1
|
Martins Fraga R, Beretta M, Pinto JF, Spoerk M, Zupančič O, Pinto JT, Paudel A. Effect of processing and formulation factors on Catalase activity in tablets. Int J Pharm 2024; 664:124626. [PMID: 39208952 DOI: 10.1016/j.ijpharm.2024.124626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
The manufacturing of tablets containing biologics exposes the biologics to thermal and shear stresses, which are likely to induce structural changes (e.g., aggregation and denaturation), leading to the loss of their activity. Saccharides often act as stabilizers of proteins in formulations, yet their stabilizing ability throughout solid oral dosage processing, such as tableting, has been barely studied. This work aimed to investigate the effects of formulation and process (tableting and spray-drying) variables on catalase tablets containing dextran, mannitol, and trehalose as potential stabilizers. Non-spray-dried and spray-dried formulations were prepared and tableted (100, 200, and 400 MPa). The enzymatic activity, number of aggregates, reflecting protein aggregation and structure modifications were studied. A principal component analysis was performed to reveal underlying correlations. It was found that tableting and spray-drying had a notable negative effect on the activity and number of aggregates formed in catalase formulations. Overall, dextran and mannitol failed to preserve the catalase activity in any unit operation studied. On the other hand, trehalose was found to preserve the activity during spray-drying but not necessarily during tableting. The study demonstrated that formulation and process variables must be considered and optimized together to preserve the characteristics of catalase throughout processing.
Collapse
Affiliation(s)
- Rúben Martins Fraga
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Michela Beretta
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - João F Pinto
- iMed.UL - Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria; Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| | - Ožbej Zupančič
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Joana T Pinto
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria; Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria.
| |
Collapse
|
2
|
Milef G, Ghazvini S, Prajapati I, Chen YC, Wang Y, Boroumand M. Particle formation in response to different protein formulations and containers: Insights from machine learning analysis of particle images. J Pharm Sci 2024:S0022-3549(24)00424-6. [PMID: 39389538 DOI: 10.1016/j.xphs.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Subvisible particle count is a biotherapeutics stability indicator widely used by pharmaceutical industries. A variety of stresses that biotherapeutics are exposed to during development can impact particle morphology. By classifying particle morphological differences, stresses that have been applied to monoclonal antibodies (mAbs) can be identified. This study aims to evaluate common biotherapeutic drug storage and shipment conditions that are known to impact protein aggregation. Two different studies were conducted to capture particle images using micro-flow imaging and to classify particles using a convolutional neural network. The first study evaluated particles produced in response to agitation, heat, and freeze-thaw stresses in one mAb formulated in five different formulations. The second study evaluated particles from two common drug containers, a high-density polyethylene bottle and a glass vial, in six mAbs exposed solely to agitation stress. An extension of this study was also conducted to evaluate the impact of sequential stress exposure compared to exposure to one stress alone, on particle morphology. Overall, the convolutional neural network was able to classify particles belonging to a particular formulation or container. These studies indicate that storage and shipping stresses can impact particle morphology according to formulation composition and mAb.
Collapse
Affiliation(s)
- Gabriella Milef
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA.
| | - Saba Ghazvini
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Indira Prajapati
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Yu-Chieh Chen
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Yibo Wang
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Mehdi Boroumand
- Data Science and Modeling, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
3
|
Tang C, Jiang X, Liu C, Washburn BK, Sathe SK, Rao Q. Effect of temperature on structural configuration and immunoreactivity of pH-stressed soybean (Glycine max) agglutinin. Food Chem 2024; 442:138376. [PMID: 38219572 DOI: 10.1016/j.foodchem.2024.138376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Soybean agglutinin (SBA) was purified using ammonium sulfate precipitation and liquid chromatography. Purified SBA was used to produce monoclonal antibodies through hybridoma technology. SBA secondary structure was studied using circular dichroism. pH-stressed (pHs 3.0, 7.2, 8.5, and 9.6) SBA physical properties (particle size, ζ-potential, and aggregation temperature) were investigated. Gel electrophoresis (non-native and native) was used to study heat-induced structural configuration changes in SBA. The effect of pH and temperature on the immunoreactivity of SBA was analyzed using enzyme-linked immunosorbent assay and immunoblots probed with two anti-SBA monoclonal antibodies with either linear or conformational epitopes. The hemagglutinating activity of heated SBA was measured by hemagglutination assay. Our results indicated that SBA had the least thermostability at pH 3.0 and the highest at pH 8.5. Temperature-induced structural configuration change on pH-stressed SBA led to immunoreactivity change. Heat-induced (70 and 80 °C) soluble SBA aggregation was proportionally related to hemagglutinating activity reduction.
Collapse
Affiliation(s)
- Chunya Tang
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA.
| | - Xingyi Jiang
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA.
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA.
| | - Brian K Washburn
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| | - Shridhar K Sathe
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Qinchun Rao
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
4
|
Papagiannopoulos A, Sklapani A, Spiliopoulos N. Thermally stabilized chondroitin sulfate-hemoglobin nanoparticles and their interaction with bioactive compounds. Biophys Chem 2024; 304:107127. [PMID: 37952498 DOI: 10.1016/j.bpc.2023.107127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/04/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023]
Abstract
The preparation of nanoparticles (NPs) based on hemoglobin (Hb) with a fully biocompatible methodology is presented. The spontaneous formation of electrostatic complexes of Hb with chondroitin sulfate (CS) at pH 4 in the polysaccharide/protein mass ratio regime where charge neutrality is met leads to spherical nanostructures with monomodal hydrodynamic radii distribution in the range of 50-100 nm. The integrity of the electrostatic complexes is disturbed at pH 7 as the net electric charge of Hb is very low. Treating the NPs at mildly elevated temperature stabilizes them against the pH increase taking advantage of Hb's ability of unfolding and self-associating upon thermal treatment. The NPs surface charge is pH-tunable and changes from positive to strongly negative upon pH increase to 7 proving the presence of negative surface patches of Hb and CS segments in their exterior. The α-helix content of Hb does not change significantly by thermal treatment. The NPs are found to bind the bioactive compounds curcumin and β-carotene and are stable in solutions with high salt content. This investigation introduces a straightforward method to formulate Hb in NPs with possibilities in the nanodelivery of nutrients and drugs.
Collapse
Affiliation(s)
- Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Aggeliki Sklapani
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | | |
Collapse
|
5
|
Khan S, Naeem A. Bovine serum albumin prevents human hemoglobin aggregation and retains its chaperone-like activity. J Biomol Struct Dyn 2024; 42:346-361. [PMID: 36974939 DOI: 10.1080/07391102.2023.2192802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023]
Abstract
This study investigates the ability of bovine serum albumin (BSA) to act as an extracellular chaperone (EC) on human hemoglobin (Hb) at a pH of 7.4. The best temperature for studying this behavior was determined by analyzing Hb's aggregation kinetics at multiple temperatures. 55 °C was chosen as the optimal temperature for forming Hb amyloids. BSA was then tested at various concentrations (20-100 μM) to assess its chaperone-like activity on Hb at 55 °C. At a concentration of 100 μM, BSA exhibits chaperone-like activity with a client protein:BSA ratio of 1:10. The high ratio implies that the chaperone activity of BSA is favored by the effects of macromolecular crowding. The results showed that BSA has the potential to inhibit Hb's dissociation into alpha and beta subunits and protein aggregation by inhibiting secondary nucleation. BSA also causes the depolymerization of fibrils over time. The results were validated using molecular docking and all-atom molecular dynamics simulations. MD analysis such as RMSD, RMSF, Rg, SASA, Hydrogen bond, PCA, Free energy landscape (FEL) revealed that the stability of hemoglobin is greater when it is bound to BSA compared to unbound state. The study suggests that BSA can potentially bind to Hb dimers and reduce excitonic interactions, which reduces Hb aggregation. These results are consistent with the aggregation kinetics experiments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sadaf Khan
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| | - Aabgeena Naeem
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
6
|
Bovine hemoglobin thermal stability in the presence of naringenin: Calorimetric, spectroscopic and molecular modeling studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Basak A, Basak S. Protein Aggregation and Self Assembly in Health and Disease. CURR PROTEOMICS 2022. [DOI: 10.2174/1570164618666210223160742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Self-attachment of proteins leading to the formation of highly insoluble protein oligomers and aggregates has become an important focus of research owing to its diverse implications in pathophysiology and diseases. This has become a more frequent phenomenon in most neurological and neurodegenerative diseases as well as in dementia. In recent years such event of protein aggregation has linked to other disease conditions, disorders or adverse health conditions. Interestingly, aggregation of protein also plays role in development, growth or metabolism. Most often physiological proteins are initially bio-synthesised in native or nascent geometrical forms or conformations but later they undergo specific folding pattern and thereby acquire a stable configuration that is biologically relevant and active. It is highly important that these proteins remain in their biologically active configuration in order to exert their functional properties. Any alteration or change to this structural configuration can be detrimental to their specific functions and may cause pathological consequences leading to the onset of diseases or disorders. Several factors such as the action of chaperones, binding partners, physiological metal ions, pH level, temperature, ionic strength, interfacial exposure (solid-liquid, liquid-liquid, gas-liquid), mutation and post translational modification, chemical changes, interaction with small molecules such as lipids, hormones, etc. and solvent environment have been either identified or proposed as important factors in conferring the ultimate status of protein structure and configuration.
Among many misfolding protein conformations, self-assembly or aggregation is the most significant. It leads to the formation of highly oligomeric self-aggregates that precipitate and interfere with many biochemical processes with serious pathological consequences. The most common implication of protein aggregation leading to the formation of deposits / plaques of various morphological types is the onset of neurological and neurodegenerative diseases that include Alzheimer’s, Parkinson’s, Huntington, ALS (Amyotrophic Lateral Sclerosis), CJD (Creutzfeldt Jakob Dementia), Prion diseases, Amyloidosis and other forms of dementia. However increasingly studies revealed that protein aggregation may also be associated with other diseases such as cancer, type 2 diabetes, renal, corneal and cardiovascular diseases. Protein aggregation diseases are now considered as part of “Proteinopathy” which refers to conditions where proteins become structurally abnormal or fail to fold into stable normal configurations. In this review, we reflect on various aspects of protein self-aggregation, potential underlying causes, mechanism, role of secondary structures, pathological consequences and possible intervention strategies as reported in published literatures.
Collapse
Affiliation(s)
- Ajoy Basak
- Pathology and Laboratory Medicine, Faculty of Medicine, U Ottawa, Canada
- Ottawa Hospital Research Institute,
The Ottawa Hospital, U Ottawa, Canada
| | - Sarmistha Basak
- Formerly of Kidney Research Center, Ottawa Hospital Research Institute, U Ottawa, Canada
| |
Collapse
|
8
|
Devi S, Chaturvedi M, Fatima S, Priya S. Environmental factors modulating protein conformations and their role in protein aggregation diseases. Toxicology 2022; 465:153049. [PMID: 34818560 DOI: 10.1016/j.tox.2021.153049] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/12/2021] [Accepted: 11/20/2021] [Indexed: 12/13/2022]
Abstract
The adverse physiological conditions have been long known to impact protein synthesis, folding and functionality. Major physiological factors such as the effect of pH, temperature, salt and pressure are extensively studied for their impact on protein structure and homeostasis. However, in the current scenario, the environmental risk factors (pollutants) have gained impetus in research because of their increasing concentrations in the environment and strong epidemiologic link with protein aggregation disorders. Here, we review the physiological and environmental risk factors for their impact on protein conformational changes, misfolding, aggregation, and associated pathological conditions, especially environmental risk factors associated pathologies.
Collapse
Affiliation(s)
- Shweta Devi
- Systems Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Minal Chaturvedi
- Systems Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Siraj Fatima
- Systems Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Smriti Priya
- Systems Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Ng YK, Tajoddin NN, Scrosati PM, Konermann L. Mechanism of Thermal Protein Aggregation: Experiments and Molecular Dynamics Simulations on the High-Temperature Behavior of Myoglobin. J Phys Chem B 2021; 125:13099-13110. [PMID: 34808050 DOI: 10.1021/acs.jpcb.1c07210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Proteins that encounter unfavorable solvent conditions are prone to aggregation, a phenomenon that remains poorly understood. This work focuses on myoglobin (Mb) as a model protein. Upon heating, Mb produces amorphous aggregates. Thermal unfolding experiments at low concentration (where aggregation is negligible), along with centrifugation assays, imply that Mb aggregation proceeds via globally unfolded conformers. This contrasts studies on other proteins that emphasized the role of partially folded structures as aggregate precursors. Molecular dynamics (MD) simulations were performed to gain insights into the mechanism by which heat-unfolded Mb molecules associate with one another. A prerequisite for these simulations was the development of a method for generating monomeric starting structures. Periodic boundary condition artifacts necessitated the implementation of a partially immobilized water layer lining the walls of the simulation box. Aggregation simulations were performed at 370 K to track the assembly of monomeric Mb into pentameric species. Binding events were preceded by multiple unsuccessful encounters. Even after association, protein-protein contacts remained in flux. Binding was mediated by hydrophobic contacts, along with salt bridges that involved hydrophobically embedded Lys residues. Overall, this work illustrates that atomistic MD simulations are well suited for garnering insights into protein aggregation mechanisms.
Collapse
Affiliation(s)
- Yuen Ki Ng
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Nastaran N Tajoddin
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Pablo M Scrosati
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
10
|
Siddiqui GA, Naeem A. Refolding of Hemoglobin Under Macromolecular Confinement: Impersonating In Vivo Volume Exclusion. J Fluoresc 2021; 31:1371-1377. [PMID: 34156613 DOI: 10.1007/s10895-021-02751-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/20/2021] [Indexed: 11/27/2022]
Abstract
Biomacromolecules evolve and function inside the cell under crowded conditions. The effect of macromolecular crowding and confinement on nature and interactions of biomacromolecules cannot be ruled out. This study demonstrates the effect of volume exclusion due to macromolecular crowding on refolding rate of Gn-HCl induced unfolded hemoglobin. The in vivo like crowding milieu was created using dextran 70. Unfolding of Hb was followed by the absorbance at 280 nm and intrinsic fluorescence intensity along with a bathochromic shift that shows the destabilization of Hb in the presence of the denaturing agent. This was supported by a decrease in soret absorbance, increased hydrodynamic radii and loss in secondary structure, evidenced from dynamic light scattering and circular dichroism experiments respectively. Refolding process of Hb was followed by an increase in soret absorbance, decrease in intrinsic fluorescence intensity with a hypsochromic shift, decreased hydrodynamic radii and gain in secondary structural content. The results revealed that the effect of confinement and volume exclusion is insignificant on the process of Hb refolding.
Collapse
Affiliation(s)
- Gufran Ahmed Siddiqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, UP, India
| | - Aabgeena Naeem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, UP, India.
| |
Collapse
|
11
|
Luna-Valdez J, Balandrán-Quintana R, Azamar-Barrios J, Mendoza-Wilson A, Ramos-Clamont Montfort G. A spectroscopic approach to determine the formation mechanism of biopolymer particles from wheat bran proteins. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Liu J, Zhang W, Li P, Jiang Z, Yang R. Isolation of peanut protein aggregates using aqueous extraction processing combined with membrane separation. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Junjun Liu
- State Key Laboratory of Food Science & Technology Jiangnan University Wuxi 214122 China
- School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Wenbin Zhang
- State Key Laboratory of Food Science & Technology Jiangnan University Wuxi 214122 China
- School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Pengfei Li
- Jiangsu JUNQI Grain and Oil Limited Co., LTD Nantong 226000 China
| | - Zhumao Jiang
- School of Life Sciences Yantai University Yantai Shandong 264000 China
| | - Ruijin Yang
- State Key Laboratory of Food Science & Technology Jiangnan University Wuxi 214122 China
- School of Food Science and Technology Jiangnan University Wuxi 214122 China
| |
Collapse
|
13
|
Sanchez-Guzman D, Giraudon-Colas G, Marichal L, Boulard Y, Wien F, Degrouard J, Baeza-Squiban A, Pin S, Renault JP, Devineau S. In Situ Analysis of Weakly Bound Proteins Reveals Molecular Basis of Soft Corona Formation. ACS NANO 2020; 14:9073-9088. [PMID: 32633939 DOI: 10.1021/acsnano.0c04165] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Few experimental techniques allow the analysis of the protein corona in situ. As a result, little is known on the effects of nanoparticles on weakly bound proteins that form the soft corona. Despite its biological importance, our understanding of the molecular bases driving its formation is limited. Here, we show that hemoglobin can form either a hard or a soft corona on silica nanoparticles depending on the pH conditions. Using cryoTEM and synchrotron-radiation circular dichroism, we show that nanoparticles alter the structure and the stability of weakly bound proteins in situ. Molecular dynamics simulation identified the structural elements driving protein-nanoparticle interaction. Based on thermodynamic analysis, we show that nanoparticles stabilize partially unfolded protein conformations by enthalpy-driven molecular interactions. We suggest that nanoparticles alter weakly bound proteins by shifting the equilibrium toward the unfolded states at physiological temperature. We show that the classical approach based on nanoparticle separation from the biological medium fails to detect destabilization of weakly bound proteins, and therefore cannot be used to fully predict the biological effects of nanomaterials in situ.
Collapse
Affiliation(s)
| | | | - Laurent Marichal
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay Cedex, France
| | - Yves Boulard
- Université Paris-Saclay, CEA, CNRS, I2BC, B3S, Gif-sur-Yvette 91190, France
| | - Frank Wien
- Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France
| | - Jéril Degrouard
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay Cedex, France
| | | | - Serge Pin
- Université Paris-Saclay, CEA, CNRS, NIMBE, Gif-sur-Yvette 91190, France
| | | | | |
Collapse
|
14
|
Salim APAA, Wang Y, Li S, Conte-Junior CA, Chen J, Zhu H, Rentfrow G, Suman SP. Sarcoplasmic Proteome Profile and Internal Color of Beef Longissimus Lumborum Steaks Cooked to Different Endpoint Temperatures. MEAT AND MUSCLE BIOLOGY 2020. [DOI: 10.22175/mmb.9470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The complex relationship between endpoint temperature, sarcoplasmic proteome, and internal color in cooked steaks is yet to be examined. The objective of the present study was to characterize the changes in sarcoplasmic proteome and their influence on the internal color of beef longissimus lumborum (LL) steaks cooked to different endpoint temperatures. Two 2.5-cm-thick LL steaks were fabricated from 9 beef strip loins and were cooked to an internal endpoint temperature of either 60°C (C-60) or 71°C (C-71). Cooked steaks were cooled and sliced parallel to the grilled surface, and internal color was evaluated instrumentally. Sarcoplasmic proteome from the interiors of the cooked steaks was analyzed using two-dimensional electrophoresis, and the gel images were digitally analyzed. The protein spots exhibiting more than 2-fold intensity differences (P < 0.05) were subjected to in-gel tryptic digestion and were identified by tandem mass spectrometry. The C-60 steaks demonstrated greater (P < 0.05) redness and color stability than the C-71 ones. Eleven differentially abundant protein spots were identified, and they belonged to 6 functional groups (transport proteins, enzymes in energy metabolism, chaperones, antioxidant proteins, enzymes in amino acid metabolism, and glycolytic enzymes). While 10 spots were overabundant (P < 0.05) in C-60 steaks, 1 spot was overabundant (P < 0.05) in C-71 steaks. The spot overabundant in C-71 samples was identified as myoglobin, suggesting the possible role of post-translational modifications in the heme protein’s thermal stability. The results indicated that the endpoint cooking temperature influenced sarcoplasmic proteome profile and internal color of cooked beef LL steaks. The overabundant proteins in steaks cooked to 60°C may be exploited as potential biomarkers for undercooked beef, which is a source for foodborne infections.
Collapse
Affiliation(s)
| | - Yifei Wang
- University of Kentucky Department of Animal and Food Sciences
| | | | | | | | | | - Gregg Rentfrow
- University of Kentucky Department of Animal and Food Sciences
| | | |
Collapse
|
15
|
Andleeb F, Hafeezullah, Atiq A, Atiq M. Hemoglobin structure at higher levels of hemoglobin A1C in type 2 diabetes and associated complications. Chin Med J (Engl) 2020; 133:1138-1143. [PMID: 32433045 PMCID: PMC7249719 DOI: 10.1097/cm9.0000000000000801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Fourier transform infrared (FTIR) spectroscopy technique has not been used as a diagnostic tool for diabetes in clinical practice. This study was linked to structural changes in hemoglobin (Hb) in type 2 diabetes patients at higher levels of HbA1C using FTIR spectroscopy. METHODS Fifty-three diabetic patients from the Bahawal Victoria Hospital, Bahawalpur, Pakistan were categorized as group A (6% < HbA1C < 7%; n = 25) and group B (HbA1C ≥9%; n = 28). Another group (group N) of twenty blood samples was taken from healthy people from the Islamia University Bahawalpur, Pakistan. Data from all groups were collected from January 1, 2018 to March 31, 2019. The structure of Hb was studied by FTIR spectroscopy and impact of glucose on the fine structure of HbA1C was estimated. RESULTS Hb secondary structure erythrocyte parameters were altered by changing glucose concentrations. From FTIR spectra of all three groups it was found that Hb structure was slightly altered in group A, but significantly changed in group B (P < 0.05). There was an increase in β-sheet structure and a reduction in α-helix structure at elevated levels of HbA1C (group B) in type 2 diabetes. CONCLUSION We suggest that higher level of glycation reflected by increased HbA1C might be a contributing factor to structural changes in Hb in type 2 diabetic patients. FTIR spectroscopy can be a novel technique to find pathogenesis in type 2 diabetes.
Collapse
Affiliation(s)
- Farah Andleeb
- Biophotoics Research Group, Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
- Department of Physics, Govt Sadiq College Women University Bahawalpur, Bahawalpur, Punjab, Pakistan
- Biomedical Engineering Department, University of Texas at Austin, Austin, TX, USA
- Bahawal Victoria Hospital, Bahawalpur, Pakistan
| | - Hafeezullah
- Biophotoics Research Group, Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Atia Atiq
- Biophotoics Research Group, Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Maria Atiq
- Biophotoics Research Group, Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| |
Collapse
|
16
|
Tiernan H, Byrne B, Kazarian SG. Insight into Heterogeneous Distribution of Protein Aggregates at the Surface Layer Using Attenuated Total Reflection-Fourier Transform Infrared Spectroscopic Imaging. Anal Chem 2020; 92:4760-4764. [PMID: 32129602 DOI: 10.1021/acs.analchem.0c00250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Monoclonal antibodies (mAbs) have been used as therapeutics for the last few decades. It is necessary to investigate the stability of these mAbs under stress conditions and to elucidate aggregation mechanisms as a means of developing approaches which minimize the problem. Attenuated total reflection (ATR)-FTIR spectroscopic imaging allows probing of a sample at a depth of penetration of around 0.5-5 μm, which makes it suitable for the study of aggregated proteins when accumulated as a layer close to the surface of the ZnSe internal reflection element (IRE). Here, macro ATR-FTIR spectroscopic imaging, along with a variable angle of incidence accessory, have been used to differentiate between the secondary structure of proteins in bulk solution and those that have precipitated onto or near the ZnSe IRE surface. IgG spectra obtained from protein samples in individual wells have been averaged, extracted, and preprocessed, and the Amide I bands of the protein samples were compared and further analyzed to reveal protein distribution at the ZnSe IRE surface. These findings show depth profiling of IgG aggregates at the ZnSe IRE surface (0.5-5 μm) and do not follow a trend of decreasing protein presence with an increasing angle of incidence or increasing depth of penetration, suggesting an irregular distribution of aggregates in the z-direction.
Collapse
Affiliation(s)
- Hannah Tiernan
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.,Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Sergei G Kazarian
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
17
|
The Interplay between Molten Globules and Heme Disassociation Defines Human Hemoglobin Disassembly. Biophys J 2020; 118:1381-1400. [PMID: 32075750 DOI: 10.1016/j.bpj.2020.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Hemoglobin functions as a tetrameric oxygen transport protein, with each subunit containing a heme cofactor. Its denaturation, either in vivo or in vitro, involves autoxidation to methemoglobin, followed by cofactor loss and globin unfolding. We have proposed a global disassembly scheme for human methemoglobin, linking hemin (ferric protoporphyrin IX) disassociation and apoprotein unfolding pathways. The model is based on the evaluation of circular dichroism and visible absorbance measurements of guanidine-hydrochloride-induced disassembly of methemoglobin and previous measurements of apohemoglobin unfolding. The populations of holointermediates and equilibrium disassembly parameters were estimated quantitatively for adult and fetal hemoglobins. The key stages are characterized by hexacoordinated hemichrome intermediates, which are important for preventing hemin disassociation from partially unfolded, molten globular species during early disassembly and late-stage assembly events. Both unfolding experiments and independent small angle x-ray scattering measurements demonstrate that heme disassociation leads to the loss of tetrameric structural integrity. Our model predicts that after autoxidation, dimeric and monomeric hemichrome intermediates occur along the disassembly pathway inside red cells, where the hemoglobin concentration is very high. This prediction suggests why misassembled hemoglobins often get trapped as hemichromes that accumulate into insoluble Heinz bodies in the red cells of patients with unstable hemoglobinopathies. These Heinz bodies become deposited on the cell membranes and can lead to hemolysis. Alternatively, when acellular hemoglobin is diluted into blood plasma after red cell lysis, the disassembly pathway appears to be dominated by early hemin disassociation events, which leads to the generation of higher fractions of unfolded apo subunits and free hemin, which are known to damage the integrity of blood vessel walls. Thus, our model provides explanations of the pathophysiology of hemoglobinopathies and other disease states associated with unstable globins and red cell lysis and also insights into the factors governing hemoglobin assembly during erythropoiesis.
Collapse
|
18
|
Emadi M, Maghami P, Khorsandi K, Hosseinzadeh R. Biophysical study on the interaction of cartap hydrochloride and hemoglobin: Heme degradation and functional changes of protein. J Biochem Mol Toxicol 2019; 33:e22325. [PMID: 31004546 DOI: 10.1002/jbt.22325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 03/10/2019] [Accepted: 03/15/2019] [Indexed: 11/07/2022]
Abstract
Cartap hydrochloride is a mildly perilous insecticide known as "Padan" which is used largely in agricultural farms to control weevil and caterpillars. The over use of cartap causes harmful effects on human health. Since the blood may acts as a target and carrier for insecticides, the effect of these compounds on blood in mammalian toxicology is very important. Hemoglobin is a tetramer protein that play critical role in oxygen transport. The aim of this study was to analyze and compare the function and structural changes of hemoglobin in the presence of different concentrations of cartap by employing different spectroscopic techniques. The obtained results show that cartap has a high hemolytic effect which is increased with cartap concentration and reduces the thermal midpoint of hemoglobin. Fluorescence measurements reveal heme degradation at different concentrations of cartap. In consequence of theoretical and experimental results, cartap has an undesirable effect on hemoglobin structure and function.
Collapse
Affiliation(s)
- Mahdieh Emadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parvaneh Maghami
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Khatereh Khorsandi
- Deparment of Medical Laser, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran
| | - Reza Hosseinzadeh
- Deparment of Photodynamic, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran
| |
Collapse
|
19
|
Tao Y, Wu Y, Zhang L. Advancements of two dimensional correlation spectroscopy in protein researches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 197:185-193. [PMID: 29409703 DOI: 10.1016/j.saa.2018.01.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/09/2018] [Accepted: 01/13/2018] [Indexed: 05/26/2023]
Abstract
The developments of two-dimensional correlation spectroscopy (2DCOS) applications in protein studies are discussed, especially for the past two decades. The powerful utilities of 2DCOS combined with various analytical techniques in protein studies are summarized. The emphasis is on the vibration spectroscopic techniques including IR, NIR, Raman and optical activity (ROA), as well as vibration circular dichroism (VCD) and fluorescence spectroscopy. In addition, some new developments, such as hetero-spectral 2DCOS, moving-window correlation, and model based correlation, are also reviewed for their utility in the investigation of the secondary structure, denaturation, folding and unfolding changes of protein. Finally, the new possibility and challenges of 2DCOS in protein research are highlighted as well.
Collapse
Affiliation(s)
- Yanchun Tao
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China.
| | - Liping Zhang
- Department of Foundation, Jilin Business and Technology College, No. 1666 Kalunhu Street, Changchun 130507, China.
| |
Collapse
|
20
|
Wu Y, Zhang L, Jung YM, Ozaki Y. Two-dimensional correlation spectroscopy in protein science, a summary for past 20years. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 189:291-299. [PMID: 28823970 DOI: 10.1016/j.saa.2017.08.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/04/2017] [Indexed: 05/26/2023]
Abstract
Two-dimensional correlation spectroscopy (2DCOS) has been widely used to Infrared, Raman, Near IR, Optical Activity (ROA), Vibrational Circular Dichroism (VCD) and Fluorescence spectroscopy. In addition, several new developments, such as 2D hetero-correlation analysis, moving-window two-dimensional (MW2D) correlation, model based correlation (βν and kν correlation analyses) have also well incorporated into protein research. They have been used to investigate secondary structure, denaturation, folding and unfolding changes of protein, and have contributed greatly to the field of protein science. This review provides an overview of the applications of 2DCOS in the field of protein science for the past 20 year, especially to memory our old friend, Dr. Boguslawa Czarnik-Matusewicz, for her great contribution in this research field. The powerful utility of 2DCOS combined with various analytical techniques in protein studies is summarized. The noteworthy developments and perspective of 2DCOS in this field are highlighted finally.
Collapse
Affiliation(s)
- Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China
| | - Liping Zhang
- Department of Foundation, Jilin Business and Technology College, No. 1666 Kalunhu Street, Changchun 130507, China.
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yukihiro Ozaki
- School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
21
|
Olsztyńska-Janus S, Pietruszka A, Kiełbowicz Z, Czarnecki MA. ATR-IR study of skin components: Lipids, proteins and water. Part I: Temperature effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:37-49. [PMID: 28689077 DOI: 10.1016/j.saa.2017.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/30/2017] [Accepted: 07/01/2017] [Indexed: 06/07/2023]
Abstract
In this work we report the studies of the effect of temperature on skin components, such as lipids, proteins and water. Modifications of lipids structure induced by increasing temperature (from 20 to 90°C) have been studied using ATR-IR (Attenuated Total Reflectance Infrared) spectroscopy, which is a powerful tool for characterization of the molecular structure and properties of tissues, such as skin. Due to the small depth of penetration (0.6-5.6μm), ATR-IR spectroscopy probes only the outermost layer of the skin, i.e. the stratum corneum (SC). The assignment of main spectral features of skin components allows for the determination of phase transitions from the temperature dependencies of band intensities [e.g. νas(CH2) and νs(CH2)]. The phase transitions were determined by using two methods: the first one was based on the first derivative of the Boltzmann function and the second one employed tangent lines of sigmoidal, aforementioned dependencies. The phase transitions in lipids were correlated with modifications of the structure of water and proteins.
Collapse
Affiliation(s)
- S Olsztyńska-Janus
- Department of Biomedical Engineering, Wrocław University of Science and Technology, pl. Grunwaldzki 13, 50-370 Wrocław, Poland.
| | - A Pietruszka
- Department of Biomedical Engineering, Wrocław University of Science and Technology, pl. Grunwaldzki 13, 50-370 Wrocław, Poland
| | - Z Kiełbowicz
- Department of Surgery the Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 51, 50-366 Wrocław, Poland
| | - M A Czarnecki
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
22
|
Wang G, Bondarenko PV, Kaltashov IA. Multi-step conformational transitions in heat-treated protein therapeutics can be monitored in real time with temperature-controlled electrospray ionization mass spectrometry. Analyst 2018; 143:670-677. [PMID: 29303166 DOI: 10.1039/c7an01655g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heat-induced conformational transitions are frequently used to probe the free energy landscapes of proteins. However, the extraction of information from thermal denaturation profiles pertaining to non-native protein conformations remains challenging due to their transient nature and significant conformational heterogeneity. Previously we developed a temperature-controlled electrospray ionization (ESI) source that allowed unfolding and association of biopolymers to be monitored by mass spectrometry (MS) in real time as a function of temperature. The scope of this technique is now extended to systems that undergo multi-step denaturation upon heat stress, as well as relatively small-scale conformational changes that are precursors to protein aggregation. The behavior of two therapeutic proteins (human antithrombin and an IgG1 monoclonal antibody) under heat-stress conditions is monitored in real time, providing evidence that relatively small-scale conformational changes in each system lead to protein oligomerization, followed by aggregation. Temperature-controlled ESI MS is particularly useful for the studies of heat-stressed multi-domain proteins such as IgG, where it allows distinct transitions to be observed. The ability of native temperature-controlled ESI MS to monitor both the conformational changes and oligomerization/degradation with high selectivity complements the classic calorimetric methods, lending itself as a powerful experimental tool for the thermostability studies of protein therapeutics.
Collapse
Affiliation(s)
- Guanbo Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, and School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, China.
| | - Pavel V Bondarenko
- Attribute Sciences, Process Development, Amgen, Inc., Thousand Oaks, CA, USA
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA
| |
Collapse
|
23
|
Zaman M, Zakariya SM, Nusrat S, Chandel TI, Meeran SM, Ajmal MR, Alam P, Wahiduzzaman, Khan RH. Cysteine as a potential anti-amyloidogenic agent with protective ability against amyloid induced cytotoxicity. Int J Biol Macromol 2017; 105:556-565. [DOI: 10.1016/j.ijbiomac.2017.07.083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 12/27/2022]
|
24
|
González Flecha FL. Kinetic stability of membrane proteins. Biophys Rev 2017; 9:563-572. [PMID: 28921106 DOI: 10.1007/s12551-017-0324-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/29/2017] [Indexed: 12/25/2022] Open
Abstract
Although membrane proteins constitute an important class of biomolecules involved in key cellular processes, study of the thermodynamic and kinetic stability of their structures is far behind that of soluble proteins. It is known that many membrane proteins become unstable when removed by detergent extraction from the lipid environment. In addition, most of them undergo irreversible denaturation, even under mild experimental conditions. This process was found to be associated with partial unfolding of the polypeptide chain exposing hydrophobic regions to water, and it was proposed that the formation of kinetically trapped conformations could be involved. In this review, we will describe some of the efforts toward understanding the irreversible inactivation of membrane proteins. Furthermore, its modulation by phospholipids, ligands, and temperature will be herein discussed.
Collapse
Affiliation(s)
- F Luis González Flecha
- Universidad de Buenos Aires, CONICET, Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Buenos Aires, Argentina.
| |
Collapse
|
25
|
Ovissipour M, Rasco B, Tang J, Sablani S. Kinetics of Protein Degradation and Physical Changes in Thermally Processed Atlantic Salmon (Salmo salar). FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-1958-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Yadav P, Shahane G, Gaikwad S. Amaranthus caudatus lectin with polyproline II fold: conformational and functional transitions and molecular dynamics. J Biomol Struct Dyn 2017; 36:2203-2215. [DOI: 10.1080/07391102.2017.1345328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Priya Yadav
- Academy of Scientific and Innovative Research (AcSIR) NCL campus, Biochemical Sciences Division, CSIR-NCL, Pune, India
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India
| | - Ganesh Shahane
- Institute of Bioengineering, Queen Mary University of London, Mile End Road, London, UK
| | - Sushama Gaikwad
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
27
|
Shamsi TN, Parveen R, Naz H, Haque MA, Fatima S. Biophysical insight into structure-function relation of Allium sativum Protease Inhibitor by thermal, chemical and pH-induced modulation using comprehensive spectroscopic analysis. Int J Biol Macromol 2017; 103:415-423. [PMID: 28528000 DOI: 10.1016/j.ijbiomac.2017.05.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/07/2017] [Accepted: 05/15/2017] [Indexed: 11/19/2022]
Abstract
In this study, we have analyzed the structural and functional changes in the nature of Allium sativum Protease Inhibitor (ASPI) on undergoing various denaturation with variable range of pH, temperature and urea (at pH 8.2). ASPI being anti-tryptic in nature has native molecular mass of ∼15kDa. The conformational stability, functional parameters and their correlation were estimated under different conditions using circular dichroism, fluorescence and activity measurements. ASPI was found to fall in belongs to α+β protein. It demonstrated structural and functional stability in the pH range 5.0-12.0 and up to70°C temperature. Further decrease in pH and increase in temperature induces unfolding followed by aggregation. Chemical induced denaturation was found to be cooperative and transitions were reversible and sigmoid. Tm (midpoint of denaturation), ΔCp (constant pressure heat capacity change) and ΔHm (van't Hoff enthalpy change at Tm were calculated to be 41.25±0.2°C, 1.3±0.07kcalmol-1K-1 and 61±2kcalmol-1 respectively for thermally denatured ASPI earlier. The reversibility of the protein was confirmed for both thermally and chemically denatured ASPI. The results obtained from trypsin inhibitory activity assay and structural studies are found to be in a significant correlation and hence established structure-function relationship of ASPI.
Collapse
Affiliation(s)
- Tooba Naz Shamsi
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Romana Parveen
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Huma Naz
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Anzarul Haque
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Sadaf Fatima
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
28
|
Abstract
Removal of heme from human hemoglobin (Hb) results in formation of an apoglobin heterodimer. Titration of this apodimer with guanidine hydrochloride (GdnHCl) leads to biphasic unfolding curves indicating two distinct steps. Initially, the heme pocket unfolds and generates a dimeric intermediate in which ∼50% of the original helicity is lost, but the α1β1 interface is still intact. At higher GdnHCl concentrations, this intermediate dissociates into unfolded monomers. This structural interpretation was verified by comparing GdnHCl titrations for adult human hemoglobin A (HbA), recombinant fetal human hemoglobin (HbF), recombinant Hb cross-linked with a single glycine linker between the α chains, and recombinant Hbs with apolar heme pocket mutations that markedly stabilize native conformations in both subunits. The first phase of apoHb unfolding is independent of protein concentration, little affected by genetic cross-linking, but significantly shifted toward higher GdnHCl concentrations by the stabilizing distal pocket mutations. The second phase depends on protein concentration and is shifted to higher GdnHCl concentrations by genetic cross-linking. This model for apoHb unfolding allowed us to quantitate subtle differences in stability between apoHbA and apoHbF, which suggest that the β and γ heme pockets have similar stabilities, whereas the α1γ1 interface is more resistant to dissociation than the α1β1 interface.
Collapse
Affiliation(s)
- Premila P Samuel
- Department of BioSciences and ‡Department of Chemistry, Rice University , Houston, Texas 77251, United States
| | - William C Ou
- Department of BioSciences and ‡Department of Chemistry, Rice University , Houston, Texas 77251, United States
| | - George N Phillips
- Department of BioSciences and ‡Department of Chemistry, Rice University , Houston, Texas 77251, United States
| | - John S Olson
- Department of BioSciences and ‡Department of Chemistry, Rice University , Houston, Texas 77251, United States
| |
Collapse
|
29
|
Li B, Ren K, Wang Y, Qi Y, Chen X, Huang Y. Protein-Cross-Linked Hydrogels with Tailored Swelling and Bioactivity Performance: A Comparative Study. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30788-30796. [PMID: 27804288 DOI: 10.1021/acsami.6b11287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The design of protein-based hydrogels that include biological activity independent of structural functionality is desirable for many bioengineering applications. Here a general route for construction of protein-based hydrogel is proposed by pretreatment of protein with thiolation agent and succeeding conjugation with 4-arm PEG-acrylate via Michael addition reaction. Different swelling behaviors responding to temperature and ions are comparatively studied for hydrogel cross-linked with hemoglobin (multimeric protein), albumin (monomeric protein), and dithiothreitol (DTT, small molecule). Meanwhile, the microscopic structure change is studied to correlate with the macroscopic hydrogel swelling behavior. Results show that proteins, which function as multisite cross-linkers, affect the gel swelling behaviors, and the effect is more profound for multimeric proteins when exposed to stimulus for protein dissociation. Moreover, the catalytic activity derived from hemoglobin is also preserved in the hydrogel, as demonstrated by the successfully synthesis of the colored product. By taking advantage of each particular protein, a broad range of functional materials can be expected for potential biomedical applications, such as stimuli-responsive hydrogel and immobilized enzyme.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Kaixuan Ren
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, P. R. China
| | - Yupeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Yanxin Qi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, P. R. China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, P. R. China
| |
Collapse
|
30
|
Khan MV, Ishtikhar M, Rabbani G, Zaman M, Abdelhameed AS, Khan RH. Polyols (Glycerol and Ethylene glycol) mediated amorphous aggregate inhibition and secondary structure restoration of metalloproteinase-conalbumin (ovotransferrin). Int J Biol Macromol 2016; 94:290-300. [PMID: 27744055 PMCID: PMC7112414 DOI: 10.1016/j.ijbiomac.2016.10.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 11/24/2022]
Abstract
Conalbumin aggregates at 65 °C and denaturation occur at above this temperature. The nature of aggregates was identified as amorphous. The polyols inhibits the aggregation of conalbumin via protecting the secondary structure. Glycerol is found to be more protective than ethylene glycol.
Under physical or chemical stress, proteins tend to form aggregates either highly ordered (amyloid) or unordered (amorphous) causing many pathological disorders in human and loss of proteins functionality in both laboratory conditions and industries during production and storage at commercial level. We investigated the effect of increasing temperature on Conalbumin (CA) and induced aggregation at 65 °C. The enhanced Thioflavin T (ThT) and ANS (1-anilinonaphtalene 8-sulfonic acid) fluorescence intensity, show no shift on Congo red binding, additionally, transmission and scanning electron microscopy (TEM) (SEM) reveal amorphous morphology of the aggregate. Our investigation clearly demonstrated that polyols namely Glycerol (GL) and Ethylene glycol (EG) are so staunch to inhibit amorphous aggregates via restoring secondary conformation. Addition of polyols (15% GL and 35% EG) significantly decrease the turbidity, Rayleigh scattering ThT and ANS fluorescence intensity. The dynamic light scattering (DLS) data show that hydrodynamic radii (Rh) of the aggregates is ∼20 times higher than native CA while nearly similar for GL and EG protected CA due to condensation of core size with little difference.
Collapse
Affiliation(s)
- Mohsin Vahid Khan
- Molecular Biophysics and Biophysical Chemistry Group, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohd Ishtikhar
- Molecular Biophysics and Biophysical Chemistry Group, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Gulam Rabbani
- Molecular Biophysics and Biophysical Chemistry Group, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Masihuz Zaman
- Molecular Biophysics and Biophysical Chemistry Group, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Ali Saber Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rizwan Hasan Khan
- Molecular Biophysics and Biophysical Chemistry Group, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
31
|
Zaman M, Ehtram A, Chaturvedi SK, Nusrat S, Khan RH. Amyloidogenic behavior of different intermediate state of stem bromelain: A biophysical insight. Int J Biol Macromol 2016; 91:477-85. [DOI: 10.1016/j.ijbiomac.2016.05.107] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/20/2016] [Accepted: 05/30/2016] [Indexed: 11/24/2022]
|
32
|
Ye S, Ruan P, Yong J, Shen H, Liao Z, Dong X. The impact of the HbA1c level of type 2 diabetics on the structure of haemoglobin. Sci Rep 2016; 6:33352. [PMID: 27624402 PMCID: PMC5022022 DOI: 10.1038/srep33352] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 08/24/2016] [Indexed: 11/30/2022] Open
Abstract
This study explores the impact of HbA1c levels on the structure of haemoglobin (Hb) in patients with type 2 diabetes. Seventy-four diabetic patients were classified into the following two groups based on their level of HbA1c: group A, patients with good glycaemic control (HbA1c < 7.0%, n = 36); group B, patients with persistent hyperglycaemia (HbA1c ≥ 9.0%, n = 38). Thirty-four healthy people served as controls (group H). Hb structure was examined by Fourier transform infrared spectroscopy (FTIR), and diabetic erythrocytes were modelled to estimate the impact of glucose on these cells and Hb. Increasing glucose concentrations altered both erythrocyte parameters and the Hb secondary structure. Group B differed significantly from group H (p < 0.05): in the former, the ordered Hb secondary structure had a strong tendency to transform into a disordered secondary structure, decreasing structural stability. We presumed here that high HbA1c levels might be a factor contributing to Hb structural modifications in diabetic patients. FTIR spectral analysis can provide a novel way to investigate the pathogenesis of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Shaoying Ye
- Department of Occupational and Environmental Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ping Ruan
- Department of Biomedical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Junguang Yong
- Department of Endocrinology, the affiliated outpatient department, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongtao Shen
- College of Physics and Technology, Guangxi Normal University, Guilin, China
| | - Zhihong Liao
- Department of Endocrinology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaolei Dong
- Department of Occupational and Environmental Health, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
33
|
Mody P, Hart C, Romano S, El-Magbri M, Esson MM, Ibeh T, Knowlton ED, Zhang M, Wagner MJ, Hartings MR. Protein-based ferrogels. J Inorg Biochem 2016; 159:7-13. [DOI: 10.1016/j.jinorgbio.2016.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/22/2016] [Accepted: 02/10/2016] [Indexed: 11/16/2022]
|
34
|
Lu R, Li WW, Katzir A, Raichlin Y, Mizaikoff B, Yu HQ. Fourier transform infrared spectroscopy on external perturbations inducing secondary structure changes of hemoglobin. Analyst 2016; 141:6061-6067. [DOI: 10.1039/c6an01477a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The secondary structure of proteins and their conformation are intimately related to their biological functions.
Collapse
Affiliation(s)
- Rui Lu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- P.R. China
| | - Abraham Katzir
- School of Physics
- Tel-Aviv University
- Tel-Aviv 69978
- Israel
| | - Yosef Raichlin
- Department of Applied Physics
- Ariel University Center of Samaria
- Ariel
- Israel
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry
- Ulm University
- 89081 Ulm
- Germany
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- P.R. China
| |
Collapse
|
35
|
Gevorkian SG, Allahverdyan AE, Gevorgyan DS, Hu CK. Thermal-induced force release in oxyhemoglobin. Sci Rep 2015; 5:13064. [PMID: 26277901 PMCID: PMC4538398 DOI: 10.1038/srep13064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 07/14/2015] [Indexed: 11/17/2022] Open
Abstract
Oxygen is released to living tissues via conformational changes of hemoglobin from R-state (oxyhemoglobin) to T-state (desoxyhemoglobin). The detailed mechanism of this process is not yet fully understood. We have carried out micromechanical experiments on oxyhemoglobin crystals to determine the behavior of the Young’s modulus and the internal friction for temperatures between 20 °C and 70 °C. We have found that around 49 °C oxyhemoglobin crystal samples undergo a sudden and strong increase of their Young’s modulus, accompanied by a sudden decrease of the internal friction. This sudden mechanical change (and the ensuing force release) takes place in a partially unfolded state and precedes the full denaturation transition at higher temperatures. After this transformation, the hemoglobin crystals have the same mechanical properties as their initial state at room temperatures. We conjecture that it can be relevant for explaining the oxygen-releasing function of native oxyhemoglobin when the temperature is increased, e.g. due to active sport. The effect is specific for the quaternary structure of hemoglobin, and is absent for myoglobin with only one peptide sequence.
Collapse
Affiliation(s)
- S G Gevorkian
- 1] Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan [2] Yerevan Physics Institute, Alikhanian Brothers St. 2, Yerevan 375036, Armenia
| | - A E Allahverdyan
- 1] Laboratoire de Physique Statistique et Systèmes Complexes, ISMANS, 44 ave. Bartholdi, 72000 Le Mans, France [2] Yerevan Physics Institute, Alikhanian Brothers St. 2, Yerevan 375036, Armenia
| | - D S Gevorgyan
- Institute of Fine Organic Chemistry, 26 Azatutian ave., Yerevan 0014, Armenia
| | - Chin-Kun Hu
- 1] Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan [2] National Center for Theoretical Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
36
|
Gray JP, Dana N, Dextraze KL, Maier F, Emelianov S, Bouchard RR. Multi-Wavelength Photoacoustic Visualization of High Intensity Focused Ultrasound Lesions. ULTRASONIC IMAGING 2015; 38:96-112. [PMID: 26149314 DOI: 10.1177/0161734615593747] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
High intensity focused ultrasound (HIFU) thermal therapies are limited by deficiencies in existing image-guidance techniques. Previous studies using single-wavelength photoacoustic (PA) imaging have demonstrated that HIFU lesions generate contrast with respect to native tissues but have not sufficiently assessed lesion extent. The purpose of this study is to demonstrate feasibility of characterization of in vitro HIFU ablation lesion dimensions using 3D multi-wavelength PA imaging. Fresh porcine cardiac and liver tissue samples were embedded in agar phantoms and ablated using a 2.5 MHz small-animal HIFU system. Both 2D and 3D multi-wavelength photoacoustic-ultrasonic (PAUS) scans were performed in the near-infrared (NIR) range to characterize the change in the absorption spectrum of tissues following ablation and were compared to stained gross pathology to assess treatment margins and lesion extent. Comprehensive 2D multi-wavelength PA imaging yielded a spectrum in ablated tissue that did not display the characteristic local maximum in the optical absorption spectrum of deoxy-hemoglobin (Hb) near 760 nm. Two-dimensional tissue characterization map (TCM) images reconstructed from 3D TCM volumes reliably characterized lesion area and showed >70% area agreement with stained gross pathology. In addition, tissue samples were heated via water bath and concurrently interrogated with 2D PAUS imaging. PA signal exhibited an initial amplitude increase across all wavelengths, corresponding to an initial temperature increase, before then exhibiting a spectral change. This study suggests that multi-wavelength PA imaging has potential to obtain accurate characterization of HIFU lesion extent and may be better suited to guide HIFU ablation therapies during clinical treatments than single-wavelength methods.
Collapse
Affiliation(s)
- J P Gray
- MD Anderson Cancer Center, Houston, TX, USA
| | - N Dana
- University of Texas at Austin, Austin, TX, USA
| | | | - F Maier
- MD Anderson Cancer Center, Houston, TX, USA
| | - S Emelianov
- University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
37
|
Floor RJ, Wijma HJ, Jekel PA, Terwisscha van Scheltinga AC, Dijkstra BW, Janssen DB. X-ray crystallographic validation of structure predictions used in computational design for protein stabilization. Proteins 2015; 83:940-51. [PMID: 25739581 DOI: 10.1002/prot.24791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/11/2015] [Accepted: 02/14/2015] [Indexed: 11/10/2022]
Abstract
Protein engineering aimed at enhancing enzyme stability is increasingly supported by computational methods for calculation of mutant folding energies and for the design of disulfide bonds. To examine the accuracy of mutant structure predictions underlying these computational methods, crystal structures of thermostable limonene epoxide hydrolase variants obtained by computational library design were determined. Four different predicted effects indeed contributed to the obtained stabilization: (i) enhanced interactions between a flexible loop close to the N-terminus and the rest of the protein; (ii) improved interactions at the dimer interface; (iii) removal of unsatisfied hydrogen bonding groups; and (iv) introduction of additional positively charged groups at the surface. The structures of an eightfold and an elevenfold mutant showed that most mutations introduced the intended stabilizing interactions, and side-chain conformations were correctly predicted for 72-88% of the point mutations. However, mutations that introduced a disulfide bond in a flexible region had a larger influence on the backbone conformation than predicted. The enzyme active sites were unaltered, in agreement with the observed preservation of catalytic activities. The structures also revealed how a c-Myc tag, which was introduced for facile detection and purification, can reduce access to the active site and thereby lower the catalytic activity. Finally, sequence analysis showed that comprehensive mutant energy calculations discovered stabilizing mutations that are not proposed by the consensus or B-FIT methods.
Collapse
Affiliation(s)
- Robert J Floor
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
38
|
Saguer E, Alvarez P, Fort N, Espigulé E, Parés D, Toldrà M, Carretero C. Heat-Induced Gelation Mechanism of Blood Plasma Modulated by Cysteine. J Food Sci 2015; 80:C515-21. [DOI: 10.1111/1750-3841.12805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/18/2014] [Accepted: 01/02/2015] [Indexed: 11/30/2022]
Affiliation(s)
- E. Saguer
- Institut de Tecnologia Agroalimentària (INTEA); Univ. of Girona (UdG); 17071 Girona Spain
| | - P. Alvarez
- The Nutrition and Functional Foods Inst. (INAF), Laval Univ, Quebec, Canada G1V 0A6 and the Dept. of Food Science and Nutrition, 2425 rue de l'Agriculture; Laval Univ; Quebec Canada G1V 0A6
| | - N. Fort
- Institut de Tecnologia Agroalimentària (INTEA); Univ. of Girona (UdG); 17071 Girona Spain
| | - E. Espigulé
- Institut de Tecnologia Agroalimentària (INTEA); Univ. of Girona (UdG); 17071 Girona Spain
| | - D. Parés
- Institut de Tecnologia Agroalimentària (INTEA); Univ. of Girona (UdG); 17071 Girona Spain
| | - M. Toldrà
- Institut de Tecnologia Agroalimentària (INTEA); Univ. of Girona (UdG); 17071 Girona Spain
| | - C. Carretero
- Institut de Tecnologia Agroalimentària (INTEA); Univ. of Girona (UdG); 17071 Girona Spain
| |
Collapse
|
39
|
Qadeer A, Zaman M, Khan RH. Inhibitory effect of post-micellar SDS concentration on thermal aggregation and activity of papain. BIOCHEMISTRY (MOSCOW) 2014; 79:785-96. [DOI: 10.1134/s0006297914080069] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Thermostability of bovine submaxillary mucin (BSM) in bulk solution and at a sliding interface. J Colloid Interface Sci 2014; 424:113-9. [DOI: 10.1016/j.jcis.2014.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/28/2014] [Accepted: 03/01/2014] [Indexed: 11/22/2022]
|
41
|
Roman EA, González Flecha FL. Kinetics and thermodynamics of membrane protein folding. Biomolecules 2014; 4:354-73. [PMID: 24970219 PMCID: PMC4030980 DOI: 10.3390/biom4010354] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/19/2014] [Accepted: 02/23/2014] [Indexed: 02/06/2023] Open
Abstract
Understanding protein folding has been one of the great challenges in biochemistry and molecular biophysics. Over the past 50 years, many thermodynamic and kinetic studies have been performed addressing the stability of globular proteins. In comparison, advances in the membrane protein folding field lag far behind. Although membrane proteins constitute about a third of the proteins encoded in known genomes, stability studies on membrane proteins have been impaired due to experimental limitations. Furthermore, no systematic experimental strategies are available for folding these biomolecules in vitro. Common denaturing agents such as chaotropes usually do not work on helical membrane proteins, and ionic detergents have been successful denaturants only in few cases. Refolding a membrane protein seems to be a craftsman work, which is relatively straightforward for transmembrane β-barrel proteins but challenging for α-helical membrane proteins. Additional complexities emerge in multidomain membrane proteins, data interpretation being one of the most critical. In this review, we will describe some recent efforts in understanding the folding mechanism of membrane proteins that have been reversibly refolded allowing both thermodynamic and kinetic analysis. This information will be discussed in the context of current paradigms in the protein folding field.
Collapse
Affiliation(s)
- Ernesto A Roman
- Laboratory of Molecular Biophysics, Institute of Biochemistry and Biophysical Chemistry, University of Buenos Aires-CONICET, Buenos Aires 1113, Argentina.
| | - F Luis González Flecha
- Laboratory of Molecular Biophysics, Institute of Biochemistry and Biophysical Chemistry, University of Buenos Aires-CONICET, Buenos Aires 1113, Argentina.
| |
Collapse
|
42
|
Hicks T, Verbeek CJR, Lay MC, Bier JM. Effect of oxidative treatment on the secondary structure of decoloured bloodmeal. RSC Adv 2014. [DOI: 10.1039/c4ra03890h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Synchrotron-based Fourier-transform infrared (FTIR) spectroscopy was used to assess the effect of peracetic acid decolouring on the spatial distribution of secondary structures within particles of bloodmeal.
Collapse
Affiliation(s)
- Talia Hicks
- School of Engineering
- Faculty of Science and Engineering
- University of Waikato
- Hamilton 3240, New Zealand
| | - Casparus J. R. Verbeek
- School of Engineering
- Faculty of Science and Engineering
- University of Waikato
- Hamilton 3240, New Zealand
| | - Mark C. Lay
- School of Engineering
- Faculty of Science and Engineering
- University of Waikato
- Hamilton 3240, New Zealand
| | - James M. Bier
- School of Engineering
- Faculty of Science and Engineering
- University of Waikato
- Hamilton 3240, New Zealand
| |
Collapse
|
43
|
Saguer E, Alvarez P, Sedman J, Ismail A. Study of the denaturation/aggregation behaviour of whole porcine plasma and its protein fractions during heating under acidic pH by variable-temperature FTIR spectroscopy. Food Hydrocoll 2013. [DOI: 10.1016/j.foodhyd.2013.04.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Hicks TM, Verbeek CJR, Lay MC, Manley-Harris M. The Role of Peracetic Acid in Bloodmeal Decoloring. J AM OIL CHEM SOC 2013. [DOI: 10.1007/s11746-013-2304-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
Venkataramani S, Truntzer J, Coleman DR. Thermal stability of high concentration lysozyme across varying pH: A Fourier Transform Infrared study. J Pharm Bioallied Sci 2013; 5:148-53. [PMID: 23833521 PMCID: PMC3697194 DOI: 10.4103/0975-7406.111821] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 10/10/2012] [Accepted: 11/14/2012] [Indexed: 12/03/2022] Open
Abstract
AIM: The current work is aimed at understanding the effect of pH on the thermal stability of hen egg white lysozyme (HEWL) at high concentration (200 mg/mL). MATERIALS AND METHODS: Fourier Transform Infrared (FTIR) Spectroscopy with modified hardware and software to overcome some of the traditional challenges like water subtraction, sample evaporation, proper purging etc., are used in this study. RESULTS: HEWL was subjected to thermal stress at pH 3.0-7.0 between 25°C and 95°C and monitored by FTIR spectroscopy. Calculated Tm values showed that the enzyme exhibited maximum thermal stability at pH 5.0. Second derivative plots constructed in the amide I region suggested that at pH 5.0 the enzyme possessed higher amount of α-helix and lower amount of aggregates, when compared to other pHs. CONCLUSIONS: Considering the fact that HEWL has attractive applications in various industries and being processed under different experimental conditions including high temperatures, our work is able to reveal the reason behind the pH dependent thermal stability of HEWL at high concentration, when subjected to heat denaturation. In future, studies should aim at using various excipients that may help to increase the stability and activity of the enzyme at this high concentration.
Collapse
Affiliation(s)
- Sathyadevi Venkataramani
- Coleman Softlabs, Inc., 296 Bay Road, Atherton, CA 94027, USA ; Department of Biotherapeutics, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877, USA
| | | | | |
Collapse
|
46
|
Bassam R, Digel I, Hescheler J, Artmann AT, Artmann GM. Effects of spermine NONOate and ATP on protein aggregation: light scattering evidences. BMC BIOPHYSICS 2013; 6:1. [PMID: 23289636 PMCID: PMC3561150 DOI: 10.1186/2046-1682-6-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 12/18/2012] [Indexed: 11/10/2022]
Abstract
UNLABELLED BACKGROUND AND OBJECTIVE Regulating protein function in the cell by small molecules, provide a rapid, reversible and tunable tool of metabolic control. However, due to its complexity the issue is poorly studied so far. The effects of small solutes on protein behavior can be studied by examining changes of protein secondary structure, in its hydrodynamic radius as well as its thermal aggregation. The study aim was to investigate effects of adenosine-5'-triphosphate (ATP), spermine NONOate (NO donor) as well as sodium/potassium ions on thermal aggregation of albumin and hemoglobin. To follow aggregation of the proteins, their diffusion coefficients were measured by quasi-elastic light scattering (QELS) at constant pH (7.4) in the presence of solutes over a temperature range from 25°C to 80°C. RESULTS AND DISCUSSION 1) Spermine NONOate persistently decreased the hemoglobin aggregation temperature Tairrespectively of the Na+/K+ environment, 2) ATP alone had no effect on the protein's thermal stability but it facilitated protein's destabilization in the presence of spermine NONOate and 3) mutual effects of ATP and NO were strongly influenced by particular buffer ionic compositions. CONCLUSION The ATP effect on protein aggregation was ambiguous: ATP alone had no effect on the protein's thermal stability but it facilitated protein's destabilization in the presence of nitric oxide. The magnitude and direction of the observed effects strongly depended on concentrations of K+ and Na+ in the solution.
Collapse
Affiliation(s)
- Rasha Bassam
- Institute of Bioengineering (IFB), Aachen University of Applied Sciences, 52428 Juelich, Germany.
| | | | | | | | | |
Collapse
|
47
|
Kishore D, Kundu S, Kayastha AM. Thermal, chemical and pH induced denaturation of a multimeric β-galactosidase reveals multiple unfolding pathways. PLoS One 2012. [PMID: 23185611 PMCID: PMC3503960 DOI: 10.1371/journal.pone.0050380] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In this case study, we analysed the properties of unfolded states and pathways leading to complete denaturation of a multimeric chick pea β-galactosidase (CpGAL), as obtained from treatment with guanidium hydrochloride, urea, elevated temperature and extreme pH. METHODOLOGY/PRINCIPAL FINDINGS CpGAL, a heterodimeric protein with native molecular mass of 85 kDa, belongs to α+β class of protein. The conformational stability and thermodynamic parameters of CpGAL unfolding in different states were estimated and interpreted using circular dichroism and fluorescence spectroscopic measurements. The enzyme was found to be structurally and functionally stable in the entire pH range and upto 50 °C temperature. Further increase in temperature induces unfolding followed by aggregation. Chemical induced denaturation was found to be cooperative and transitions were irreversible, non-coincidental and sigmoidal. Free energy of protein unfolding (ΔG(0)) and unfolding constant (K(obs)) were also calculated for chemically denatured CpGAL. SIGNIFICANCE The protein seems to use different pathways for unfolding in different environments and is a classical example of how the environment dictates the path a protein might take to fold while its amino acid sequence only defines its final three-dimensional conformation. The knowledge accumulated could be of immense biotechnological significance as well.
Collapse
Affiliation(s)
- Devesh Kishore
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi, India
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- * E-mail: (AMK); (SK)
| | - Arvind M. Kayastha
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi, India
- * E-mail: (AMK); (SK)
| |
Collapse
|
48
|
Feng LK, Yan YB. The N-terminus modulates human Caf1 activity, structural stability and aggregation. Int J Biol Macromol 2012; 51:497-503. [PMID: 22683897 DOI: 10.1016/j.ijbiomac.2012.05.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 05/24/2012] [Accepted: 05/29/2012] [Indexed: 12/22/2022]
Abstract
Caf1 is a deadenylase component of the CCR4-Not complex. Here we found that the removal of the N-terminus resulted in a 30% decrease in human Caf1 (hCaf1) activity, but had no significant influence on main domain structure. The removal of the N-terminus led to a decrease in the thermal stability, while the existence of the N-terminus promoted hCaf1 thermal aggregation. Homology modeling indicated that the N-terminus had a potency to form a short α-helix interacted with the main domain. Thus the N-terminus played a role in modulating hCaf1 activity, stability and aggregation.
Collapse
Affiliation(s)
- Li-Kui Feng
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | |
Collapse
|
49
|
Ramshini H, Ebrahim-Habibi A. Thermal disaggregation of type B yeast hexokinase by indole derivatives: a mechanistic study. Int J Biol Macromol 2012; 50:1260-6. [PMID: 22421217 DOI: 10.1016/j.ijbiomac.2012.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/14/2012] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
Abstract
Protein aggregation is a pathological hallmark of several human disorders, and a central problem in biotechnology, occurring during purification, sterilization, shipping and storage of protein structures. The process is a very complex one, characterized with a remarkable polymorphism of aggregates, including soluble amyloid oligomers, amyloid fibrils and amorphous species. While amyloid structure formation has been extensively investigated during the recent years, amorphous aggregation is still not well characterized. Use of small molecules that affect this process could be informative in this regard. In order to explore the inhibiting effect of small molecules on the amorphous aggregate formation, yeast hexokinase-B, a key enzyme in metabolism, has been chosen for the present study. Thermal aggregation of the enzyme was investigated in 50 mM phosphate buffer, pH 7 at 55°C and the extent of aggregation was measured by monitoring the increase in absorbance at 350 nm versus time. Possible anti-aggregation effects of a variety of non-specific ligands including indole, tryptophan, carbinol, and indomethacin were explored. Turbidity of the protein solutions was found to be diminished by the presence of these small molecules in the above conditions, with the highest effects being exerted by indomethacin. Dynamic light scattering and HPLC confirmed that indomethacin had the highest anti-aggregation effect. These observations, taken together, suggest that the indole ring is likely to play an important role in aggregation inhibition.
Collapse
Affiliation(s)
- Hassan Ramshini
- Department of Biology, Payame Noor University, Tehran, Iran.
| | | |
Collapse
|
50
|
Saguer E, Alvarez P, Ismail A. Heat-induced denaturation/aggregation of porcine plasma and its fractions studied by FTIR spectroscopy. Food Hydrocoll 2012. [DOI: 10.1016/j.foodhyd.2011.06.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|