1
|
Baek IH, Helms V, Kim Y. Genetically Engineered Filamentous Bacteriophages Displaying TGF-β1 Promote Angiogenesis in 3D Microenvironments. J Funct Biomater 2024; 15:314. [PMID: 39590518 PMCID: PMC11594957 DOI: 10.3390/jfb15110314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Combined 3D cell culture in vitro assays with microenvironment-mimicking systems are effective for cell-based screening tests of drug and chemical toxicity. Filamentous bacteriophages have diverse applications in material science, drug delivery, tissue engineering, energy, and biosensor development. Specifically, genetically modified bacteriophages have the potential to deliver therapeutic molecules or genes to targeted tumor tissues. The engineered bacteriophages in this study significantly enhanced endothelial cell migration and tube formation within the extracellular matrix (ECM). Compared to TGF-β1 alone and non-modified phages, the presence of TGF-β1 on the bacteriophages demonstrated superior performance as a continuous stimulant in the microenvironment, effectively promoting these angiogenic processes. Assays, including RT-qPCR, ELISA, and fluorescence microscopy, confirmed the expression of angiogenic markers such as CD31, validating the formation of 3D angiogenic structures. Our findings indicate that the TGF-β1 displayed by bacteriophages likely acted as a chemotactic factor, promoting the migration, proliferation, and tube formation of endothelial cells (ECs) within the ECM. Although direct contact between ECs and bacteriophages was not explicitly confirmed, the observed effects strongly suggest that TGF-β1-RGD bacteriophages contributed to the stimulation of angiogenic processes. The formation of angiogenic structures by ECs in the ECM was confirmed as three-dimensional and regulated by the surface treatment of microfluidic channels. These results suggest that biocompatible TGF-β1-displaying bacteriophages could continuously stimulate the microenvironment in vitro for angiogenesis models. Furthermore, we demonstrated that these functionalized bacteriophages have the potential to be utilized as versatile biomaterials in the field of biomedical engineering. Similar strategies could be applied to develop angiogenic matrices for tissue engineering in in vitro assays.
Collapse
Affiliation(s)
- In-Hyuk Baek
- Environmental Safety Group, Korea Institute of Science & Technology Europe GmbH, Campus E71, 66123 Saarbrücken, Germany;
- Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany;
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany;
| | - Youngjun Kim
- Environmental Safety Group, Korea Institute of Science & Technology Europe GmbH, Campus E71, 66123 Saarbrücken, Germany;
| |
Collapse
|
2
|
M13 Bacteriophage-Based Bio-nano Systems for Bioapplication. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Investigation of the Relation between Temperature and M13 Phage Production via ATP Expenditure. Processes (Basel) 2022. [DOI: 10.3390/pr10050962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
M13 bacteriophage is a promising biomolecule capable of various bionano and material science applications. The biomaterial can self-assemble into matrices to fabricate bioscaffolds using high phage concentration and high phage purity. Previous studies aimed to acquire these conditions in large-scale phage production and have identified the optimal culture temperature range at 28–31 °C. However, explanations as to why this temperature range was optimal for phage production is absent from the work. Therefore, in this study, we identified the relation between culture temperature and M13 phage production using ATP expenditure calculations to comprehend the high yield phage production at the optimal temperature range. We extended a coarse-grained model for the evaluation of phage protein and ribosomal protein synthesis with the premise that phage proteins (a ribosomal protein) are translated by bacterial ribosomes in E. coli through expenditure of ATP energy. By comparing the ATP energy for ribosomal protein synthesis estimated using the coarse-grained model and the experimentally calculated ATP expenditure for phage production, we interpreted the high phage yield at the optimal temperature range and recognized ATP analysis as a reasonable method that can be used to evaluate other parameters for phage production optimization.
Collapse
|
4
|
Baek IH, Han HS, Baik S, Helms V, Kim Y. Detection of Acidic Pharmaceutical Compounds Using Virus-Based Molecularly Imprinted Polymers. Polymers (Basel) 2018; 10:polym10090974. [PMID: 30960899 PMCID: PMC6403656 DOI: 10.3390/polym10090974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 11/30/2022] Open
Abstract
Molecularly imprinted polymers (MIPs) have proven to be particularly effective chemical probes for the molecular recognition of proteins, DNA, and viruses. Here, we started from a filamentous bacteriophage to synthesize a multi-functionalized MIP for detecting the acidic pharmaceutic clofibric acid (CA) as a chemical pollutant. Adsorption and quartz crystal microbalance with dissipation monitoring experiments showed that the phage-functionalized MIP had a good binding affinity for CA, compared with the non-imprinted polymer and MIP. In addition, the reusability of the phage-functionalized MIP was demonstrated for at least five repeated cycles, without significant loss in the binding activity. The results indicate that the exposed amino acids of the phage, together with the polymer matrix, create functional binding cavities that provide higher affinity to acidic pharmaceutical compounds.
Collapse
Affiliation(s)
- In-Hyuk Baek
- Environmental Safety Group, Korea Institute of Science & Technology Europe GmbH, 66123 Saarbrücken, Germany.
- Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany.
| | - Hyung-Seop Han
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, B4495 Oxford, UK.
| | - Seungyun Baik
- Environmental Safety Group, Korea Institute of Science & Technology Europe GmbH, 66123 Saarbrücken, Germany.
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany.
| | - Youngjun Kim
- Environmental Safety Group, Korea Institute of Science & Technology Europe GmbH, 66123 Saarbrücken, Germany.
| |
Collapse
|
5
|
Gibaud T. Filamentous phages as building blocks for reconfigurable and hierarchical self-assembly. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:493003. [PMID: 29099393 DOI: 10.1088/1361-648x/aa97f9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Filamentous bacteriophages such as fd-like viruses are monodisperse rod-like colloids that have well defined properties of diameter, length, rigidity, charge and chirality. Engineering these viruses leads to a library of colloidal rods, which can be used as building blocks for reconfigurable and hierarchical self-assembly. Their condensation in an aqueous solution with additive polymers, which act as depletants to induce attraction between the rods, leads to a myriad of fluid-like micronic structures ranging from isotropic/nematic droplets, colloid membranes, achiral membrane seeds, twisted ribbons, π-wall, pores, colloidal skyrmions, Möbius anchors, scallop membranes to membrane rafts. These structures, and the way that they shape-shift, not only shed light on the role of entropy, chiral frustration and topology in soft matter, but also mimic many structures encountered in different fields of science. On the one hand, filamentous phages being an experimental realization of colloidal hard rods, their condensation mediated by depletion interactions constitutes a blueprint for the self-assembly of rod-like particles and provides a fundamental foundation for bio- or material-oriented applications. On the other hand, the chiral properties of the viruses restrict the generalities of some results but vastly broaden the self-assembly possibilities.
Collapse
Affiliation(s)
- Thomas Gibaud
- Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| |
Collapse
|
6
|
Lee JH, Warner CM, Jin HE, Barnes E, Poda AR, Perkins EJ, Lee SW. Production of tunable nanomaterials using hierarchically assembled bacteriophages. Nat Protoc 2017; 12:1999-2013. [DOI: 10.1038/nprot.2017.085] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
7
|
Fibre diffraction studies of biological macromolecules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 127:43-87. [DOI: 10.1016/j.pbiomolbio.2017.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/21/2017] [Accepted: 04/05/2017] [Indexed: 12/27/2022]
|
8
|
Marvin DA, Symmons MF, Straus SK. Structure and assembly of filamentous bacteriophages. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 114:80-122. [PMID: 24582831 DOI: 10.1016/j.pbiomolbio.2014.02.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 02/09/2014] [Indexed: 12/24/2022]
Abstract
Filamentous bacteriophages are interesting paradigms in structural molecular biology, in part because of the unusual mechanism of filamentous phage assembly. During assembly, several thousand copies of an intracellular DNA-binding protein bind to each copy of the replicating phage DNA, and are then displaced by membrane-spanning phage coat proteins as the nascent phage is extruded through the bacterial plasma membrane. This complicated process takes place without killing the host bacterium. The bacteriophage is a semi-flexible worm-like nucleoprotein filament. The virion comprises a tube of several thousand identical major coat protein subunits around a core of single-stranded circular DNA. Each protein subunit is a polymer of about 50 amino-acid residues, largely arranged in an α-helix. The subunits assemble into a helical sheath, with each subunit oriented at a small angle to the virion axis and interdigitated with neighbouring subunits. A few copies of "minor" phage proteins necessary for infection and/or extrusion of the virion are located at each end of the completed virion. Here we review both the structure of the virion and aspects of its function, such as the way the virion enters the host, multiplies, and exits to prey on further hosts. In particular we focus on our understanding of the way the components of the virion come together during assembly at the membrane. We try to follow a basic rule of empirical science, that one should chose the simplest theoretical explanation for experiments, but be prepared to modify or even abandon this explanation as new experiments add more detail.
Collapse
Affiliation(s)
- D A Marvin
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| | - M F Symmons
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - S K Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
9
|
Curtis SB, Dunbar WS, MacGillivray RTA. Bacteriophage-induced aggregation of oil sands tailings. Biotechnol Bioeng 2012; 110:803-11. [PMID: 23055243 DOI: 10.1002/bit.24745] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/12/2012] [Accepted: 09/24/2012] [Indexed: 11/08/2022]
Abstract
Very large quantities of tailings are produced as a result of processing oil sands. After the sand particles settle out, a dense stable mixture of clay, silt, water with residual bitumen, salts, and organics called mature fine tailings (MFT) can remain in suspension for decades. Research into developing methods that would allow consolidation and sedimentation of the suspended particles is ongoing. We have studied the ability of a filamentous bacteriophage (called VP12 bearing the peptide DSQKTNPS at the N-terminus of the major coat protein pVIII) to aggregate MFT. To understand the biophysical basis of the aggregation, phage-induced aggregation of diluted MFT was measured at room temperature under varying conditions of pH, salt, detergent. Phage at concentrations of 5.0 × 10(11)/mL to 10(12)/mL induced rapid settling of the diluted MFT. The addition of sodium chloride (10 mM) lowered the concentration of phage required to induce aggregation. Since the non-ionic detergents Triton-X 100 and Tween-20, and the ionic detergent sodium deoxycholate had little effect, hydrophobic interactions do not appear to be a major contributor to the phage-induced aggregation of MFT. However, aggregation was prevented at pH values higher than 9.0 suggesting that positively charged amino acid residues are required for MFT aggregation by phage. Genetic engineering of the pVIII peptide sequence indicated that hydrogen bonding also contributes to phage-induced aggregation. In addition, replacing the basic residue lysine with an alanine in the recombinant peptide of VP12 completely prevented phage-induced aggregation. Three other phage displaying different amino acid sequences but all containing a lysine in the same position had variable aggregation efficiencies, ranging from no aggregation to rapid aggregation. We conclude that not only are the functional groups of the amino acids important, but the conformation that is adopted by the variable pVIII peptide is also important for phage-induced MFT aggregation.
Collapse
Affiliation(s)
- Susan B Curtis
- Norman B. Keevil Institute of Mining Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
10
|
Buitenhuis J. Electrophoresis of fd-virus particles: experiments and an analysis of the effect of finite rod lengths. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:13354-13363. [PMID: 22958165 DOI: 10.1021/la302245x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The electrophoretic mobility of rodlike fd viruses is measured and compared to theory, with the theoretical calculations performed according to Stigter (Stigter, D. Charged Colloidal Cylinder with a Gouy Double-Layer. J. Colloid Interface Sci. 1975, 53, 296-306. Stigter, D. Electrophoresis of Highly Charged Colloidal Cylinders in Univalent Salt- Solutions. 1. Mobility in Transverse Field. J. Phys. Chem. 1978, 82, 1417-1423. Stigter, D. Electrophoresis of Highly Charged Colloidal Cylinders in Univalent Salt Solutions. 2. Random Orientation in External Field and Application to Polyelectrolytes. J. Phys. Chem. 1978, 82, 1424-1429. Stigter, D. Theory of Conductance of Colloidal Electrolytes in Univalent Salt Solutions. J. Phys. Chem. 1979, 83, 1663-1670), who describes the electrophoretic mobility of infinite cylinders including relaxation effects. Using the dissociation constants of the ionizable groups on the surfaces of the fd viruses, we can calculate the mobility without any adjustable parameter (apart from the possible Stern layer thickness). In addition, the approximation in the theoretical description of Stigter (and others) of using a model of infinitely long cylinders, which consequently is independent of the aspect ratio, is examined by performing more elaborate numerical calculations for finite cylinders. It is shown that, although the electrophoretic mobility of cylindrical particles in the limit of low ionic strength depends on the aspect ratio much more than "end effects", at moderate and high ionic strengths the finite and infinite cylinder models differ only to a degree that can be attributed to end effects. Furthermore, the range of validity of the Stokes regime is systematically calculated.
Collapse
Affiliation(s)
- Johan Buitenhuis
- Soft Matter Group, ICS-3, Forschungszentrum Jülich, 52425 Jülich, Germany.
| |
Collapse
|
11
|
Lee BY, Zhang J, Zueger C, Chung WJ, Yoo SY, Wang E, Meyer J, Ramesh R, Lee SW. Virus-based piezoelectric energy generation. NATURE NANOTECHNOLOGY 2012; 7:351-6. [PMID: 22581406 DOI: 10.1038/nnano.2012.69] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/12/2012] [Indexed: 05/19/2023]
Abstract
Piezoelectric materials can convert mechanical energy into electrical energy, and piezoelectric devices made of a variety of inorganic materials and organic polymers have been demonstrated. However, synthesizing such materials often requires toxic starting compounds, harsh conditions and/or complex procedures. Previously, it was shown that hierarchically organized natural materials such as bones, collagen fibrils and peptide nanotubes can display piezoelectric properties. Here, we demonstrate that the piezoelectric and liquid-crystalline properties of M13 bacteriophage (phage) can be used to generate electrical energy. Using piezoresponse force microscopy, we characterize the structure-dependent piezoelectric properties of the phage at the molecular level. We then show that self-assembled thin films of phage can exhibit piezoelectric strengths of up to 7.8 pm V(-1). We also demonstrate that it is possible to modulate the dipole strength of the phage, hence tuning the piezoelectric response, by genetically engineering the major coat proteins of the phage. Finally, we develop a phage-based piezoelectric generator that produces up to 6 nA of current and 400 mV of potential and use it to operate a liquid-crystal display. Because biotechnology techniques enable large-scale production of genetically modified phages, phage-based piezoelectric materials potentially offer a simple and environmentally friendly approach to piezoelectric energy generation.
Collapse
Affiliation(s)
- Byung Yang Lee
- Department of Bioengineering, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sarmiento-Gomez E, Montalvan-Sorrosa D, Garza C, Mas-Oliva J, Castillo R. Rheology and DWS microrheology of concentrated suspensions of the semiflexible filamentous fd virus. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2012; 35:35. [PMID: 22610819 DOI: 10.1140/epje/i2012-12035-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 05/02/2012] [Indexed: 06/01/2023]
Abstract
Microrheology measurements were performed on suspensions of bacteriophage fd with diffusive wave spectroscopy in the concentrated regime, at different values of ionic strength. Viscosity vs. shear rate was also measured, and the effect of bacteriophage concentration and salt addition on shear thinning was determined, as well as on the peaks in the viscosity vs. shear curves corresponding to a transition from tumbling to wagging flow. The influence of concentration and salt addition on the mean square displacement of microspheres embedded in the suspensions was determined, as well as on their viscoelastic moduli up to high angular frequencies. Our results were compared with another microrheology technique previously reported where the power spectral density of thermal fluctuations of embedded micron-sized particles was evaluated. Although both results in general agree, the diffusive wave spectroscopy results are much less noisy and can reach larger frequencies. A comparison was made between measured and calculated shear modulus. Calculations were made employing the theory for highly entangled isotropic solutions of semiflexible polymers using a tube model, where various ways of calculating the needed parameters were used. Although some features are captured by the model, it is far from the experimental results mainly at high frequencies.
Collapse
Affiliation(s)
- E Sarmiento-Gomez
- Instituto de Fisica, Universidad Nacional Autónoma de Mexico, P. O. Box 20-364, Mexico DF 01000
| | | | | | | | | |
Collapse
|
13
|
Morag O, Abramov G, Goldbourt A. Similarities and Differences within Members of the Ff Family of Filamentous Bacteriophage Viruses. J Phys Chem B 2011; 115:15370-9. [DOI: 10.1021/jp2079742] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Omry Morag
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | - Gili Abramov
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | - Amir Goldbourt
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| |
Collapse
|
14
|
Grelet E, Moreno A, Backov R. Hybrid macroscopic fibers from the synergistic assembly between silica and filamentous viruses. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:4334-4338. [PMID: 21446667 DOI: 10.1021/la200743n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this work, we report the elaboration of macroscopic hybrid virus-silica fibers. By using a silicate sol as inorganic precursor combined with the filamentous fd virus, well-dispersed hybrid fibers are obtained in solution. These macroscopic fd-silica fibers exhibit a narrow distribution of their diameter, while their length is at the millimeter scale. A scenario of the morphosynthesis is proposed to account for the formation of these high aspect ratio hybrid fibers.
Collapse
Affiliation(s)
- Eric Grelet
- Centre de Recherche Paul-Pascal, CNRS - Université de Bordeaux, 115 Avenue Albert Schweitzer, 33600 Pessac, France.
| | | | | |
Collapse
|
15
|
Blanco P, Kriegs H, Lettinga MP, Holmqvist P, Wiegand S. Thermal Diffusion of a Stiff Rod-Like Mutant Y21M fd-Virus. Biomacromolecules 2011; 12:1602-9. [DOI: 10.1021/bm2000023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pablo Blanco
- Forschungszentrum Jülich GmbH, ICS-3 − Soft Condensed Matter, D-52428 Jülich, Germany
| | - Hartmut Kriegs
- Forschungszentrum Jülich GmbH, ICS-3 − Soft Condensed Matter, D-52428 Jülich, Germany
| | - M. Paul Lettinga
- Forschungszentrum Jülich GmbH, ICS-3 − Soft Condensed Matter, D-52428 Jülich, Germany
| | - Peter Holmqvist
- Forschungszentrum Jülich GmbH, ICS-3 − Soft Condensed Matter, D-52428 Jülich, Germany
| | - Simone Wiegand
- Forschungszentrum Jülich GmbH, ICS-3 − Soft Condensed Matter, D-52428 Jülich, Germany
| |
Collapse
|
16
|
Curtis SB, MacGillivray RTA, Dunbar WS. Effects of bacteriophage on the surface properties of chalcopyrite (CuFeS₂), and phage-induced flocculation of chalcopyrite, glacial till, and oil sands tailings. Biotechnol Bioeng 2011; 108:1579-90. [PMID: 21337331 DOI: 10.1002/bit.23097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/27/2011] [Accepted: 02/04/2011] [Indexed: 11/08/2022]
Abstract
The binding of mineral-specific phage to the surface of chalcopyrite (CuFeS(2)) was investigated by using X-ray photoelectron spectroscopy and scanning Auger microscopy. These studies confirmed the elemental composition of the minerals and confirmed that bacteriophage were bound to the mineral surface. These techniques also revealed that the phage were not forming a continuous film over the entire surface of the CuFeS(2) particles, but selectively bound to the slimes coating the particles. In addition, the effect of mineral-specific phage binding to the surface of CuFeS(2) was investigated using induction time and zeta potential measurements. Bacteriophage (10(12) /mL) increased the induction time (contact time resulting in 50% particle attachment to a bubble) from ∼7.5 to ∼17 ms and reversed the zeta potential from negative to positive. In the course of performing the zeta potential measurements on particles <45 µm in diameter, phage-induced aggregation was observed. The mechanism of aggregation was explored using a range of pH (3-11) and cation concentrations. Aggregation was observed across the tested pH range and with all cations. Phage also mediated aggregation of glacial till and oil sands tailings in a dose-dependent and particle size-dependent manner. We conclude that binding of bacteriophage to the surface of CuFeS(2) does alter its surface properties.
Collapse
Affiliation(s)
- Susan B Curtis
- Norman B. Keevil Institute of Mining Engineering, 517-6350 Stores Road, Vancouver, BC, Canada V6T1Z4
| | | | | |
Collapse
|
17
|
Tombolato F, Ferrarini A, Grelet E. Chiral nematic phase of suspensions of rodlike viruses: left-handed phase helicity from a right-handed molecular helix. PHYSICAL REVIEW LETTERS 2006; 96:258302. [PMID: 16907351 DOI: 10.1103/physrevlett.96.258302] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Indexed: 05/11/2023]
Abstract
We report a study on charged, filamentous virus called M13, whose suspensions in water exhibit a chiral nematic (cholesteric) phase. In spite of the right-handed helicity of the virus, a left-handed phase helicity is found, with a cholesteric pitch which increases with temperature and ionic strength. Several sources of chirality can be devised in the system, ranging from the subnanometer to the micrometer length scale. Here an explanation is proposed for the microscopic origin of the cholesteric organization, which arises from the helical arrangement of coat proteins on the virus surface. The phase organization is explained as the result of the competition between contributions of opposite handedness, deriving from best packing of viral particles and electrostatic interparticle repulsions. This hypothesis is supported by calculations based on a coarse-grained representation of the virus.
Collapse
Affiliation(s)
- Fabio Tombolato
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy
| | | | | |
Collapse
|
18
|
|
19
|
Addas KM, Schmidt CF, Tang JX. Microrheology of solutions of semiflexible biopolymer filaments using laser tweezers interferometry. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2004; 70:021503. [PMID: 15447492 DOI: 10.1103/physreve.70.021503] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Indexed: 05/24/2023]
Abstract
Semiflexible polymers are of great biological importance in determining the mechanical properties of cells. Techniques collectively known as microrheology have recently been developed to measure the viscoelastic properties of solutions of submicroliter volumes. We employ one such technique, which uses a focused laser beam to trap a micron-sized silica bead and interferometric photodiode detection to measure passively the position fluctuations of the trapped bead with nanometer resolution and high bandwidth. The frequency-dependent complex shear modulus G*(f) can be extracted from the position fluctuations via the fluctuation-dissipation theorem and the generalized Stokes-Einstein relation. Using particle tracking microrheology, we report measurements of shear moduli of solutions of fd viruses, which are filamentous, semiflexible, and monodisperse bacteriophages, each 0.9 microm long, 7 nm in diameter, and having a persistence length of 2.2 microm. Recent theoretical treatments of semiflexible polymer dynamics provide quantitative predictions of the rheological properties of such a model system. The fd samples measured span the dilute, semidilute, and concentrated regimes. In the dilute regime G*(f) is dominated by (rigid rod) rotational relaxation, whereas the high-frequency regime reflects single-semiflexible filament dynamics consistent with the theoretical prediction. Due to the short length of fd viruses used in this study, the intermediate regime does not exhibit a well-developed plateau. A dynamic scaling analysis gives rise to a concentration scaling of c(1.36) (r=0.99) in the transition regime and a frequency scaling of f(0.63) (r=0.98) at high frequencies.
Collapse
Affiliation(s)
- Karim M Addas
- Department of Physics, Indiana University, 727 East Third Street, Bloomington, Indiana 47405, USA
| | | | | |
Collapse
|
20
|
Grelet E, Fraden S. What is the origin of chirality in the cholesteric phase of virus suspensions? PHYSICAL REVIEW LETTERS 2003; 90:198302. [PMID: 12785989 DOI: 10.1103/physrevlett.90.198302] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2003] [Indexed: 05/24/2023]
Abstract
We report a study of the cholesteric phase in monodisperse suspensions of the rodlike virus fd sterically stabilized with the polymer polyethylene glycol (PEG). After coating the virus with neutral polymers, the phase diagram and nematic order parameter of the fd-PEG system then become independent of ionic strength. Surprisingly, the fd-PEG suspensions not only continue to exhibit a cholesteric phase, which means that the grafted polymer does not screen all chiral interactions between rods, but paradoxically the cholesteric pitch of this sterically stabilized fd-PEG system varies with ionic strength. Furthermore, we observe that the cholesteric pitch decreases with increasing viral contour length, in contrast to theories which predict the opposite trend. Different models of the origin of chirality in colloidal liquid crystals are discussed.
Collapse
Affiliation(s)
- Eric Grelet
- Department of Physics, Brandeis University, Waltham, Massachusetts 02454, USA.
| | | |
Collapse
|
21
|
Purdy KR, Dogic Z, Fraden S, Rühm A, Lurio L, Mochrie SGJ. Measuring the nematic order of suspensions of colloidal fd virus by x-ray diffraction and optical birefringence. PHYSICAL REVIEW E 2003; 67:031708. [PMID: 12689089 DOI: 10.1103/physreve.67.031708] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2002] [Indexed: 11/07/2022]
Abstract
The orientational distribution function of the nematic phase of suspensions of the semiflexible rodlike virus fd is measured by x-ray diffraction as a function of concentration and ionic strength. X-ray diffraction from a single-domain nematic phase of fd is influenced by interparticle correlations at low angle, while only intraparticle scatter contributes at high angle. Consequently, the angular distribution of the scattered intensity arises from only the single-particle orientational distribution function at high angle but it also includes spatial and orientational correlations at low angle. Experimental measurements of the orientational distribution function from both the interparticle (structure factor) and intraparticle (form factor) scattering were made to test whether the correlations present in interparticle scatter influence the measurement of the single-particle orientational distribution function. It was found that the two types of scatter yield consistent values for the nematic order parameter. It was also found that x-ray diffraction is insensitive to the orientational distribution function's precise form, and the measured angular intensity distribution is described equally well by both Onsager's trial function and a Gaussian. At high ionic strength, the order parameter S of the nematic phase coexisting with the isotropic phase approaches theoretical predictions for long semiflexible rods S=0.55, but deviations from theory increase with decreasing ionic strength. The concentration dependence of the nematic order parameter also better agrees with theoretical predictions at high ionic strength indicating that electrostatic interactions have a measurable effect on the nematic order parameter. The x-ray order parameters are shown to be proportional to the measured birefringence, and the saturation birefringence of fd is determined enabling a simple, inexpensive way to measure the order parameter. Additionally, the spatial ordering of nematic fd was probed. Measurements of the nematic structure factor revealed a single large peak in contrast to nematics of rigid rods.
Collapse
Affiliation(s)
- Kirstin R Purdy
- Complex Fluids Group, Department of Physics, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | | | | | |
Collapse
|
22
|
Schmidt FG, Hinner B, Sackmann E, Tang JX. Viscoelastic properties of semiflexible filamentous bacteriophage fd. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 2000; 62:5509-17. [PMID: 11089110 DOI: 10.1103/physreve.62.5509] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2000] [Indexed: 11/07/2022]
Abstract
The cytoskeletal protein filament F-actin has been treated in a number of recent studies as a model physical system for semiflexible filaments. In this work, we studied the viscoelastic properties of entangled solutions of the filamentous bacteriophage fd as an alternative to F-actin with similar physical parameters. We present both microrheometric and macrorheometric measurements of the viscoelastic storage and loss moduli, G'(f ) and G"(f ), respectively, in a frequency range 0.01<f<4 Hz, for fd solutions in the concentration range 5<c<15 mg/ml. The onset of a narrow and slanted plateaulike region of G'(f ) is located at around 2 Hz. The variation of the plateau modulus with concentration obeys a power law G(')(N) approximately c(1.4+/-0.3), similar to that found for entangled solutions of F-actin. In the low-frequency regime, the frequency dependence of the viscoelastic moduli can be described by power laws G'(f ) approximately f(0.9-1.2) and G"(f ) approximately f(0.7-0.9), which deviate significantly from the simple theoretical predictions of G'(f ) approximately f(2) and G"(f ) approximately f(1). The latter behavior cannot yet be understood within the framework of current theories of semiflexible filament networks. For the dynamic viscosity at the low shear rate limit, a concentration dependence of eta(0) approximately c(2.6) was found. Finally, a linear scaling of the terminal relaxation time with concentration, tau(d) approximately c, was observed.
Collapse
Affiliation(s)
- F G Schmidt
- Technische Universität München, Institut für Biophysik E22, James-Franck- Strasse, D-85747 München, Germany
| | | | | | | |
Collapse
|
23
|
Tan WM, Jelinek R, Opella SJ, Malik P, Terry TD, Perham RN. Effects of temperature and Y21M mutation on conformational heterogeneity of the major coat protein (pVIII) of filamentous bacteriophage fd. J Mol Biol 1999; 286:787-96. [PMID: 10024451 DOI: 10.1006/jmbi.1998.2517] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Solid-state NMR spectroscopy was used to analyze the conformational heterogeneity of the major coat protein (pVIII) of filamentous bacteriophage fd. Both one and two-dimensional solid-state NMR spectra of magnetically aligned samples of fd bacteriophage reveal that an increase in temperature and a single site substitution (Tyr21 to Met, Y21M) reduce the conformational heterogeneity observed throughout wild-type pVIII. The NMR results are consistent with previous studies indicating that conformational flexibility in the hinge-bend segment that links the amphipathic and hydrophobic helices in the membrane-bound form of the protein plays an essential role during phage assembly, which involves a major change in the tertiary, but not secondary, structure of the coat protein.
Collapse
Affiliation(s)
- W M Tan
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | | | | | | | | |
Collapse
|
24
|
Matsuno M, Takeuchi H, Overman SA, Thomas GJ. Orientations of tyrosines 21 and 24 in coat subunits of Ff filamentous virus: determination by Raman linear intensity difference spectroscopy and implications for subunit packing. Biophys J 1998; 74:3217-25. [PMID: 9635775 PMCID: PMC1299662 DOI: 10.1016/s0006-3495(98)78028-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Virions of the Ff group of bacteriophages (fd, f1, M13) are morphologically identical filaments (approximately 6-nm diameter x approximately 880-nm length) in which a covalently closed, single-stranded DNA genome is sheathed by approximately 2700 copies of a 50-residue alpha-helical subunit (pVIII). Orientations of pVIII tyrosines (Tyr21 and Tyr24) with respect to the filament axis have been determined by Raman linear intensity difference (RLID) spectroscopy of flow-oriented mutant virions in which the tyrosines were independently mutated to methionine. The results show that the twofold axis of the phenolic ring (C1-C4 line) of Tyr21 is inclined at 39.5 +/- 1.4 degrees from the virion axis, and that of Tyr24 is inclined at 43.7 +/- 0.6 degrees. The orientation determined for the Tyr21 phenol ring is close to that of a structural model previously proposed on the basis of fiber x-ray diffraction results (Protein Data Bank, identification code 1IFJ). On the other hand, the orientation determined for the Tyr24 phenol ring differs from the diffraction-based model by a 40 degrees rotation about the Calpha-Cbeta bond. The RLID results also indicate that each tyrosine mutation does not greatly affect the orientation of either the remaining tyrosine or single tryptophan (Trp26) of pVIII. On the basis of these results, a refined model is proposed for the coat protein structure in Ff.
Collapse
Affiliation(s)
- M Matsuno
- Pharmaceutical Institute, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
25
|
Abstract
For viruses made of nucleic acid and protein, the structure of the protein outer shell has, in the past, been found to be uniquely determined by the viral genome. However, here, non-denaturing agarose gel electrophoresis of bacteriophage T7 reveals two states of the mature T7 capsid; the conditions of growth are found to alter the population by T7 of these two electrophoretically defined states. Both states have been previously observed for a genetically altered T7 and they are observed here for wild-type T7. The average electrical surface charge density of a bacteriophage particle (delta) determines its state; the delta of particles in both states is negative. For a given condition of growth, the population of these two states is influenced by the extent to which the major T7 outer shell protein, p10A, is accompanied by its minor readthrough variant, p10B. Comparison of the two electrophoretic states reveals the following. (1) No difference in radius is present in the outer shell (+/-2%). (2) As the pH of electrophoresis is either increased or decreased from neutrality, the state becomes more highly populated for which delta is greater in magnitude (state 1). By changing the pH, some T7 particles are made to change state. (3) Particles in state 1 adsorb less quickly to host cells than do the particles in the alternative state (state 2). This latter observation suggests the hypothesis that state 1 evolved to reduce the probability of re-initiating an infection when conditions are not favorable for growth. This hypothesis is supported by the observation that, as conditions of growth become apparently more unfavorable, progeny increasingly populate state 1.
Collapse
Affiliation(s)
- I S Gabashvili
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78284-7760, USA
| | | | | | | |
Collapse
|
26
|
Welsh LC, Symmons MF, Nave C, Perham RN, Marseglia EA, Marvin DA. Evidence for Tilted Smectic Liquid Crystalline Packing of fd Inovirus from X-ray Fiber Diffraction. Macromolecules 1996. [DOI: 10.1021/ma9605614] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- L. C. Welsh
- Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge, CB3 OHE, U.K., Cambridge Centre for Molecular Recognition, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, U.K., and CLRC Daresbury Laboratory, Warrington, WA4 4AD, U.K
| | - M. F. Symmons
- Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge, CB3 OHE, U.K., Cambridge Centre for Molecular Recognition, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, U.K., and CLRC Daresbury Laboratory, Warrington, WA4 4AD, U.K
| | - C. Nave
- Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge, CB3 OHE, U.K., Cambridge Centre for Molecular Recognition, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, U.K., and CLRC Daresbury Laboratory, Warrington, WA4 4AD, U.K
| | - R. N. Perham
- Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge, CB3 OHE, U.K., Cambridge Centre for Molecular Recognition, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, U.K., and CLRC Daresbury Laboratory, Warrington, WA4 4AD, U.K
| | - E. A. Marseglia
- Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge, CB3 OHE, U.K., Cambridge Centre for Molecular Recognition, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, U.K., and CLRC Daresbury Laboratory, Warrington, WA4 4AD, U.K
| | - D. A. Marvin
- Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge, CB3 OHE, U.K., Cambridge Centre for Molecular Recognition, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, U.K., and CLRC Daresbury Laboratory, Warrington, WA4 4AD, U.K
| |
Collapse
|
27
|
Marvin DA, Hale RD, Nave C, Helmer-Citterich M. Molecular models and structural comparisons of native and mutant class I filamentous bacteriophages Ff (fd, f1, M13), If1 and IKe. J Mol Biol 1994; 235:260-86. [PMID: 8289247 DOI: 10.1016/s0022-2836(05)80032-4] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The filamentous bacteriophages are flexible rods about 1 to 2 microns long and 6 nm in diameter, with a helical shell of protein subunits surrounding a DNA core. The approximately 50-residue coat protein subunit is largely alpha-helix and the axis of the alpha-helix makes a small angle with the axis of the virion. The protein shell can be considered in three sections: the outer surface, occupied by the N-terminal region of the subunit, rich in acidic residues that interact with the surrounding solvent and give the virion a low isoelectric point; the interior of the shell, including a 19-residue stretch of apolar side-chains, where protein subunits interact mainly with each other; and the inner surface, occupied by the C-terminal region of the subunit, rich in basic residues that interact with the DNA core. The fact that virtually all protein side-chain interactions are between different subunits in the coat protein array, rather than within subunits, makes this a useful model system for studies of interactions between alpha-helix subunits in a macromolecular assembly. We describe molecular models of the class I filamentous bacteriophages. This class includes strains fd, f1, M13 (these 3 very similar strains are members of the Ff group), If1 and IKe. Our model of fd has been refined to fit quantitative X-ray fibre diffraction data to 30 A resolution in the meridional direction and 7 A resolution in the equatorial direction. A simulated 3.3 A resolution diffraction pattern from this model has the same general distribution of intensity as the experimental diffraction pattern. The observed diffraction data at 7 A resolution are fitted much better by the calculated diffraction pattern of our molecular model than by that of a model in which the alpha-helix subunit is represented by a rod of uniform density. The fact that our fd model explains the fd diffraction data is only part of our structure analysis. The atomic details of the model are supported by non-diffraction data, in part previously published and in part newly reported here. These data include information about permitted or forbidden side-chain replacements, about the effect of chemical modification, and about spectroscopic experiments.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D A Marvin
- Department of Biochemistry, University of Cambridge, U.K
| | | | | | | |
Collapse
|
28
|
|
29
|
Tang J, Fraden S. Magnetic-field-induced isotropic-nematic phase transition in a colloidal suspension. PHYSICAL REVIEW LETTERS 1993; 71:3509-3512. [PMID: 10054995 DOI: 10.1103/physrevlett.71.3509] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
30
|
Abstract
Strategies for the construction of vehicles for phage display are evaluated here on the basis of structural studies of filamentous bacteriophages. Potential sites for the insertion of foreign peptides into the major coat protein, gp8, of M13 are identified. Currently, the insertion of peptides into gp8 has two basic limitations: all insertion sites that have been used successfully are located within 5 amino acids (aa) of the N terminus, and in virions containing only mutant coat proteins, insertions larger than about 6 aa have not been successfully incorporated. The possible reasons for these limitations are discussed in terms of the structures of gp8 and the minor structural proteins, gp7 and gp9. Potential strategies for overcoming these limitations are outlined. Reasons for the successful incorporation of larger inserts into hybrid phage containing both native and mutant coat proteins are also discussed. The structures of gp6, gp7, and gp9 are described, and it is concluded that insertion sites in these minor proteins are unlikely to have substantial advantages over those currently being used in gp3. The structure of the coat protein of another filamentous phage, Pseudomonas phage Pf1, is also described. Its structure provides a number of clues for the successful design of phage display insertion sites. Because it contains a 7-aa surface loop in the major coat protein, the Pf1 coat protein may have significant advantages over gp8 of M13 as a vehicle for phage display.
Collapse
Affiliation(s)
- L Makowski
- Institute of Molecular Biophysics, Florida State University, Tallahassee 32306
| |
Collapse
|
31
|
Makowski L. Terminating a macromolecular helix. Structural model for the minor proteins of bacteriophage M13. J Mol Biol 1992; 228:885-92. [PMID: 1469721 DOI: 10.1016/0022-2836(92)90872-h] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Analysis of the results of X-ray diffraction, electron microscopy and s sequence studies of filamentous bacteriophage M13 are used to construct structural models for the minor proteins gp7 and gp9 at the end of the virus assembled first, and a portion of gp6 at the end of the virus that binds host. Comparison of the sequence of the major coat protein, gp8, with those of gp7, gp9 and gp6 indicates that significant portions of these three proteins have sequences similar to that of gp8. Assuming that sequence similarity is indicative of structural similarity, gp7, gp9 and portions of gp6 are modeled based on what is known about the structure of gp8. These molecular models are analyzed to predict the packing of the minor proteins with the terminal gp8 proteins (the last gp8 proteins at either end of the helix). This analysis indicates that the gp8 proteins integrated into the virus first may have a structure distinct from those in the body of the virus particle. The gp8 proteins at the end assembled last appear to have a conformation very similar to that of the integral coat proteins. These models place specific constraints on models for the process of viral assembly.
Collapse
Affiliation(s)
- L Makowski
- Department of Physics, Boston University, MA 02215
| |
Collapse
|
32
|
Schwind P, Kramer H, Kremser A, Ramsberger U, Rasched I. Subtilisin removes the surface layer of the phage fd coat. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 210:431-6. [PMID: 1459128 DOI: 10.1111/j.1432-1033.1992.tb17438.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The major coat protein of native filamentous phage fd is vulnerable to digestion by subtilisin, but not by any of a number of other proteolytic enzymes. Degradation by the non-specific protease subtilisin occurs at specific sites in the N-terminal portion of g8p. The N-terminal part of the protein is considered to be the outer layer of a two-layered coat. Thus, subtilisin treatment results in a monolayered phage particle. These particles possess the morphology and stability of native phage fd. Furthermore, subtilisin proteolysis proved to be an efficient instrument in detecting variations in the topology of the g8p of related filamentous phages.
Collapse
Affiliation(s)
- P Schwind
- Fakultät für Biologie, Universität Konstanz, Federal Republic of Germany
| | | | | | | | | |
Collapse
|