1
|
Kell DB. A protet-based, protonic charge transfer model of energy coupling in oxidative and photosynthetic phosphorylation. Adv Microb Physiol 2021; 78:1-177. [PMID: 34147184 DOI: 10.1016/bs.ampbs.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Textbooks of biochemistry will explain that the otherwise endergonic reactions of ATP synthesis can be driven by the exergonic reactions of respiratory electron transport, and that these two half-reactions are catalyzed by protein complexes embedded in the same, closed membrane. These views are correct. The textbooks also state that, according to the chemiosmotic coupling hypothesis, a (or the) kinetically and thermodynamically competent intermediate linking the two half-reactions is the electrochemical difference of protons that is in equilibrium with that between the two bulk phases that the coupling membrane serves to separate. This gradient consists of a membrane potential term Δψ and a pH gradient term ΔpH, and is known colloquially as the protonmotive force or pmf. Artificial imposition of a pmf can drive phosphorylation, but only if the pmf exceeds some 150-170mV; to achieve in vivo rates the imposed pmf must reach 200mV. The key question then is 'does the pmf generated by electron transport exceed 200mV, or even 170mV?' The possibly surprising answer, from a great many kinds of experiment and sources of evidence, including direct measurements with microelectrodes, indicates it that it does not. Observable pH changes driven by electron transport are real, and they control various processes; however, compensating ion movements restrict the Δψ component to low values. A protet-based model, that I outline here, can account for all the necessary observations, including all of those inconsistent with chemiosmotic coupling, and provides for a variety of testable hypotheses by which it might be refined.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative, Biology, University of Liverpool, Liverpool, United Kingdom; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
2
|
Hypothesis of lipid-phase-continuity proton transfer for aerobic ATP synthesis. J Cereb Blood Flow Metab 2013; 33:1838-42. [PMID: 24084698 PMCID: PMC3851912 DOI: 10.1038/jcbfm.2013.175] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 09/09/2013] [Accepted: 09/12/2013] [Indexed: 12/12/2022]
Abstract
The basic processes harvesting chemical energy for life are driven by proton (H(+)) movements. These are accomplished by the mitochondrial redox complex V, integral membrane supramolecular aggregates, whose structure has recently been described by advanced studies. These did not identify classical aqueous pores. It was proposed that H(+) transfer for oxidative phosphorylation (OXPHOS) does not occur between aqueous sources and sinks, where an energy barrier would be insurmountable. This suggests a novel hypothesis for the proton transfer. A lipid-phase-continuity H(+) transfer is proposed in which H(+) are always bound to phospholipid heads and cardiolipin, according to Mitchell's hypothesis of asymmetric vectorial H(+) diffusion. A phase separation is proposed among the proton flow, following an intramembrane pathway, and the ATP synthesis, occurring in the aqueous phase. This view reminiscent of Grotthus mechanism would better account for the distance among the Fo and F1 moieties of FoF1-ATP synthase, for its mechanical coupling, as well as the necessity of a lipid membrane. A unique active role for lipids in the evolution of life can be envisaged. Interestingly, this view would also be consistent with the evidence of an OXPHOS outside mitochondria also found in non-vesicular membranes, housing the redox complexes.
Collapse
|
3
|
Two Molecular Hybrids Based on Typical or Decorated Poly-Keggin-Anion Chains: Syntheses, Structures, and Proton-Conductivities. J CLUST SCI 2011. [DOI: 10.1007/s10876-011-0433-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Wei M, Li H, He G. Crystal structures and proton conductivities of two molecular hybrids based on decorated poly-Keggin-anion chains. J COORD CHEM 2011. [DOI: 10.1080/00958972.2011.639068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Meilin Wei
- a College of Chemistry and Environmental Science, Henan Normal University , Xinxiang 453007 , P.R. China
| | - Huihua Li
- a College of Chemistry and Environmental Science, Henan Normal University , Xinxiang 453007 , P.R. China
| | - Guangjie He
- b Department of Chemistry , Xinxiang Medical University , Xinxiang 453003 , P.R. China
| |
Collapse
|
5
|
Smirnov AY, Savel'ev SE, Nori F. Diffusion-controlled generation of a proton-motive force across a biomembrane. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:011916. [PMID: 19658738 DOI: 10.1103/physreve.80.011916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Indexed: 05/28/2023]
Abstract
Respiration in bacteria involves a sequence of energetically coupled electron and proton transfers creating an electrochemical gradient of protons (a proton-motive force) across the inner bacterial membrane. With a simple kinetic model, we analyze a redox loop mechanism of proton-motive force generation mediated by a molecular shuttle diffusing inside the membrane. This model, which includes six electron-binding and two proton-binding sites, reflects the main features of nitrate respiration in E. coli bacteria. We describe the time evolution of the proton translocation process. We find that the electron-proton electrostatic coupling on the shuttle plays a significant role in the process of energy conversion between electron and proton components. We determine the conditions where the redox loop mechanism is able to translocate protons against the transmembrane voltage gradient above 200 mV with a thermodynamic efficiency of about 37%, in the physiologically important range of temperatures from 250 to 350 K.
Collapse
Affiliation(s)
- Anatoly Yu Smirnov
- Advanced Science Institute, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-0198, Japan
| | | | | |
Collapse
|
6
|
Smirnov AY, Mourokh LG, Nori F. Kinetics of proton pumping in cytochrome c oxidase. J Chem Phys 2009; 130:235105. [DOI: 10.1063/1.3155213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
Smirnov AY, Savel'ev S, Mourokh LG, Nori F. Proton transport and torque generation in rotary biomotors. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:031921. [PMID: 18851079 DOI: 10.1103/physreve.78.031921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 05/29/2008] [Indexed: 05/26/2023]
Abstract
We analyze the dynamics of rotary biomotors within a simple nanoelectromechanical model, consisting of a stator part and a ring-shaped rotor having 12 proton-binding sites. This model is closely related to the membrane-embedded F0 motor of adenosine triphosphate (ATP) synthase, which converts the energy of the transmembrane electrochemical gradient of protons into mechanical motion of the rotor. It is shown that the Coulomb coupling between the negative charge of the empty rotor site and the positive stator charge, located near the periplasmic proton-conducting channel (proton source), plays a dominant role in the torque-generating process. When approaching the source outlet, the rotor site has a proton energy level higher than the energy level of the site, located near the cytoplasmic channel (proton drain). In the first stage of this torque-generating process, the energy of the electrochemical potential is converted into potential energy of the proton-binding sites on the rotor. Afterwards, the tangential component of the Coulomb force produces a mechanical torque. We demonstrate that, at low temperatures, the loaded motor works in the shuttling regime where the energy of the electrochemical potential is consumed without producing any unidirectional rotation. The motor switches to the torque-generating regime at high temperatures, when the Brownian ratchet mechanism turns on. In the presence of a significant external torque, created by ATP hydrolysis, the system operates as a proton pump, which translocates protons against the transmembrane potential gradient. Here we focus on the F0 motor, even though our analysis is applicable to the bacterial flagellar motor.
Collapse
Affiliation(s)
- A Yu Smirnov
- Advanced Science Institute, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama, 351-0198, Japan
| | | | | | | |
Collapse
|
8
|
Hydrogen Bonds with Large Proton Polarizability and Proton Transfer Processes in Electrochemistry and Biology. ADVANCES IN CHEMICAL PHYSICS 2007. [DOI: 10.1002/9780470141700.ch1] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Abstract
The dynamics of proton dissociation from an acidic moiety and its subsequent dispersion in the bulk is regulated by the physical chemical properties of the solvent. The solvent has to provide a potential well to accommodate the discharged proton, screen it from the negative charge of the conjugated base, and provide an efficient mode for the diffusion of the proton to the bulk. On measuring the dynamics of proton dissociation in the time-resolved domain, the kinetic analysis of the reaction can quantitate the properties of the immediate environment. In this review we implement the kinetic analysis for evaluating the properties of small cavities in proteins and the diffusion of protons within narrow channels. On the basis of this analysis,we discuss how the clustering of proton-binding sites on a surface can endow the surface with enhanced capacity to attract protons and to funnel them toward a specific site.
Collapse
Affiliation(s)
- M Gutman
- Laser Laboratory for Fast Reactions in Biochemical Systems, Department of Biochemistry, Tel-Aviv University, Tel-Aviv, Israel 69978
| | | |
Collapse
|
10
|
Munishkina LA, Phelan C, Uversky VN, Fink AL. Conformational behavior and aggregation of alpha-synuclein in organic solvents: modeling the effects of membranes. Biochemistry 2003; 42:2720-30. [PMID: 12614167 DOI: 10.1021/bi027166s] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intracellular proteinaceous inclusions (Lewy bodies and Lewy neurites) of alpha-synuclein are pathological hallmarks of neurodegenerative diseases such as Parkinson's disease, dementia with Lewy bodies (DLB), and multiple systemic atrophy. The molecular mechanisms underlying the aggregation of alpha-synuclein into such filamentous inclusions remain unknown, although many factors have been implicated, including interactions with lipid membranes. To model the effects of membrane fields on alpha-synuclein, we analyzed the structural and fibrillation properties of this protein in mixtures of water with simple and fluorinated alcohols. All solvents that were studied induced folding of alpha-synuclein, with the common first stage being formation of a partially folded intermediate with an enhanced propensity to fibrillate. Protein fibrillation was completely inhibited due to formation of beta-structure-enriched oligomers with high concentrations of methanol, ethanol, and propanol and moderate concentrations of trifluoroethanol (TFE), or because of the appearance of a highly alpha-helical conformation at high TFE and hexafluoro-2-propanol concentrations. At least to some extent, these conformational effects mimic those observed in the presence of phospholipid vesicles, and can explain some of the observed effects of membranes on alpha-synuclein fibrillation.
Collapse
Affiliation(s)
- Larissa A Munishkina
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | | | | | | |
Collapse
|
11
|
Uversky VN, Li J, Fink AL. Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem 2001; 276:10737-44. [PMID: 11152691 DOI: 10.1074/jbc.m010907200] [Citation(s) in RCA: 836] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Intracellular proteinaceous aggregates (Lewy bodies and Lewy neurites) of alpha-synuclein are hallmarks of neurodegenerative diseases such as Parkinson's disease, dementia with Lewy bodies, and multiple systemic atrophy. However, the molecular mechanisms underlying alpha-synuclein aggregation into such filamentous inclusions remain unknown. An intriguing aspect of this problem is that alpha-synuclein is a natively unfolded protein, with little or no ordered structure under physiological conditions. This raises the question of how an essentially disordered protein is transformed into highly organized fibrils. In the search for an answer to this question, we have investigated the effects of pH and temperature on the structural properties and fibrillation kinetics of human recombinant alpha-synuclein. Either a decrease in pH or an increase in temperature transformed alpha-synuclein into a partially folded conformation. The presence of this intermediate is strongly correlated with the enhanced formation of alpha-synuclein fibrils. We propose a model for the fibrillation of alpha-synuclein in which the first step is the conformational transformation of the natively unfolded protein into the aggregation-competent partially folded intermediate.
Collapse
Affiliation(s)
- V N Uversky
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | | | | |
Collapse
|
12
|
Heberle J. Proton transfer reactions across bacteriorhodopsin and along the membrane. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1458:135-47. [PMID: 10812029 DOI: 10.1016/s0005-2728(00)00064-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacteriorhodopsin is probably the best understood proton pump so far and is considered to be a model system for proton translocating membrane proteins. The basis of a molecular description of proton translocation is set by having the luxury of six highly resolved structural models at hand. Details of the mechanism and reaction dynamics were elucidated by a whole variety of biophysical techniques. The current molecular picture of catalysis by BR will be presented with examples from time-resolved spectroscopy. FT-IR spectroscopy monitors single proton transfer events within bacteriorhodopsin and judiciously positioned pH indicators detect proton migration at the membrane surface. Emerging properties are briefly outlined that underlie the efficient proton transfer across and along biological membranes.
Collapse
Affiliation(s)
- J Heberle
- Research Centre Jülich, IBI-2: Structural Biology, D-52425, Jülich, Germany.
| |
Collapse
|
13
|
Wang J, El-Sayed MA. Proton Polarizability of Hydrogen-Bonded Network and its Role in Proton Transfer in Bacteriorhodopsin. J Phys Chem A 2000. [DOI: 10.1021/jp994460u] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jianping Wang
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
| | - Mostafa A. El-Sayed
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
| |
Collapse
|
14
|
Brzezinski B, Gierczyk B, Różalski B, Wojciechowski G, Schroeder G, Zundel G. FT-IR and NMR study of tris(oxaalkyl) borates and their complexes with HAuCl4. J Mol Struct 2000. [DOI: 10.1016/s0022-2860(99)00281-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
|
16
|
Brzezinski B, Wojciechowski G, Zundel G, Sobczyk L, Grech E. Negatively charged hydrogen-bonded chains formed by tetrazole. J Mol Struct 1999. [DOI: 10.1016/s0022-2860(99)00064-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Bartl F, Brzezinski B, Rózalski B, Zundel G. FT-IR Study of the Nature of the Proton and Li+ Motions in Gramicidin A and C. J Phys Chem B 1998. [DOI: 10.1021/jp981120k] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Franz Bartl
- Institute of Medical Physics and Biophysics, Universitätsklinikum Charité, Humboldt University, D-10098 Berlin, Germany; Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, PL-60 780 Poznań, Poland; and Institute of Physical Chemistry, University of Munich, Theresienstrasse 41, D-80333 Munich, Germany
| | - Bogumil Brzezinski
- Institute of Medical Physics and Biophysics, Universitätsklinikum Charité, Humboldt University, D-10098 Berlin, Germany; Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, PL-60 780 Poznań, Poland; and Institute of Physical Chemistry, University of Munich, Theresienstrasse 41, D-80333 Munich, Germany
| | - Bartosz Rózalski
- Institute of Medical Physics and Biophysics, Universitätsklinikum Charité, Humboldt University, D-10098 Berlin, Germany; Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, PL-60 780 Poznań, Poland; and Institute of Physical Chemistry, University of Munich, Theresienstrasse 41, D-80333 Munich, Germany
| | - Georg Zundel
- Institute of Medical Physics and Biophysics, Universitätsklinikum Charité, Humboldt University, D-10098 Berlin, Germany; Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, PL-60 780 Poznań, Poland; and Institute of Physical Chemistry, University of Munich, Theresienstrasse 41, D-80333 Munich, Germany
| |
Collapse
|
18
|
|
19
|
|
20
|
Yaroslavtsev A, Gorbatchev D. Proton mobility in the solid inorganic hydrates of acids and acid salts. J Mol Struct 1997. [DOI: 10.1016/s0022-2860(97)00035-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Bartl F, Zundel G. Molecular recognition and proton transfer processes in maltodextrinphosphorylase — an FTIR study. J Mol Struct 1997. [DOI: 10.1016/s0022-2860(96)09389-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Abstract
An X-ray structure of the F1 portion of the mitochondrial ATP synthase shows asymmetry and differences in nucleotide binding of the catalytic beta subunits that support the binding change mechanism with an internal rotation of the gamma subunit. Other structural and mutational probes of the F1 and F0 portions of the ATP synthase are reviewed, together with kinetic and other evaluations of catalytic site occupancy and behavior during hydrolysis or synthesis of ATP. Subunit function as related to proton translocation and rotational catalysis is considered. Physical demonstrations of the gamma subunit rotation have been achieved. The findings have implications for other enzymatic catalyses.
Collapse
Affiliation(s)
- P D Boyer
- Molecular Biology Institute, University of California, Los Angeles 90095-1570, USA
| |
Collapse
|
23
|
Deckers-Hebestreit G, Altendorf K. The F0F1-type ATP synthases of bacteria: structure and function of the F0 complex. Annu Rev Microbiol 1996; 50:791-824. [PMID: 8905099 DOI: 10.1146/annurev.micro.50.1.791] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Membrane-bound ATP synthases (F0F1-ATPases) of bacteria serve two important physiological functions. The enzyme catalyzes the synthesis of ATP from ADP and inorganic phosphate utilizing the energy of an electrochemical ion gradient. On the other hand, under conditions of low driving force, ATP synthases function as ATPases, thereby generating a transmembrane ion gradient at the expense of ATP hydrolysis. The enzyme complex consists of two structurally and functionally distinct parts: the membrane-integrated ion-translocating F0 complex and the peripheral F1 complex, which carries the catalytic sites for ATP synthesis and hydrolysis. The ATP synthase of Escherichia coli, which has been the most intensively studied one, is composed of eight different subunits, five of which belong to F1, subunits alpha, beta, gamma, delta, and epsilon (3:3:1:1:1), and three to F0, subunits a, b, and c (1:2:10 +/- 1). The similar overall structure and the high amino acid sequence homology indicate that the mechanism of ion translocation and catalysis and their mode of coupling is the same in all organisms.
Collapse
Affiliation(s)
- G Deckers-Hebestreit
- Universität Osnabrück, Fachbereich Biologie/Chemie, Arbeitsgruppe Mikrobiologie, Germany
| | | |
Collapse
|
24
|
Brzezinski B, Zundel G. Formation of hydrogen-bonded chains between a strong base with guanidine-like character and phenols with various pKa values — an FT-IR study. J Mol Struct 1996. [DOI: 10.1016/0022-2860(96)09221-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Brzezinski B, Zuńdel G. The role of water and proton-transfer processes in hydrogen-bonded chains with large proton polarizability. Faraday Discuss 1996. [DOI: 10.1039/fd9960300363] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Krasnogholovets V, Taranenko V, Tomchuk P, Protsenko M. Molecular mechanism of light-induced proton transport in bacteriorhodopsin. J Mol Struct 1995. [DOI: 10.1016/0022-2860(95)08893-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Langner R, Zundel G. FTIR investigation of polarizable hydrogen bonds in carboxylic acid–pyridine complexes in the mid- and far-IR region. ACTA ACUST UNITED AC 1995. [DOI: 10.1039/ft9959103831] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|