09/27/2006] [Indexed: 11/28/2022]
Abstract
BACKGROUND Mitosis depends upon the cooperative action of multiple microtubule (MT)-based motors. Among these, a kinesin-5, KLP61F, and the kinesin-14, Ncd, are proposed to generate antagonistic-sliding forces that control the spacing of the spindle poles. We tested whether purified KLP61F homotetramers and Ncd homodimers can generate a force balance capable of maintaining a constant spindle length in Drosophila embryos. RESULTS Using fluorescence microscopy and cryo-EM, we observed that purified full-length, motorless, and tailless KLP61F tetramers (containing a tetramerization domain) and Ncd dimers can all cross-link MTs into bundles in MgATP. In multiple-motor motility assays, KLP61F and Ncd drive plus-end and minus-end MT sliding at 0.04 and 0.1 microm/s, respectively, but the motility of either motor is decreased by increasing the mole fraction of the other. At the "balance point," the mean velocity was zero and MTs paused briefly and then oscillated, taking approximately 0.3 microm excursions at approximately 0.02 microm/s toward the MT plus end and then the minus end. CONCLUSIONS The results, combined with quantitative analysis, suggest that these motors could act as mutual brakes to modulate the rate of pole-pole separation and could maintain a prometaphase spindle displaying small fluctuations in its steady-state length.
Collapse
Affiliation(s)
- Li Tao
- Laboratory of Cell and Computational Biology, Center for Genetics and Development, University of California, Davis, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Brust-Mascher I, Scholey JM. Mitotic spindle dynamics in Drosophila. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 259:139-72. [PMID: 17425941 DOI: 10.1016/s0074-7696(06)59004-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitosis, the process by which the replicated chromosomes are segregated equally into daughter cells, has been studied for over a century. Drosophila melanogaster is an ideal organism for this research. Drosophila embryos are well suited to image mitosis, because during cycles 10-13 nuclei divide rapidly at the surface of the embryo, but mitotic cells during larval stages and spermatocytes are also used for the study of mitosis. Drosophila can be easily maintained, many mutant stocks exist, and transgenic flies expressing mutated or fluorescently labeled proteins can be made. In addition, the genome has been completed and RNA interference can be used in Drosophila tissue culture cells. Here, we review our current understanding of spindle dynamics, looking at the experiments and quantitative modeling on which it is based. Many molecular players in the Drosophila mitotic spindle are similar to those in mammalian spindles, so findings in Drosophila can be extended to other organisms.
Collapse
Affiliation(s)
- Ingrid Brust-Mascher
- Section of Molecular and Cellular Biology, University of California at Davis, Davis, California 95616, USA
| | | |
Collapse
|