1
|
Smitienko O, Feldman T, Shelaev I, Gostev F, Aybush A, Cherepanov D, Nadtochenko V, Ostrovsky M. Reversible Photochromic Reactions of Bacteriorhodopsin from Halobacterium salinarum at Femto- and Picosecond Times. Molecules 2024; 29:4847. [PMID: 39459214 PMCID: PMC11510181 DOI: 10.3390/molecules29204847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The operation of bacteriorhodopsin (BR) from the archaeon Halobacterium salinarum is based on the photochromic reaction of isomerization of the chromophore group (the retinal protonated Schiff base, RPSB) from the all-trans to the 13-cis form. The ultrafast dynamics of the reverse 13-cis → all-trans photoreaction was studied using femtosecond transient absorption spectroscopy in comparison with the forward photoreaction. The forward photoreaction was initiated by photoexcitation of BR by pulse I (540 nm). The reverse photoreaction was initiated by photoexcitation of the product K590 at an early stage of its formation (5 ps) by pulse II (660 nm). The conversion of the excited K590 to the ground state proceeds at times of 0.19, 1.1, and 16 ps with the relative contributions of ~20/60/20, respectively. All these decay channels lead to the formation of the initial state of BR as a product with a quantum yield of ~1. This state is preceded by vibrationally excited intermediates, the relaxation of which occurs in the 16 ps time range. Likely, the heterogeneity of the excited state of K590 is determined by the heterogeneity of its chromophore center. The forward photoreaction includes two components-0.52 and 3.5 ps, with the relative contributions of 91/9, respectively. The reverse photoreaction initiated from K590 proceeds more efficiently in the conical intersection (CI) region but on the whole at a lower rate compared to the forward photoreaction, due to significant heterogeneity of the potential energy surface.
Collapse
Affiliation(s)
- Olga Smitienko
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin St., 4, Moscow 119334, Russia; (T.F.); (M.O.)
| | - Tatyana Feldman
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin St., 4, Moscow 119334, Russia; (T.F.); (M.O.)
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Moscow 119991, Russia;
| | - Ivan Shelaev
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (I.S.); (F.G.)
- N.N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, Kosygin St., 4, Moscow 119991, Russia
| | - Fedor Gostev
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (I.S.); (F.G.)
- N.N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, Kosygin St., 4, Moscow 119991, Russia
| | - Arseniy Aybush
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (I.S.); (F.G.)
- N.N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, Kosygin St., 4, Moscow 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, Moscow 119991, Russia
| | - Dmitry Cherepanov
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Moscow 119991, Russia;
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (I.S.); (F.G.)
- N.N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, Kosygin St., 4, Moscow 119991, Russia
| | - Victor Nadtochenko
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (I.S.); (F.G.)
- N.N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, Kosygin St., 4, Moscow 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, Moscow 119991, Russia
| | - Mikhail Ostrovsky
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin St., 4, Moscow 119334, Russia; (T.F.); (M.O.)
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Moscow 119991, Russia;
| |
Collapse
|
4
|
Terahertz radiation from bacteriorhodopsin reveals correlated primary electron and proton transfer processes. Proc Natl Acad Sci U S A 2008; 105:6888-93. [PMID: 18456840 DOI: 10.1073/pnas.0706336105] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The kinetics of electrogenic events associated with the different steps of the light-induced proton pump of bacteriorhodopsin is well studied in a wide range of time scales by direct electric methods. However, the investigation of the fundamental primary charge translocation phenomena taking place in the functional energy conversion process of this protein, and in other biomolecular assemblies using light energy, has remained experimentally unfeasible because of the lack of proper detection technique operating in the 0.1- to 20-THz region. Here, we show that extending the concept of the familiar Hertzian dipole emission into the extreme spatial and temporal range of intramolecular polarization processes provides an alternative way to study ultrafast electrogenic events on naturally ordered biological systems. Applying a relatively simple experimental arrangement based on this idea, we were able to observe light-induced coherent terahertz radiation from bacteriorhodopsin with femtosecond time resolution. The detected terahertz signal was analyzed by numerical simulation in the framework of different models for the elementary polarization processes. It was found that the principal component of the terahertz emission can be well described by excited-state intramolecular electron transfer within the retinal chromophore. An additional slower process is attributed to the earliest phase of the proton pump, probably occurring by the redistribution of a H bond near the retinal. The correlated electron and proton translocation supports the concept, assigning a functional role to the light-induced sudden polarization in retinal proteins.
Collapse
|
5
|
Kühn O, Wöste L. Biological systems: Applications and perspectives. ANALYSIS AND CONTROL OF ULTRAFAST PHOTOINDUCED REACTIONS 2007. [PMCID: PMC7122019 DOI: 10.1007/978-3-540-68038-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Oliver Kühn
- Institut f. Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, D-14195 Berlin, Germany
| | - Ludger Wöste
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| |
Collapse
|
6
|
Tóth-Boconádi R, Dér A, Taneva SG, Keszthelyi L. Excitation of the L intermediate of bacteriorhodopsin: electric responses to test x-ray structures. Biophys J 2006; 90:2651-5. [PMID: 16399840 PMCID: PMC1403183 DOI: 10.1529/biophysj.105.068817] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The L intermediate of bacteriorhodopsin was excited, and its electrical response was measured. Two positive components were found in it with respect to the direction of proton pumping: an unresolved fast component, and a slower one (tau=7 micros) of small amplitude. The fast component was assigned to a charge motion corresponding to reisomerization of the retinal moiety, whereas the slow one was attributed to charge rearrangements reestablishing the ground state. Because three x-ray crystallographic structures have recently been reported for the L intermediate, it seemed important to calculate the intramolecular dipole moment changes associated to bR-->L for all three structures, so as to compare them with similar quantities determined from the electrical signals. The results are discussed in terms of amino acid side chains possibly contributing to the observed effect. We propose to use electrical signals as a verification tool for intermediate structures of the photocycle, and thus for molecular models of proton pumping.
Collapse
Affiliation(s)
- R Tóth-Boconádi
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | |
Collapse
|
8
|
Groma GI, Colonna A, Lambry JC, Petrich JW, Váró G, Joffre M, Vos MH, Martin JL. Resonant optical rectification in bacteriorhodopsin. Proc Natl Acad Sci U S A 2004; 101:7971-5. [PMID: 15148391 PMCID: PMC419541 DOI: 10.1073/pnas.0306789101] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The relative role of retinal isomerization and microscopic polarization in the phototransduction process of bacteriorhodopsin is still an open question. It is known that both processes occur on an ultrafast time scale. The retinal trans-->cis photoisomerization takes place on the time scale of a few hundred femtoseconds. On the other hand, it has been proposed that the primary light-induced event is a sudden polarization of the retinal environment, although there is no direct experimental evidence for femtosecond charge displacements, because photovoltaic techniques cannot be used to detect charge movements faster than picoseconds. Making use of the known high second-order susceptibility chi(2) of retinal in proteins, we have used a nonlinear technique, interferometric detection of coherent infrared emission, to study macroscopically oriented bacteriorhodopsin-containing purple membranes. We report and characterize impulsive macroscopic polarization of these films by optical rectification of an 11-fs visible light pulse in resonance with the optical transition. This finding provides direct evidence for charge separation as a precursor event for subsequent functional processes. A simple two-level model incorporating the resonant second-order optical properties of retinal, which are known to be a requirement for functioning of bacteriorhodopsin, is used to describe the observations. In addition to the electronic response, long-lived infrared emission at specific frequencies was observed, reflecting charge movements associated with vibrational motions. The simultaneous and phase-sensitive observation of both the electronic and vibrational signals opens the way to study the transduction of the initial polarization into structural dynamics.
Collapse
Affiliation(s)
- Géza I Groma
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Xu J, Stickrath AB, Bhattacharya P, Nees J, Váró G, Hillebrecht JR, Ren L, Birge RR. Direct measurement of the photoelectric response time of bacteriorhodopsin via electro-optic sampling. Biophys J 2003; 85:1128-34. [PMID: 12885657 PMCID: PMC1303231 DOI: 10.1016/s0006-3495(03)74549-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The photovoltaic signal associated with the primary photochemical event in an oriented bacteriorhodopsin film is measured by directly probing the electric field in the bacteriorhodopsin film using an ultrafast electro-optic sampling technique. The inherent response time is limited only by the laser pulse width of 500 fs, and permits a measurement of the photovoltage with a bandwidth of better than 350 GHz. All previous published studies have been carried out with bandwidths of 50 GHz or lower. We observe a charge buildup with an exponential formation time of 1.68 +/- 0.05 ps and an initial decay time of 31.7 ps. Deconvolution with a 500-fs Gaussian excitation pulse reduces the exponential formation time to 1.61 +/- 0.04 ps. The photovoltaic signal continues to rise for 4.5 ps after excitation, and the voltage profile corresponds well with the population dynamics of the K state. The origin of the fast photovoltage is assigned to the partial isomerization of the chromophore and the coupled motion of the Arg-82 residue during the primary event.
Collapse
Affiliation(s)
- J Xu
- Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Groma GI, Kelemen L, Kulcsár A, Lakatos M, Váró G. Photocycle of dried acid purple form of bacteriorhodopsin. Biophys J 2001; 81:3432-41. [PMID: 11721005 PMCID: PMC1301799 DOI: 10.1016/s0006-3495(01)75975-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The photocycle of dried bacteriorhodopsin, pretreated in a 0.3 M HCl solution, was studied. Some properties of this dried sample resemble that of the acid purple suspension: the retinal conformation is mostly all-trans, 15-anti form, the spectrum of the sample is blue-shifted by 5 nm to 560 nm, and it has a truncated photocycle. After photoexcitation, a K-like red-shifted intermediate appears, which decays to the ground state through several intermediates with spectra between the K and the ground state. There are no other bacteriorhodopsin-like intermediates (L, M, N, O) present in the photocycle. The K to K' transition proceeds with an enthalpy decrease, whereas during all the following steps, the entropic energy of the system decreases. The electric response signal of the oriented sample has only negative components, which relaxes to zero. These suggest that the steps after intermediate K represent a relaxation process, during which the absorbed energy is dissipated and the protein returns to its original ground state. The initial charge separation on the retinal is followed by limited charge rearrangements in the protein, and later, all these relax. The decay times of the intermediates are strongly influenced by the humidity of the sample. Double-flash experiments proved that all the intermediates are directly driven back to the ground state. The study of the dried acid purple samples could help in understanding the fast primary processes of the protein function. It may also have importance in technical applications.
Collapse
Affiliation(s)
- G I Groma
- Institute of Biophysics, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6701, Hungary
| | | | | | | | | |
Collapse
|
11
|
Kaulen AD. Electrogenic processes and protein conformational changes accompanying the bacteriorhodopsin photocycle. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1460:204-19. [PMID: 10984601 DOI: 10.1016/s0005-2728(00)00140-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The possible mechanisms of electrogenic processes accompanying proton transport in bacteriorhodopsin are discussed on the basis of recent structural data of the protein. Apparent inconsistencies between experimental data and their interpretation are considered. Special emphasis is placed on the protein conformational changes accompanying the reprotonation of chromophore and proton uptake stage in the bacteriorhodopsin photocycle.
Collapse
Affiliation(s)
- A D Kaulen
- Department of Photobiochemistry, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899, Moscow, Russia
| |
Collapse
|