1
|
Cupellini L, Gwizdala M, Krüger TPJ. Energetic Landscape and Terminal Emitters of Phycobilisome Cores from Quantum Chemical Modeling. J Phys Chem Lett 2024; 15:9746-9756. [PMID: 39288324 DOI: 10.1021/acs.jpclett.4c02005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Phycobilisomes (PBs) are giant antenna supercomplexes of cyanobacteria that use phycobilin pigments to capture sunlight and transfer the collected energy to membrane-bound photosystems. In the PB core, phycobilins are bound to particular allophycocyanin (APC) proteins. Some phycobilins are thought to be terminal emitters (TEs) with red-shifted fluorescence. However, the precise identification of TEs is still under debate. In this work, we employ multiscale quantum-mechanical calculations to disentangle the excitation energy landscape of PB cores. Using the recent atomistic PB structures from Synechoccoccus PCC 7002 and Synechocystis PCC 6803, we compute the spectral properties of different APC trimers and assign the low-energy pigments. We show that the excitation energy of APC phycobilins is determined by geometric and electrostatic factors and is tuned by the specific protein-protein interactions within the core. Our findings challenge the simple picture of a few red-shifted bilins in the PB core and instead suggest that the red-shifts are established by the entire TE-containing APC trimers. Our work provides a theoretical microscopic basis for the interpretation of energy migration and time-resolved spectroscopy in phycobilisomes.
Collapse
Affiliation(s)
- Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Michal Gwizdala
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
| | - Tjaart P J Krüger
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
- National Institute of Theoretical and Computational Sciences (NITheCS), https://nithecs.ac.za/
| |
Collapse
|
2
|
Sineshchekov VA, Bekasova OD. Two Distinct Photoprocesses in Cyanobacterial Bilin Pigments: Energy Migration in Light‐Harvesting Phycobiliproteins versus Photoisomerization in Phytochromes. Photochem Photobiol 2020; 96:750-767. [DOI: https:/doi.org/10.1111/php.13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/17/2019] [Indexed: 12/17/2023]
Abstract
AbstractThe evolution of oxygenic photosynthesis, respiration and photoperception are connected with the appearance of cyanobacteria. The key compounds, which are involved in these processes, are tetrapyrroles: open chain — bilins and cyclic — chlorophylls and heme. The latter are characterized by their covalent bond with the apoprotein resulting in the formation of biliproteins. This type of photoreceptors is unique in that it can perform important and opposite functions—light‐harvesting in photosynthesis with the participation of phycobiliproteins and photoperception mediated by phycochromes and phytochromes. In this review, cyanobacterial phycobiliproteins and phytochrome Cph1 are considered from a comparative point of view. Structural features of these pigments, which provide their contrasting photophysical and photochemical characteristics, are analyzed. The determining factor in the case of energy migration with the participation of phycobiliproteins is blocking the torsional relaxations of the chromophore, its D‐ring, in the excited state and their freedom, in the case of phytochrome photoisomerization. From the energetics point of view, this distinction is preconditioned by the height of the activation barrier for the photoreaction and relaxation in the excited state, which depends on the degree of the chromophore fixation by its protein surroundings.
Collapse
Affiliation(s)
| | - Olga D. Bekasova
- Bach Institute of Biochemistry Fundamentals of Biotechnology Federal Research Centre Russian Academy of Sciences Moscow Russia
| |
Collapse
|
3
|
Akhtar P, Biswas A, Petrova N, Zakar T, van Stokkum IHM, Lambrev PH. Time-resolved fluorescence study of excitation energy transfer in the cyanobacterium Anabaena PCC 7120. PHOTOSYNTHESIS RESEARCH 2020; 144:247-259. [PMID: 32076913 PMCID: PMC7203587 DOI: 10.1007/s11120-020-00719-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/07/2020] [Indexed: 05/28/2023]
Abstract
Excitation energy transfer (EET) and trapping in Anabaena variabilis (PCC 7120) intact cells, isolated phycobilisomes (PBS) and photosystem I (PSI) complexes have been studied by picosecond time-resolved fluorescence spectroscopy at room temperature. Global analysis of the time-resolved fluorescence kinetics revealed two lifetimes of spectral equilibration in the isolated PBS, 30-35 ps and 110-130 ps, assigned primarily to energy transfer within the rods and between the rods and the allophycocyanin core, respectively. An additional intrinsic kinetic component with a lifetime of 500-700 ps was found, representing non-radiative decay or energy transfer in the core. Isolated tetrameric PSI complexes exhibited biexponential fluorescence decay kinetics with lifetimes of about 10 ps and 40 ps, representing equilibration between the bulk antenna chlorophylls with low-energy "red" states and trapping of the equilibrated excitations, respectively. The cascade of EET in the PBS and in PSI could be resolved in intact filaments as well. Virtually all energy absorbed by the PBS was transferred to the photosystems on a timescale of 180-190 ps.
Collapse
Affiliation(s)
- Parveen Akhtar
- Biological Research Centre, Szeged, Temesvári krt. 62, Szeged, 6726, Hungary
- ELI-ALPS, ELI-HU Nonprofit Ltd., Wolfgang Sandner u. 3, Szeged, 6728, Hungary
| | - Avratanu Biswas
- Biological Research Centre, Szeged, Temesvári krt. 62, Szeged, 6726, Hungary
- Doctoral School of Biology, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Nia Petrova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad G. Bontchev Str., Bl. 21, 1113, Sofia, Bulgaria
| | - Tomas Zakar
- Biological Research Centre, Szeged, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Ivo H M van Stokkum
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Petar H Lambrev
- Biological Research Centre, Szeged, Temesvári krt. 62, Szeged, 6726, Hungary.
| |
Collapse
|
4
|
Sineshchekov VA, Bekasova OD. Two Distinct Photoprocesses in Cyanobacterial Bilin Pigments: Energy Migration in Light-Harvesting Phycobiliproteins versus Photoisomerization in Phytochromes. Photochem Photobiol 2019; 96:750-767. [PMID: 31869438 DOI: 10.1111/php.13197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/17/2019] [Indexed: 01/29/2023]
Abstract
The evolution of oxygenic photosynthesis, respiration and photoperception are connected with the appearance of cyanobacteria. The key compounds, which are involved in these processes, are tetrapyrroles: open chain - bilins and cyclic - chlorophylls and heme. The latter are characterized by their covalent bond with the apoprotein resulting in the formation of biliproteins. This type of photoreceptors is unique in that it can perform important and opposite functions-light-harvesting in photosynthesis with the participation of phycobiliproteins and photoperception mediated by phycochromes and phytochromes. In this review, cyanobacterial phycobiliproteins and phytochrome Cph1 are considered from a comparative point of view. Structural features of these pigments, which provide their contrasting photophysical and photochemical characteristics, are analyzed. The determining factor in the case of energy migration with the participation of phycobiliproteins is blocking the torsional relaxations of the chromophore, its D-ring, in the excited state and their freedom, in the case of phytochrome photoisomerization. From the energetics point of view, this distinction is preconditioned by the height of the activation barrier for the photoreaction and relaxation in the excited state, which depends on the degree of the chromophore fixation by its protein surroundings.
Collapse
Affiliation(s)
| | - Olga D Bekasova
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Centre, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Ranjbar Choubeh R, Sonani RR, Madamwar D, Struik PC, Bader AN, Robert B, van Amerongen H. Picosecond excitation energy transfer of allophycocyanin studied in solution and in crystals. PHOTOSYNTHESIS RESEARCH 2018; 135:79-86. [PMID: 28755150 PMCID: PMC5783994 DOI: 10.1007/s11120-017-0417-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/29/2017] [Indexed: 06/01/2023]
Abstract
Cyanobacteria perform photosynthesis with the use of large light-harvesting antennae called phycobilisomes (PBSs). These hemispherical PBSs contain hundreds of open-chain tetrapyrrole chromophores bound to different peptides, providing an arrangement in which excitation energy is funnelled towards the PBS core from where it can be transferred to photosystem I and/or photosystem II. In the PBS core, many allophycocyanin (APC) trimers are present, red-light-absorbing phycobiliproteins that covalently bind phycocyanobilin (PCB) chromophores. APC trimers were amongst the first light-harvesting complexes to be crystallized. APC trimers have two spectrally different PCBs per monomer, a high- and a low-energy pigment. The crystal structure of the APC trimer reveals the close distance (~21 Å) between those two chromophores (the distance within one monomer is ~51 Å) and this explains the ultrafast (~1 ps) excitation energy transfer (EET) between them. Both chromophores adopt a somewhat different structure, which is held responsible for their spectral difference. Here we used spectrally resolved picosecond fluorescence to study EET in these APC trimers both in crystallized and in solubilized form. We found that not all closely spaced pigment couples consist of a low- and a high-energy pigment. In ~10% of the cases, a couple consists of two high-energy pigments. EET to a low-energy pigment, which can spectrally be resolved, occurs on a time scale of tens of picoseconds. This transfer turns out to be three times faster in the crystal than in the solution. The spectral characteristics and the time scale of this transfer component are similar to what have been observed in the whole cells of Synechocystis sp. PCC 6803, for which it was ascribed to EET from C-phycocyanin to APC. The present results thus demonstrate that part of this transfer should probably also be ascribed to EET within APC trimers.
Collapse
Affiliation(s)
- Reza Ranjbar Choubeh
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
- BioSolar Cells, P.O. Box 98, 6700 Wageningen, The Netherlands
| | - Ravi R. Sonani
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Sardar Patel University, Bakrol, Anand, Gujarat 388 315 India
- Commission of Atomic and Alternative Energy, Institute of Biology and Technology of Saclay, 91191 Gif-sur-Yvette, France
| | - Datta Madamwar
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Sardar Patel University, Bakrol, Anand, Gujarat 388 315 India
| | - Paul C. Struik
- Centre for Crop Systems Analysis, Wageningen University, Wageningen, The Netherlands
| | - Arjen N. Bader
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
- MicroSpectroscopy Centre, Wageningen University, Wageningen, The Netherlands
| | - Bruno Robert
- Commission of Atomic and Alternative Energy, Institute of Biology and Technology of Saclay, 91191 Gif-sur-Yvette, France
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
- MicroSpectroscopy Centre, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
6
|
Harris D, Bar-Zvi S, Lahav A, Goldshmid I, Adir N. The Structural Basis for the Extraordinary Energy-Transfer Capabilities of the Phycobilisome. Subcell Biochem 2018; 87:57-82. [PMID: 29464557 DOI: 10.1007/978-981-10-7757-9_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Light absorption is the initial step in the photosynthetic process. In all species, most of the light is absorbed by dedicated pigment-protein complexes called light harvesting complexes or antenna complexes. In the case of cyanobacteria and red-algae, photosynthetic organisms found in a wide variety of ecological niches, the major antenna is called the Phycobilisome (PBS). The PBS has many unique characteristics that sets it apart from the antenna complexes of other organisms (bacteria, algae and plants). These differences include the type of light absorbing chromophores, the protein environment of the chromophores, the method of assembly and association and the intercellular location with respect to the photosynthetic reaction centers (RCs). Since the final goal of all antenna complexes is the same - controlled absorption and transfer of the energy of the sun to the RCs, the unique structural and chemical differences of the PBS also require unique energy transfer mechanisms and pathways. In this review we will describe in detail the structural facets that lead to a mature PBS, followed by an attempt to understand the energy transfer properties of the PBS as they have been measured experimentally.
Collapse
Affiliation(s)
- Dvir Harris
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shira Bar-Zvi
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel
| | - Avital Lahav
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel
| | - Itay Goldshmid
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel
| | - Noam Adir
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
7
|
Direct single-molecule measurements of phycocyanobilin photophysics in monomeric C-phycocyanin. Proc Natl Acad Sci U S A 2017; 114:9779-9784. [PMID: 28847963 DOI: 10.1073/pnas.1705435114] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phycobilisomes are highly organized pigment-protein antenna complexes found in the photosynthetic apparatus of cyanobacteria and rhodophyta that harvest solar energy and transport it to the reaction center. A detailed bottom-up model of pigment organization and energy transfer in phycobilisomes is essential to understanding photosynthesis in these organisms and informing rational design of artificial light-harvesting systems. In particular, heterogeneous photophysical behaviors of these proteins, which cannot be predicted de novo, may play an essential role in rapid light adaptation and photoprotection. Furthermore, the delicate architecture of these pigment-protein scaffolds sensitizes them to external perturbations, for example, surface attachment, which can be avoided by study in free solution or in vivo. Here, we present single-molecule characterization of C-phycocyanin (C-PC), a three-pigment biliprotein that self-assembles to form the midantenna rods of cyanobacterial phycobilisomes. Using the Anti-Brownian Electrokinetic (ABEL) trap to counteract Brownian motion of single particles in real time, we directly monitor the changing photophysical states of individual C-PC monomers from Spirulina platensis in free solution by simultaneous readout of their brightness, fluorescence anisotropy, fluorescence lifetime, and emission spectra. These include single-chromophore emission states for each of the three covalently bound phycocyanobilins, providing direct measurements of the spectra and photophysics of these chemically identical molecules in their native protein environment. We further show that a simple Förster resonant energy transfer (FRET) network model accurately predicts the observed photophysical states of C-PC and suggests highly variable quenching behavior of one of the chromophores, which should inform future studies of higher-order complexes.
Collapse
|
8
|
Kannaujiya VK, Sinha RP. Detection of Free Thiols and Fluorescence Response of Phycoerythrin Chromophore after Ultraviolet-B Radiation Stress. J Fluoresc 2016; 27:561-567. [PMID: 27858299 DOI: 10.1007/s10895-016-1983-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 11/09/2016] [Indexed: 11/29/2022]
Abstract
The chemistry of thiol-chromophore linkage plays a central role in the nature of fluorescence of phycoerythrin (PE). Interaction of thiol and chromophore is crucial for the energy transfer, redox signal and inhibition of oxidative damage. In the present investigation the effects of ultraviolet-B radiation on an emission fluorescence intensity and wavelength shift in PE due to interaction between thiol and chromophore by remarkable strategy of detection technique was studied. Purification of PE was done by using a gel permeation and ion exchange chromatography that yielded a quite high purity index (6.40) in a monomeric (αβ) form. UV-B radiation accelerated the quenching efficiency (24.9 ± 1.52%) by reducing fluorescence emission intensity of thiol linked chromophore after 240 min of UV-B exposure. However, after blocking of transiently released free thiol by N-ethylmaleimide, quenching efficiency was increased (36.8 ± 2.80%) with marked emission wavelength shift towards shorter wavelengths up to 562 nm as compared to 575 nm in control. Emission fluorescence of free thiol was at maximum after 240 min that was detected specifically by monobromobimane (mBrB) molecular probe. The association/dissociation of bilin chromophore was analyzed by SDS- and Native-PAGE that also indicated a complete reduction in emission fluorescence. Our work clearly shows an early detection of free thiols and relative interaction with chromophore after UV-B radiation which might play a significant role in structural and functional integrity of terminal PE.
Collapse
Affiliation(s)
- Vinod K Kannaujiya
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Rajeshwar P Sinha
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
9
|
Hontani Y, Shcherbakova DM, Baloban M, Zhu J, Verkhusha VV, Kennis JTM. Bright blue-shifted fluorescent proteins with Cys in the GAF domain engineered from bacterial phytochromes: fluorescence mechanisms and excited-state dynamics. Sci Rep 2016; 6:37362. [PMID: 27857208 PMCID: PMC5114657 DOI: 10.1038/srep37362] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/25/2016] [Indexed: 11/21/2022] Open
Abstract
Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes (BphPs) are of great interest for in vivo imaging. They utilize biliverdin (BV) as a chromophore, which is a heme degradation product, and therefore they are straightforward to use in mammalian tissues. Here, we report on fluorescence properties of NIR FPs with key alterations in their BV binding sites. BphP1-FP, iRFP670 and iRFP682 have Cys residues in both PAS and GAF domains, rather than in the PAS domain alone as in wild-type BphPs. We found that NIR FP variants with Cys in the GAF or with Cys in both PAS and GAF show blue-shifted emission with long fluorescence lifetimes. In contrast, mutants with Cys in the PAS only or no Cys residues at all exhibit red-shifted emission with shorter lifetimes. Combining these results with previous biochemical and BphP1-FP structural data, we conclude that BV adducts bound to Cys in the GAF are the origin of bright blue-shifted fluorescence. We propose that the long fluorescence lifetime follows from (i) a sterically more constrained thioether linkage, leaving less mobility for ring A than in canonical BphPs, and (ii) that π-electron conjugation does not extend on ring A, making excited-state deactivation less sensitive to ring A mobility.
Collapse
Affiliation(s)
- Yusaku Hontani
- Department of Physics and Astronomy, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Mikhail Baloban
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Jingyi Zhu
- Department of Physics and Astronomy, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - John T M Kennis
- Department of Physics and Astronomy, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
10
|
Nganou C, David L, Adir N, Mkandawire M. Linker proteins enable ultrafast excitation energy transfer in the phycobilisome antenna system of Thermosynechococcus vulcanus. Photochem Photobiol Sci 2016; 15:31-44. [DOI: 10.1039/c5pp00285k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Comparison of kinetics of photoexcitation migration from PC620 to APC Core in extracted and intact pentacyclic phycobilisomes ofT. vulcanus. The extracted PBS does not have linker protein, while intact has them and they facilitate the migration.
Collapse
Affiliation(s)
- C. Nganou
- Verschuren Centre for Sustainability in Energy and the Environment
- Cape Breton University
- Sydney
- Canada
- Department of Chemistry
| | - L. David
- Schulich Faculty of Chemistry
- Technion-Israel Institute of Technology
- Haifa
- Israel
| | - N. Adir
- Schulich Faculty of Chemistry
- Technion-Israel Institute of Technology
- Haifa
- Israel
| | - M. Mkandawire
- Verschuren Centre for Sustainability in Energy and the Environment
- Cape Breton University
- Sydney
- Canada
| |
Collapse
|
11
|
Krasilnikov PM, Zlenko DV, Stadnichuk IN. The efficiency of non-photochemical fluorescence quenching of phycobilisomes by the orange carotenoid protein. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915050103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Stadnichuk IN, Krasilnikov PM, Zlenko DV, Freidzon AY, Yanyushin MF, Rubin AB. Electronic coupling of the phycobilisome with the orange carotenoid protein and fluorescence quenching. PHOTOSYNTHESIS RESEARCH 2015; 124:315-335. [PMID: 25948498 DOI: 10.1007/s11120-015-0148-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/18/2015] [Indexed: 06/04/2023]
Abstract
Using computational modeling and known 3D structure of proteins, we arrived at a rational spatial model of the orange carotenoid protein (OCP) and phycobilisome (PBS) interaction in the non-photochemical fluorescence quenching. The site of interaction is formed by the central cavity of the OCP monomer in the capacity of a keyhole to the characteristic external tip of the phycobilin-containing domain (PB) and folded loop of the core-membrane linker LCM within the PBS core. The same central protein cavity was shown to be also the site of the OCP and fluorescence recovery protein (FRP) interaction. The revealed geometry of the OCP to the PBLCM attachment is believed to be the most advantageous one as the LCM, being the major terminal PBS fluorescence emitter, gathers, before quenching by OCP, the energy from most other phycobilin chromophores of the PBS. The distance between centers of mass of the OCP carotenoid 3'-hydroxyechinenone (hECN) and the adjacent phycobilin chromophore of the PBLCM was determined to be 24.7 Å. Under the dipole-dipole approximation, from the point of view of the determined mutual orientation and the values of the transition dipole moments and spectral characteristics of interacting chromophores, the time of the direct energy transfer from the phycobilin of PBLCM to the S1 excited state of hECN was semiempirically calculated to be 36 ps, which corresponds to the known experimental data and implies the OCP is a very efficient energy quencher. The complete scheme of OCP and PBS interaction that includes participation of the FRP is proposed.
Collapse
Affiliation(s)
- Igor N Stadnichuk
- K. A. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya, 35, 127726, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
13
|
Long S, Zhou M, Tang K, Zeng XL, Niu Y, Guo Q, Zhao KH, Xia A. Single-molecule spectroscopy and femtosecond transient absorption studies on the excitation energy transfer process in ApcE(1–240) dimers. Phys Chem Chem Phys 2015; 17:13387-96. [DOI: 10.1039/c5cp01687h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The red-shifted absorption of ApcE dimers results from extending chromophore conformation, which does not depend on strong exction coupling.
Collapse
Affiliation(s)
- Saran Long
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- People's Republic of China
| | - Meng Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- People's Republic of China
| | - Kun Tang
- State Key Laboratory of Agricultural Microbiology
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Xiao-Li Zeng
- State Key Laboratory of Agricultural Microbiology
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Yingli Niu
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- People's Republic of China
| | - Qianjin Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- People's Republic of China
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Andong Xia
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- People's Republic of China
| |
Collapse
|
14
|
Nganou AC, David L, Adir N, Pouhe D, Deen MJ, Mkandawire M. Evidence of additional excitation energy transfer pathways in the phycobiliprotein antenna system of Acaryochloris marina. Photochem Photobiol Sci 2015; 14:429-38. [DOI: 10.1039/c4pp00352g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To improve the energy conversion efficiency of solar organic cells, the clue may lie in the development of devices inspired by an efficient light harvesting mechanism of some aquatic photosynthetic microorganisms that are adapted to low light intensity.
Collapse
Affiliation(s)
- A. C. Nganou
- Verschuren Centre for Sustainability in Energy and the Environment
- Cape Breton University
- Sydney
- Canada B1P 6L2
- Department of Chemistry
| | - L. David
- Schulich Faculty of Chemistry
- Technion-Israel Institute of Technology
- Haifa
- 32000 Israel
| | - N. Adir
- Schulich Faculty of Chemistry
- Technion-Israel Institute of Technology
- Haifa
- 32000 Israel
| | - D. Pouhe
- Reutlingen University
- 72762 Reutlingen
- Germany
| | - M. J. Deen
- Electrical and Computer Engineering
- McMaster University
- Ontario
- Canada L8S 4K1
| | - M. Mkandawire
- Verschuren Centre for Sustainability in Energy and the Environment
- Cape Breton University
- Sydney
- Canada B1P 6L2
| |
Collapse
|
15
|
Tal O, Trabelcy B, Gerchman Y, Adir N. Investigation of phycobilisome subunit interaction interfaces by coupled cross-linking and mass spectrometry. J Biol Chem 2014; 289:33084-97. [PMID: 25296757 DOI: 10.1074/jbc.m114.595942] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phycobilisome (PBS) is an extremely large light-harvesting complex, common in cyanobacteria and red algae, composed of rods and core substructures. These substructures are assembled from chromophore-bearing phycocyanin and allophycocyanin subunits, nonpigmented linker proteins and in some cases additional subunits. To date, despite the determination of crystal structures of isolated PBS components, critical questions regarding the interaction and energy flow between rods and core are still unresolved. Additionally, the arrangement of minor PBS components located inside the core cylinders is unknown. Different models of the general architecture of the PBS have been proposed, based on low resolution images from electron microscopy or high resolution crystal structures of isolated components. This work presents a model of the assembly of the rods onto the core arrangement and for the positions of inner core components, based on cross-linking and mass spectrometry analysis of isolated, functional intact Thermosynechococcus vulcanus PBS, as well as functional cross-linked adducts. The experimental results were utilized to predict potential docking interactions of different protein pairs. Combining modeling and cross-linking results, we identify specific interactions within the PBS subcomponents that enable us to suggest possible functional interactions between the chromophores of the rods and the core and improve our understanding of the assembly, structure, and function of PBS.
Collapse
Affiliation(s)
- Ofir Tal
- From the Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 32000, Israel and
| | - Beny Trabelcy
- the Department of Biology, Faculty of Natural Sciences, University of Haifa at Oranim, 36006 Tivon, Israel
| | - Yoram Gerchman
- the Department of Biology, Faculty of Natural Sciences, University of Haifa at Oranim, 36006 Tivon, Israel
| | - Noam Adir
- From the Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 32000, Israel and
| |
Collapse
|
16
|
Peng PP, Dong LL, Sun YF, Zeng XL, Ding WL, Scheer H, Yang X, Zhao KH. The structure of allophycocyanin B from Synechocystis PCC 6803 reveals the structural basis for the extreme redshift of the terminal emitter in phycobilisomes. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2558-69. [PMID: 25286841 PMCID: PMC8494197 DOI: 10.1107/s1399004714015776] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/06/2014] [Indexed: 11/10/2022]
Abstract
Allophycocyanin B (AP-B) is one of the two terminal emitters in phycobilisomes, the unique light-harvesting complexes of cyanobacteria and red algae. Its low excitation-energy level and the correspondingly redshifted absorption and fluorescence emission play an important role in funnelling excitation energy from the hundreds of chromophores of the extramembraneous phycobilisome to the reaction centres within the photosynthetic membrane. In the absence of crystal structures of these low-abundance terminal emitters, the molecular basis for the extreme redshift and directional energy transfer is largely unknown. Here, the crystal structure of trimeric AP-B [(ApcD/ApcB)3] from Synechocystis sp. PCC 6803 at 1.75 Å resolution is reported. In the crystal lattice, eight trimers of AP-B form a porous, spherical, 48-subunit assembly of 193 Å in diameter with an internal cavity of 1.1 × 10(6) Å(3). While the overall structure of trimeric AP-B is similar to those reported for many other phycobiliprotein trimers, the chromophore pocket of the α-subunit, ApcD, has more bulky residues that tightly pack the phycocyanobilin (PCB). Ring D of the chromophores is further stabilized by close interactions with ApcB from the adjacent monomer. The combined contributions from both subunits render the conjugated rings B, C and D of the PCB in ApcD almost perfectly coplanar. Together with mutagenesis data, it is proposed that the enhanced planarity effectively extends the conjugation system of PCB and leads to the redshifted absorption (λmax = 669 nm) and fluorescence emission (679 nm) of the ApcD chromophore in AP-B, thereby enabling highly efficient energy transfer from the phycobilisome core to the reaction centres.
Collapse
Affiliation(s)
- Pan-Pan Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Liang-Liang Dong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Ya-Fang Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Xiao-Li Zeng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Wen-Long Ding
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Hugo Scheer
- Department Biologie I, Universität München, Menzinger Strasse 67, D-80638 München, Germany
| | - Xiaojing Yang
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| |
Collapse
|
17
|
Chen H, Dang W, Xie J, Zhao J, Weng Y. Ultrafast energy transfer pathways in R-phycoerythrin from Polysiphonia urceolata. PHOTOSYNTHESIS RESEARCH 2012; 111:81-86. [PMID: 22083175 DOI: 10.1007/s11120-011-9708-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 10/31/2011] [Indexed: 05/31/2023]
Abstract
Energy transfer (ET) processes between chromophores in R-phycoerythrin (R-PE) from Polysiphonia urceolata were studied by use of ultrafast spectroscopic methods. Several primary ET pathways were elaborated. A fluorescence decay component with a time constant of several hundred picoseconds observed by streak camera is tentatively assigned to the reversible formation of exciton traps between α84 and β84 pigment pairs. In order to investigate much faster ET processes in R-PE, a noncollinear optical parametric amplifier based femtosecond time-resolved transient fluorescence spectrometer was employed. The results reveal that the ET between α84 and β84 pigment pair has a time constant of 1-2 ps; the energy migration between α84 and β84 pairs within the R-PE trimer has a time constant of 30-40 ps. We also demonstrated an ET process from phycourobilin to phycoerythrobilin with a time constant as fast as 2.5-3.0 ps, which was directly observed in fluorescence kinetics by selective excitation of the phycourobilin molecules acting as the energy donor.
Collapse
Affiliation(s)
- Hailong Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijng, 100190, China
| | | | | | | | | |
Collapse
|
18
|
Theiss C, Schmitt FJ, Pieper J, Nganou C, Grehn M, Vitali M, Olliges R, Eichler HJ, Eckert HJ. Excitation energy transfer in intact cells and in the phycobiliprotein antennae of the chlorophyll d containing cyanobacterium Acaryochloris marina. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1473-1487. [PMID: 21396735 DOI: 10.1016/j.jplph.2011.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 02/04/2011] [Accepted: 02/07/2011] [Indexed: 05/30/2023]
Abstract
The cyanobacterium Acaryochloris marina is unique because it mainly contains Chlorophyll d (Chl d) in the core complexes of PS I and PS II instead of the usually dominant Chl a. Furthermore, its light harvesting system has a structure also different from other cyanobacteria. It has both, a membrane-internal chlorophyll containing antenna and a membrane-external phycobiliprotein (PBP) complex. The first one binds Chl d and is structurally analogous to CP43. The latter one has a rod-like structure consisting of three phycocyanin (PC) homohexamers and one heterohexamer containing PC and allophycocyanin (APC). In this paper, we give an overview on the investigations of excitation energy transfer (EET) in this PBP-light-harvesting system and of charge separation in the photosystem II (PS II) reaction center of A. marina performed at the Technische Universität Berlin. Due to the unique structure of the PBP antenna in A. marina, this EET occurs on a much shorter overall time scale than in other cyanobacteria. We also briefly discuss the question of the pigment composition in the reaction center (RC) of PS II and the nature of the primary donor of the PS II RC.
Collapse
Affiliation(s)
- Christoph Theiss
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Strasse des 17. Juni 135, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pullerits T, Freiberg A. Kinetic model of primary energy transfer and trapping in photosynthetic membranes. Biophys J 2010; 63:879-96. [PMID: 19431849 DOI: 10.1016/s0006-3495(92)81688-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The picosecond time-domain incoherent singlet excitation transfer and trapping kinetics in core antenna of photosynthetic bacteria are studied in case of low excitation intensities by numerical integration of the appropriate master equation in a wide temperature range of 4-300 K. The essential features of our two-dimensional-lattice model are as follows: Förster excitation transfer theory, spectral heterogeneity of both the light-harvesting antenna and the reaction center, treatment of temperature effects through temperature dependence of spectral bands, inclusion of inner structure of the trap, and transition dipole moment orientation. The fluorescence kinetics is analyzed in terms of distributions of various kinetic components, and the influence of different inhomogeneities (orientational, spectral) is studied.A reasonably good agreement between theoretical and experimental fluorescence decay kinetics for purple photosynthetic bacterium Rhodospirillum rubrum is achieved at high temperatures by assuming relatively large antenna spectral inhomogeneity: 20 nm at the whole bandwidth of 40 nm. The mean residence time in the antenna lattice site (it is assumed to be the aggregate of four bacteriochlorophyll a molecules bound to proteins) is estimated to be approximately 12 ps. At 4 K only qualitative agreement between model and experiment is gained. The failure of quantitative fitting is perhaps due to the lack of knowledge about the real structure of antenna or local heating and cooling effects not taken into account.
Collapse
Affiliation(s)
- T Pullerits
- Institute of Physics, Estonian Academy of Sciences, 202400 Tartu, Estonia
| | | |
Collapse
|
20
|
Allophycocyanin trimer stability and functionality are primarily due to polar enhanced hydrophobicity of the phycocyanobilin binding pocket. J Mol Biol 2008; 384:406-21. [PMID: 18823993 DOI: 10.1016/j.jmb.2008.09.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Revised: 09/04/2008] [Accepted: 09/10/2008] [Indexed: 11/22/2022]
Abstract
Allophycocyanin (APC) is the primary pigment-protein component of the cores of the phycobilisome antenna complex. In addition to an extremely high degree of amino acid sequence conservation, the overall structures of APC from both mesophilic and thermophilic species are almost identical at all levels of assembly, yet APC from thermophilic organisms should have structural attributes that prevent thermally induced denaturation. We determined the structure of APC from the thermophilic cyanobacterium Thermosynechococcus vulcanus to 2.9 A, reaffirming the conservation of structural similarity with APC from mesophiles. We provide spectroscopic evidence that T. vulcanus APC is indeed more stable at elevated temperatures in vitro, when compared with the APC from mesophilic species. APC thermal and chemical stability levels are further enhanced when monitored in the presence of high concentrations of buffered phosphate, which increases the strength of hydrophobic interactions, and may mimic the effect of cytosolic crowding. Absorption spectroscopy, size-exclusion HPLC, and native gel electrophoresis also show that the thermally or chemically induced changes in the APC absorption spectra that result in the loss of the prominent 652-nm band in trimeric APC are not a result of physical monomerization. We propose that the bathochromic shift that occurs in APC upon trimerization is due to the coupling of the hydrophobicity of the alpha84 phycocyanobilin cofactor environment created by a deep cleft formed by the beta subunit with highly charged flanking regions. This arrangement also provides the additional stability required by thermophiles at elevated temperatures. The chemical environment that induces the bathochromic shift in APC trimers is different from the source of shifts in the absorption of monomers of the terminal energy acceptors APC(B) and L(CM), as visualized by the building of molecular models.
Collapse
|
21
|
Schneider S, Prenzel CJ, Brehm G, Gottschalk L, Zhao KH, Scheer H. RESONANCE-ENHANCED CARS SPECTROSCOPY OF BILIPROTEINS. INFLUENCE OF AGGREGATION and LINKER PROTEINS ON CHROMOPHORE STRUCTURE IN ALLOPHYCOCYANIN (Mastigocladus laminosus). Photochem Photobiol 2008. [DOI: 10.1111/j.1751-1097.1995.tb09146.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
MacColl R. Allophycocyanin and energy transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1657:73-81. [PMID: 15238265 DOI: 10.1016/j.bbabio.2004.04.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 04/06/2004] [Accepted: 04/16/2004] [Indexed: 11/21/2022]
Abstract
Allophycocyanin is a biliprotein located in the core of the phycobilisome. The biliprotein is isolated and purified as a trimer (alpha3beta3), where a monomer is an alphabeta structure. Each alpha and beta subunit has a single noncyclic tetrapyrrole chromophore, called phycocyanobilin. The trimer of allophycocyanin has an unusual absorption maximum at 650 nm with a shoulder at 620 nm, while the monomer has an absorption maximum at 615 nm. Two explanations have been proposed for the 650-nm maximum. In one, this maximum is produced by the interaction of a particular local protein environment for three of the chromophores, causing them to red shift, while the other three chromophores are at a higher energy. Energy is transferred from the high- to the low-energy chromophores by Förster resonance energy transfer, the donor-acceptor model. In the second proposal, there is strong exciton coupling between two chromophores of the trimer that closely approach across the monomer-monomer interface. The strong interaction causes exciton splitting and a red shift in the absorption. There are three of these strongly coupled chromophore pairs, and energy is transferred between the two-exciton states of a pair by internal conversion. A variety of biophysical methods have been used to examine this question. Although evidence supporting both models has been produced, sophisticated ultra fast fluorescence results from a plethora of approaches now firmly point to the latter strong coupling hypothesis as being more likely. Between the different strongly coupled pairs, Förster resonance energy transfer should occur. For monomers of allophycocyanin, Förster resonance energy transfer occurs between the two chromophores.
Collapse
Affiliation(s)
- Robert MacColl
- Wadsworth Center, Laboratories and Research, New York State Department of Health, P.O. Box 509, Albany, NY 12201-0509 USA.
| |
Collapse
|
23
|
Li Y, Wang B, Ai XC, Zhang XK, Zhao JQ, Jiang LJ. Spectroscopic investigation on the energy transfer process in photosynthetic apparatus of cyanobacteria. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2004; 60:1543-1547. [PMID: 15147696 DOI: 10.1016/j.saa.2003.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2003] [Revised: 08/19/2003] [Accepted: 08/21/2003] [Indexed: 05/24/2023]
Abstract
In this work, we employ cyanobacteria, Spirulina platensis, and separate their photosynthetic apparatus, phycobilisome (PBS), thylakoid membrane and phycobilisome-thylakoid membrane complex. The steady state absorption spectra, fluorescence spectra and corresponding deconvoluted spectra and picosecond time-resolved spectra are used to investigate the energy transfer process in phycobilisome-thylakoid membrane complex. The results on steady state spectra show chlorophylls of the photosystem II are able to transfer excitation energy to phycobilisome with Chla molecules selectively excited. The decomposition of the steady state spectra further suggest the uphill energy transfer originate from chlorophylls of photosystem II to cores of phycobilisome, while rods and cores of phycobilisome cannot receive energy from the chlorophylls of photosystem I. The time constant for the back energy transfer process is 18 ps.
Collapse
Affiliation(s)
- Ye Li
- The Center for Molecular Science, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100080, China.
| | | | | | | | | | | |
Collapse
|
24
|
Beutler M, Wiltshire KH, Arp M, Kruse J, Reineke C, Moldaenke C, Hansen UP. A reduced model of the fluorescence from the cyanobacterial photosynthetic apparatus designed for the in situ detection of cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1604:33-46. [PMID: 12686419 DOI: 10.1016/s0005-2728(03)00022-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fluorometric determination of the chlorophyll (Chl) content of cyanobacteria is impeded by the unique structure of their photosynthetic apparatus, i.e., the phycobilisomes (PBSs) in the light-harvesting antennae. The problems are caused by the variations in the ratio of the pigment PC to Chl a resulting from adaptation to varying environmental conditions. In order to include cyanobacteria in fluorometric analysis of algae, a simplified energy distribution model describing energy pathways in the cyanobacterial photosynthetic apparatus was conceptualized. Two sets of mathematical equations were derived from this model and tested. Fluorescence of cyanobacteria was measured with a new fluorometer at seven excitation wavelength ranges and at three detection channels (650, 685 and 720 nm) in vivo. By employing a new fit procedure, we were able to correct for variations in the cyanobacterial fluorescence excitation spectra and to account for other phytoplankton signals. The effect of energy-state transitions on the PC fluorescence emission of PBSs was documented. The additional use of the PC fluorescence signal in combination with our recently developed mathematical approach for phytoplankton analysis based on Chl fluorescence spectroscopy allows a more detailed study of cyanobacteria and other phytoplankton in vivo and in situ.
Collapse
Affiliation(s)
- M Beutler
- Max-Planck-Institut (MPI) für Limnologie, Plön, Germany.
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Cyanobacterial phycobilisomes harvest light and cause energy migration usually toward photosystem II reaction centers. Energy transfer from phycobilisomes directly to photosystem I may occur under certain light conditions. The phycobilisomes are highly organized complexes of various biliproteins and linker polypeptides. Phycobilisomes are composed of rods and a core. The biliproteins have their bilins (chromophores) arranged to produce rapid and directional energy migration through the phycobilisomes and to chlorophyll a in the thylakoid membrane. The modulation of the energy levels of the four chemically different bilins by a variety of influences produces more efficient light harvesting and energy migration. Acclimation of cyanobacterial phycobilisomes to growth light by complementary chromatic adaptation is a complex process that changes the ratio of phycocyanin to phycoerythrin in rods of certain phycobilisomes to improve light harvesting in changing habitats. The linkers govern the assembly of the biliproteins into phycobilisomes, and, even if colorless, in certain cases they have been shown to improve the energy migration process. The Lcm polypeptide has several functions, including the linker function of determining the organization of the phycobilisome cores. Details of how linkers perform their tasks are still topics of interest. The transfer of excitation energy from bilin to bilin is considered, particularly for monomers and trimers of C-phycocyanin, phycoerythrocyanin, and allophycocyanin. Phycobilisomes are one of the ways cyanobacteria thrive in varying and sometimes extreme habitats. Various biliprotein properties perhaps not related to photosynthesis are considered: the photoreversibility of phycoviolobilin, biophysical studies, and biliproteins in evolution. Copyright 1998 Academic Press.
Collapse
Affiliation(s)
- R MacColl
- Wadsworth Center, New York State Department of Health, Albany, New York, 12201-0509, USA
| |
Collapse
|
26
|
Zhang JM, Zheng XG, Zhang JP, Zhao FL, Xie J, Wang HZ, Zhao JQ, Jiang LJ. Studies of the Energy Transfer among Allophycocyanin from Phycobilisomes of Polysiphonia urceolata by Time-Resolved Fluorescence Isotropic and Anisotropic Spectroscopy. Photochem Photobiol 1998. [DOI: 10.1111/j.1751-1097.1998.tb05284.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Ying L, Xie XS. Fluorescence Spectroscopy, Exciton Dynamics, and Photochemistry of Single Allophycocyanin Trimers. J Phys Chem B 1998. [DOI: 10.1021/jp983227d] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Zhang J, Zhang J, Yang Z, Zhao J, Jiang L, Chen J, Ye T, Zhang Q. Energy transfer kinetics of phycoerythrocyanins (PECs) from the cyanobacteriumAnabaena variabilis (I). ACTA ACUST UNITED AC 1997. [DOI: 10.1007/bf02877730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
|
30
|
Pullerits T, Sundström V. Photosynthetic Light-Harvesting Pigment−Protein Complexes: Toward Understanding How and Why. Acc Chem Res 1996. [DOI: 10.1021/ar950110o] [Citation(s) in RCA: 472] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tõnu Pullerits
- Department of Chemical Physics, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Villy Sundström
- Department of Chemical Physics, Lund University, P.O. Box 124, 22100 Lund, Sweden
| |
Collapse
|
31
|
Foguel D, Weber G. Pressure-induced dissociation and denaturation of allophycocyanin at subzero temperatures. J Biol Chem 1995; 270:28759-66. [PMID: 7499398 DOI: 10.1074/jbc.270.48.28759] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The thermodynamics of assembly of the allophycocyanin hexamer was examined employing hydrostatic pressures in the range of 1 bar to 2.4 kbar and temperatures of 20 to -12 degrees C, the latter made possible by the decrease of the freezing point of water under pressure. The existence of two processes, dissociation of the hexamer into dimers, (alpha beta)3-->3 (alpha beta), and dissociation of the alpha beta dimers into monomers, (alpha beta)-->alpha + beta have been recognized previously by changes in the absorbance and fluorescence of the tetrapyrrolic chromophores owing to added ligands. The same changes are observed in the absence of ligands at pressures of under 2.4 kbar and temperatures down to -12 degrees C. On decompression from 2.4 kbar at 0 degrees C, appreciable hysteresis and a persistent loss of 50% in the absorbance at 653 nm is observed. It results from the conformational drift of the isolated subunits and is reduced to 10% when the highest pressure is limited to 1.6 kbar. The thermodynamic parameters of the reaction alpha + beta-->alpha beta can be determined from pressure effects on perchlorate solutions of allophycocyanin, which consist of dimers alone. Their previous knowledge permits estimation, under suitable hypotheses, of the thermodynamic parameters of the reaction 3(alpha beta)-->(alpha beta)3 from the overall pressure effects on the hexamers. Both association reactions have positive enthalpy changes, and the whole hexamer assembly is made possible by the excess entropy.
Collapse
Affiliation(s)
- D Foguel
- Department of Biochemistry, School of Chemical Science, University of Illinois, Urbana 61801, USA
| | | |
Collapse
|
32
|
A new type of complementary chromatic adaptation exemplified byPhormidium sp. C86: Changes in the number of peripheral rods and in the stoichiometry of core complexes in phycobilisomes. Arch Microbiol 1995. [DOI: 10.1007/bf02525319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Bhalerao RP, Gillbro T, Gustafsson P. Functional phycobilisome core structures in a phycocyanin-less mutant of cyanobacterium Synechococcus sp. PCC 7942. PHOTOSYNTHESIS RESEARCH 1995; 45:61-70. [PMID: 24301380 DOI: 10.1007/bf00032236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/1995] [Accepted: 07/03/1995] [Indexed: 06/02/2023]
Abstract
We have constructed a mutant Synechococcus sp. PCC 7942, termed R2HECAT, in which the entire phycobilisome rod operon has been deleted. In the whole cell absorption spectra of R2HECAT, the peak corresponding to phycocyanin (PC), λmax≈620 nm, could not be detected. However, a single pigment-protein fraction with λmax=654 nm could be isolated on sucrose gradients from R2HECAT. Analysis of this pigment-protein fraction by non-denaturing PAGE indicates an apparent molecular mass of about 1200-1300 kDa. On exposure to low temperature, the isolated pigment-protein complex dissociated to a protein complex with a molecular mass of about 560 kDa. When analysed by SDS-PAGE, the pigment-protein fraction was found to consist of the core polypeptides but lacked PC, 27, 33, 30, and the 9 kDa polypeptides which are a part of the rods. All the chromophore bearing polypeptides of the core were found to be chromophorylated. CD as well as absorption spectra showed the expected maxima around 652 and 675 nm from allophycocyanin (APC) and allophycocyanin B (APC-B) chromophores. Low temperature fluorescence and excitation spectra also showed that the core particles were fully functional with respect to the energy transfer between the APC chromophores. We conclude that PC and therefore the rods are dispensable for the survival of Synechococcus sp. PCC 7942. The results indicate that stable and functional core can assemble in absence of the rods. These rod-less phycobilisome core is able to transfer energy to Photosystem II.
Collapse
Affiliation(s)
- R P Bhalerao
- Department of Plant Physiology, Umeå University, S-901 87, Umeå, Sweden
| | | | | |
Collapse
|
34
|
Sineshchekov VA. Photobiophysics and photobiochemistry of the heterogeneous phytochrome system. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - BIOENERGETICS 1995; 1228:125-164. [DOI: https:/doi.org/10.1016/0005-2728(94)00173-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
|
35
|
Photobiophysics and photobiochemistry of the heterogeneous phytochrome system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1995. [DOI: 10.1016/0005-2728(94)00173-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Sharkov AV, Kryukov IV, Khoroshilov EV, Kryukov PG, Fischer R, Scheer H, Gillbro T. Femtosecond spectral and anisotropy study of excitation energy transfer between neighbouring α-80 and β-81 chromophores of allophycocyanin trimers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1994. [DOI: 10.1016/0005-2728(94)90055-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
|
38
|
Pullerits T, Chachisvilis M, Jones M, Hunter C, Sundström V. Exciton dynamics in the light-harvesting complexes of Rhodobacter sphaeroides. Chem Phys Lett 1994. [DOI: 10.1016/0009-2614(94)00561-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
|
40
|
Gottschalk L, Lottspeich F, Scheer H. RECONSTITUTION OF ALLOPHYCOCYANIN FROM Mastigocladus laminosus WITH ISOLATED LINKER POLYPEPTIDE. Photochem Photobiol 1993. [DOI: 10.1111/j.1751-1097.1993.tb04966.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Hucke M, Schweitzer G, Holzwarth AR, Sidler W, Zuber H. STUDIES ON CHROMOPHORE COUPLING IN ISOLATED PHYCOBILIPROTEINS. IV. FEMTOSECOND TRANSIENT ABSORPTION STUDY OF ULTRAFAST EXCITED STATE DYNAMICS IN TRIMERIC PHYCOERYTHROCYANIN COMPLEXES. Photochem Photobiol 1993. [DOI: 10.1111/j.1751-1097.1993.tb02258.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Gillbro T, Sharkov AV, Kryukov IV, Khoroshilov EV, Kryukov PG, Fischer R, Scheer H. Förster energy transfer between neighbouring chromophores in C-phycocyanin trimers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1993. [DOI: 10.1016/0005-2728(93)90072-n] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Chlorosomes, photosynthetic antennae with novel self-organized pigment structures. J Photochem Photobiol A Chem 1992. [DOI: 10.1016/1010-6030(92)85032-p] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
|
45
|
Mullineaux CW, Holzwarth AR. Kinetics of excitation energy transfer in the cyanobacterial phycobilisome-Photosystem II complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1991. [DOI: 10.1016/0005-2728(91)90010-l] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Fluorescence lifetime studies of cyanobacterial photosystem II mutants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1991. [DOI: 10.1016/0005-2728(91)90014-f] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Doering AE, Lederer WJ. Voltage-dependent block of the Na-Ca exchanger in heart muscle examined using giant excised patches from guinea pig cardiac myocytes. Ann N Y Acad Sci 1991; 639:172-6. [PMID: 1785842 DOI: 10.1111/j.1749-6632.1991.tb17302.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- A E Doering
- Department of Physiology, University of Maryland School of Medicine, Baltimore 21201
| | | |
Collapse
|
48
|
Malak H, MacColl R. A picosecond time-resolved fluorescence study on the biliprotein, phycocyanin 645. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1991. [DOI: 10.1016/s0005-2728(05)80201-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Fluorescence studies on R-phycoerythrin and C-phycoerythrin. J Fluoresc 1991; 1:135-40. [DOI: 10.1007/bf00865209] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/1991] [Revised: 04/30/1991] [Accepted: 05/16/1991] [Indexed: 10/26/2022]
|
50
|
|