1
|
Tesson M, Anselmi G, Bell C, Mairs R. Cell cycle specific radiosensitisation by the disulfiram and copper complex. Oncotarget 2017; 8:65900-65916. [PMID: 29029481 PMCID: PMC5630381 DOI: 10.18632/oncotarget.19539] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 06/29/2017] [Indexed: 12/14/2022] Open
Abstract
The disulfiram and copper complex (DSF:Cu) has emerged as a potent radiosensitising anti-cancer agent. The ability of copper to stabilise DSF in a planar conformation and to inhibit DNA replication enzymes stimulated our investigation of the effect of DSF:Cu on cell cycle regulation. Flow cytometry and immunoblotting were used to assess the effect of DSF:Cu on cell cycle progression of the neuroblastoma cell line SK-N-BE(2c) and the glioma cell line UVW. Treatment with 0.1 and 0.3 μM DSF:Cu inhibited DNA synthesis in SK-N-BE(2c) and UVW cells, respectively. The increased potency of ionising radiation treatment induced by DSF:Cu and/or gemcitabine was determined by clonogenic assay. Treatment with 0.3 μM DSF:Cu resulted in greater radiation kill, exemplified by dose enhancement factor values of 2.64 and 2.84 in SK-N-BE(2c) and UVW cells, respectively. Although DSF:Cu failed to sensitise S phase cells to irradiation, we observed that DSF:Cu radiosensitisation was potentiated by the S phase-specific cytotoxic drug gemcitabine. The efficacy of the combination treatment consisting of DSF:Cu, gemcitabine and ionising radiation was schedule-dependent. Together, these results describe cell cycle specific radiosensitisation by DSF:Cu. The well-established toxicity profiles of DSF and gemcitabine should facilitate their evaluation as a combination treatment in patients undergoing radiotherapy.
Collapse
Affiliation(s)
- Mathias Tesson
- Radiation Oncology, Institute of Cancer Sciences, Wolfson Wohl Translational Cancer Research Center, University of Glasgow, Bearsden, Glasgow, UK
| | - Giorgio Anselmi
- Centre for Molecular and Cellular Biology of Inflammation, Peter Gorer Department of Immunobiology, Division of Immunology, Infection and Inflammatory Diseases, King's College London, London, UK
| | - Caitlin Bell
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, UK
| | - Robert Mairs
- Radiation Oncology, Institute of Cancer Sciences, Wolfson Wohl Translational Cancer Research Center, University of Glasgow, Bearsden, Glasgow, UK
| |
Collapse
|
2
|
Locato V, Uzal EN, Cimini S, Zonno MC, Evidente A, Micera A, Foyer CH, De Gara L. Low concentrations of the toxin ophiobolin A lead to an arrest of the cell cycle and alter the intracellular partitioning of glutathione between the nuclei and cytoplasm. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2991-3000. [PMID: 25890975 DOI: 10.1093/jxb/erv110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Ophiobolin A, a tetracyclic sesterpenoid produced by phytopathogenic fungi, is responsible for catastrophic losses in crop yield but its mechanism of action is not understood. The effects of ophiobolin A were therefore investigated on the growth and redox metabolism of Tobacco Bright Yellow-2 (TBY-2) cell cultures by applying concentrations of the toxin that did not promote cell death. At concentrations between 2 and 5 μM, ophiobolin A inhibited growth and proliferation of the TBY-2 cells, which remained viable. Microscopic and cytofluorimetric analyses showed that ophiobolin A treatment caused a rapid decrease in mitotic index, with a lower percentage of the cells at G1 and increased numbers of cells at the S/G2 phases. Cell size was not changed following treatment suggesting that the arrest of cell cycle progression was not the result of a block on cell growth. The characteristic glutathione redox state and the localization of glutathione in the nucleus during cell proliferation were not changed by ophiobolin A. However, subsequent decreases in glutathione and the re-distribution of glutathione between the cytoplasm and nuclei after mitosis occurring in control cells, as well as the profile of glutathionylated proteins, were changed in the presence of the toxin. The profile of poly ADP-ribosylated proteins were also modified by ophiobolin A. Taken together, these data provide evidence of the mechanism of ophiobolin A action as a cell cycle inhibitor and further demonstrate the link between nuclear glutathione and the cell cycle regulation, suggesting that glutathione-dependent redox controls in the nuclei prior to cell division are of pivotal importance.
Collapse
Affiliation(s)
- Vittoria Locato
- Centro Integrato di Ricerca, Università Campus Bio-Medico, Via Alvaro del Portillo, 00128 Roma, Italy
| | - Esther Novo Uzal
- Centro Integrato di Ricerca, Università Campus Bio-Medico, Via Alvaro del Portillo, 00128 Roma, Italy Departamento de Biología Vegetal, Universidad de Murcia, Campus Espinardo, Murcia, Spain
| | - Sara Cimini
- Centro Integrato di Ricerca, Università Campus Bio-Medico, Via Alvaro del Portillo, 00128 Roma, Italy
| | - Maria Chiara Zonno
- Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, Via Amendola 122/O, 70125 Bari, Italy
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Napoli, Italy
| | | | - Christine H Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Laura De Gara
- Centro Integrato di Ricerca, Università Campus Bio-Medico, Via Alvaro del Portillo, 00128 Roma, Italy
| |
Collapse
|
3
|
Fang SC, Chung CL, Chen CH, Lopez-Paz C, Umen JG. Defects in a new class of sulfate/anion transporter link sulfur acclimation responses to intracellular glutathione levels and cell cycle control. PLANT PHYSIOLOGY 2014; 166:1852-68. [PMID: 25361960 PMCID: PMC4256884 DOI: 10.1104/pp.114.251009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/29/2014] [Indexed: 05/18/2023]
Abstract
We previously identified a mutation, suppressor of mating type locus3 15-1 (smt15-1), that partially suppresses the cell cycle defects caused by loss of the retinoblastoma tumor suppressor-related protein encoded by the MAT3 gene in Chlamydomonas reinhardtii. smt15-1 single mutants were also found to have a cell cycle defect leading to a small-cell phenotype. SMT15 belongs to a previously uncharacterized subfamily of putative membrane-localized sulfate/anion transporters that contain a sulfate transporter domain and are found in a widely distributed subset of eukaryotes and bacteria. Although we observed that smt15-1 has a defect in acclimation to sulfur-limited growth conditions, sulfur acclimation (sac) mutants, which are more severely defective for acclimation to sulfur limitation, do not have cell cycle defects and cannot suppress mat3. Moreover, we found that smt15-1, but not sac mutants, overaccumulates glutathione. In wild-type cells, glutathione fluctuated during the cell cycle, with highest levels in mid G1 phase and lower levels during S and M phases, while in smt15-1, glutathione levels remained elevated during S and M. In addition to increased total glutathione levels, smt15-1 cells had an increased reduced-to-oxidized glutathione redox ratio throughout the cell cycle. These data suggest a role for SMT15 in maintaining glutathione homeostasis that impacts the cell cycle and sulfur acclimation responses.
Collapse
Affiliation(s)
- Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan County 741, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Institute of Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (C.-L.C.); andDonald Danforth Plant Science Center, St. Louis, Missouri 63132 (C.L.-P., J.G.U.)
| | - Chin-Lin Chung
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan County 741, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Institute of Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (C.-L.C.); andDonald Danforth Plant Science Center, St. Louis, Missouri 63132 (C.L.-P., J.G.U.)
| | - Chun-Han Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan County 741, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Institute of Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (C.-L.C.); andDonald Danforth Plant Science Center, St. Louis, Missouri 63132 (C.L.-P., J.G.U.)
| | - Cristina Lopez-Paz
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan County 741, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Institute of Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (C.-L.C.); andDonald Danforth Plant Science Center, St. Louis, Missouri 63132 (C.L.-P., J.G.U.)
| | - James G Umen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan County 741, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Institute of Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (C.-L.C.); andDonald Danforth Plant Science Center, St. Louis, Missouri 63132 (C.L.-P., J.G.U.)
| |
Collapse
|
4
|
Sarsour EH, Kalen AL, Goswami PC. Manganese superoxide dismutase regulates a redox cycle within the cell cycle. Antioxid Redox Signal 2014; 20:1618-27. [PMID: 23590434 PMCID: PMC3942678 DOI: 10.1089/ars.2013.5303] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SIGNIFICANCE Manganese superoxide dismutase (MnSOD) is a nuclear-encoded and mitochondria-matrix-localized oxidation-reduction (redox) enzyme that regulates cellular redox homeostasis. Cellular redox processes are known to regulate proliferative and quiescent growth states. Therefore, MnSOD and mitochondria-generated reactive oxygen species (ROS) are believed to be critical regulators of quiescent cells' entry into the cell cycle and exit from the proliferative cycle back to the quiescent state. RECENT ADVANCES/CRITICAL ISSUES Recent evidence suggests that the intracellular redox environment fluctuates during the cell cycle, shifting toward a more oxidized status during mitosis. MnSOD activity is higher in G0/G1 cells compared with S, G2 and M phases. After cell division, MnSOD activity increases in the G1 phase of the daughter generation. The periodic fluctuation in MnSOD activity during the cell cycle inversely correlates with cellular superoxide levels as well as glucose and oxygen consumption. Based on an inverse correlation between MnSOD activity and glucose consumption during the cell cycle, it is proposed that MnSOD is a central molecular player for the "Warburg effect." FUTURE DIRECTIONS In general, loss of MnSOD activity results in aberrant proliferation. A better understanding of the MnSOD and mitochondrial ROS-dependent cell cycle processes may lead to novel approaches to overcome aberrant proliferation. Since ROS have both deleterious (pathological) and beneficial (physiological) effects, it is proposed that "eustress" should be used when discussing ROS processes that regulate normal physiological functions, while "oxidative stress" should be used to discuss the deleterious effects of ROS.
Collapse
Affiliation(s)
- Ehab H Sarsour
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa , Iowa City, Iowa
| | | | | |
Collapse
|
5
|
Sarsour EH, Venkataraman S, Kalen AL, Oberley LW, Goswami PC. Manganese superoxide dismutase activity regulates transitions between quiescent and proliferative growth. Aging Cell 2008; 7:405-17. [PMID: 18331617 DOI: 10.1111/j.1474-9726.2008.00384.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In recent years, the intracellular reactive oxygen species (ROS) levels have gained increasing attention as a critical regulator of cellular proliferation. We investigated the hypothesis that manganese superoxide dismutase (MnSOD) activity regulates proliferative and quiescent growth by modulating cellular ROS levels. Decreasing MnSOD activity favored proliferation in mouse embryonic fibroblasts (MEF), while increasing MnSOD activity facilitated proliferating cells' transitions into quiescence. MnSOD +/- and -/- MEFs demonstrated increased superoxide steady-state levels; these fibroblasts failed to exit from the proliferative cycle, and showed increasing cyclin D1 and cyclin B1 protein levels. MnSOD +/- MEFs exhibited an increase in the percentage of G(2) cells compared to MnSOD +/+ MEFs. Overexpression of MnSOD in MnSOD +/- MEFs suppressed superoxide levels and G(2) accumulation, decreased cyclin B1 protein levels, and facilitated cells' transit into quiescence. While ROS are known to regulate differentiation and cell death pathways, both of which are irreversible processes, our results show MnSOD activity and, therefore, mitochondria-derived ROS levels regulate cellular proliferation and quiescence, which are reversible processes essential to prevent aberrant proliferation and subsequent exhaustion of normal cell proliferative capacity. These results support the hypothesis that MnSOD activity regulates a mitochondrial 'ROS-switch' favoring a superoxide-signaling regulating proliferation and a hydrogen peroxide-signaling supporting quiescence.
Collapse
Affiliation(s)
- Ehab H Sarsour
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
6
|
Menon SG, Sarsour EH, Kalen AL, Venkataraman S, Hitchler MJ, Domann FE, Oberley LW, Goswami PC. Superoxide signaling mediates N-acetyl-L-cysteine-induced G1 arrest: regulatory role of cyclin D1 and manganese superoxide dismutase. Cancer Res 2007; 67:6392-9. [PMID: 17616699 DOI: 10.1158/0008-5472.can-07-0225] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thiol antioxidants, including N-acetyl-L-cysteine (NAC), are widely used as modulators of the intracellular redox state. We investigated the hypothesis that NAC-induced reactive oxygen species (ROS) signaling perturbs cellular proliferation by regulating the cell cycle regulatory protein cyclin D1 and the ROS scavenging enzyme Mn-superoxide dismutase (MnSOD). When cultured in media containing NAC, mouse fibroblasts showed G(1) arrest with decreased cyclin D1 protein levels. The absence of a NAC-induced G(1) arrest in fibroblasts overexpressing cyclin D1 (or a nondegradable mutant of cyclin D1-T286A) indicates that cyclin D1 regulates this G(1) arrest. A delayed response to NAC exposure was an increase in both MnSOD protein and activity. NAC-induced G(1) arrest is exacerbated in MnSOD heterozygous fibroblasts. Results from electron spin resonance spectroscopy and flow cytometry measurements of dihydroethidine fluorescence showed an approximately 2-fold to 3-fold increase in the steady-state levels of superoxide (O(2)(*-)) in NAC-treated cells compared with control. Scavenging of O(2)(*-) with Tiron reversed the NAC-induced G(1) arrest. These results show that an O(2)(*-) signaling pathway regulates NAC-induced G(1) arrest by decreasing cyclin D1 protein levels and increasing MnSOD activity.
Collapse
Affiliation(s)
- Sarita G Menon
- Department of Microbiology and Immunology, State University of New York at Buffalo School of Medicine, Buffalo, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
In recent years, the intracellular oxidation-reduction (redox) state has gained increasing attention as a critical mediator of cell signaling, gene expression changes and proliferation. This review discusses the evidence for a redox cycle (i.e., fluctuation in the cellular redox state) regulating the cell cycle. The presence of redox-sensitive motifs (cysteine residues, metal co-factors in kinases and phosphatases) in several cell cycle regulatory proteins indicate periodic oscillations in intracellular redox state could play a central role in regulating progression from G0/G1 to S to G2 and M cell cycle phases. Fluctuations in the intracellular redox state during cell cycle progression could represent a fundamental mechanism linking oxidative metabolic processes to cell cycle regulatory processes. Proliferative disorders are central to a variety of human pathophysiological conditions thought to involve oxidative stress. Therefore, a more complete understanding of redox control of the cell cycle could provide a biochemical rationale for manipulating aberrant cell proliferation.
Collapse
Affiliation(s)
- S G Menon
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
8
|
Eady JJ, Orta T, Dennis MF, Stratford MR, Peacock JH. Glutathione determination by the Tietze enzymatic recycling assay and its relationship to cellular radiation response. Br J Cancer 1995; 72:1089-95. [PMID: 7577452 PMCID: PMC2033930 DOI: 10.1038/bjc.1995.470] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Large fluctuations in glutathione content were observed on a daily basis using the Tietze enzyme recycling assay in a panel of six human cell lines of varying radiosensitivity. Glutathione content tended to increase to a maximum during exponential cell proliferation, and then decreased at different rates as the cells approached plateau phase. By reference to high-performance liquid chromatography and flow cytometry of the fluorescent bimane derivative we were able to verify that these changes were real. However, the Tietze assay was occasionally unable to detect glutathione in two of our cell lines (MGH-U1 and AT5BIVA), although the other methods indicated its presence. The existence of an inhibitory activity responsible for these anomalies was confirmed through spiking our samples with known amounts of glutathione. We were unable to detect a direct relationship between cellular glutathione concentration and aerobic radiosensitivity in our panel of cell lines.
Collapse
Affiliation(s)
- J J Eady
- Radiotherapy Research Unit, Institute of Cancer Research, Sutton, Surrey, UK
| | | | | | | | | |
Collapse
|
9
|
Aleo MD, Taub ML, Nickerson PA, Kostyniak PJ. Primary cultures of rabbit renal proximal tubule cells: I. Growth and biochemical characteristics. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1989; 25:776-83. [PMID: 2793776 DOI: 10.1007/bf02623660] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Before the usefulness of a new in vitro model can be ascertained, the model must be properly defined and characterized. This study presents the growth rate and biochemical characteristics of rabbit renal proximal tubule cells in primary culture over a 2-wk culture period. When grown in a hormonally defined, antibiotic-free medium these cells form confluent monolayer cultures within 7 d after plating. Multicellular dome formation, an indicator of transepithelial solute transport, was expressed after confluent cultures were formed. The activity of the cytosolic enzyme, lactate dehydrogenase, and the lysosomal enzyme, N-acetyl-glucosaminidase, increased 14- and 2-fold during the first 8 d of culture, respectively. In contrast, the activity of a brush border enzyme, alkaline phosphatase, decreased 85% within the first 8 d of culture. Release of these enzyme markers into the culture medium, which are routinely used to measure cytotoxicity, stabilized after 8 d in culture. The ratio of cellular protein to DNA changed according to the state of cellular growth. Values rose from 0.035 mg protein/micrograms DNA in preconfluent cultures to 0.059 mg protein/micrograms DNA in confluent cultures. These results document the characteristics of a primary proximal tubule cell culture system for future studies in in vitro toxicology.
Collapse
Affiliation(s)
- M D Aleo
- Department of Pharmacology & Therapeutics, State University of New York, Buffalo 14214
| | | | | | | |
Collapse
|
10
|
Erlinger SU, Saier MH. Decrease in protein content and cell volume of cultured dog kidney epithelial cells during growth. IN VITRO 1982; 18:196-202. [PMID: 7129474 DOI: 10.1007/bf02618571] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Protein content per cell and cell volume of the canine kidney epithelial cell line, MDCK, and one of its chemically induced tumorigenic transformants (T1k) were examined during growth in serum-containing and serum-free, hormonally defined media. Both protein content per cell and cell volume (measured with 3-O-methyl-D-glucose) decreased when cell density increased. Significant inverse linear correlations were found between protein content (and cell volume) and the log of the cell number. Equations relating these variables were derived. No difference was detected between cells grown in serum-containing and in serum-free media. Results of 22Na+ uptake experiments differed markedly when expressed as a function of cell number or as a function of protein content or cell volume. However, protein content and cell volume bore a constant relationship to one another, and expression of results as a function of protein content or cell volume yielded qualitatively similar results. These findings show that in MDCK cells, as in other cell lines, protein content and cell volume decrease markedly during growth and that these variations must be taken into account when expressing and interpreting the results of transport measurements.
Collapse
|
11
|
Mano Y. Interaction between glutathione and the endoplasmic reticulum in cyclic protein synthesis in sea urchin embryos. Dev Biol 1977; 61:273-86. [PMID: 412717 DOI: 10.1016/0012-1606(77)90298-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Tsuboi A, Kurotsu T, Terasima T. Changes in protein content per cell during growth of mouse L cells. Exp Cell Res 1976; 103:257-61. [PMID: 1001363 DOI: 10.1016/0014-4827(76)90262-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Harris JW, Teng SS. Sulfhydryl groups during the S phase: comparison of cells from G 1 , plateau-phase G 1 , and G 0 . J Cell Physiol 1973; 81:91-5. [PMID: 4734419 DOI: 10.1002/jcp.1040810111] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
14
|
|
15
|
Littbrand B, Révész L. Radiation damage and repair in cysteamine treated cells. ACTA RADIOLOGICA: THERAPY, PHYSICS, BIOLOGY 1971; 10:257-66. [PMID: 5104927 DOI: 10.3109/02841867109129763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
|
17
|
Cross ME, Ord MG. Changes in the phosphorylation and thiol content of histones in phytohaemagglutinin-stimulated lymphocytes. Biochem J 1970; 118:191-3. [PMID: 5472150 PMCID: PMC1179097 DOI: 10.1042/bj1180191] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|