1
|
Goto M, Yoshida S, Habara S, Wilk-Kohlbrecher A, Kohlbrecher J, Tamai N, Matsuki H. A molecular mechanism for how pressure induces interdigitation of phospholipid bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184385. [PMID: 39349289 DOI: 10.1016/j.bbamem.2024.184385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/17/2024] [Accepted: 09/18/2024] [Indexed: 10/02/2024]
Abstract
The phase transition from the ripple gel phase to the interdigitated gel phase of bilayers of phosphatidylcholines (PCs) with two saturated long-chain fatty acids under high pressure was investigated by pressure-scanning microscopy, fluorometry, and dynamic light scattering (DLS) measurements. Microscopic observation for giant vesicles (GVs) of distearoyl-PC (DSPC) under high pressure showed that spherical GVs transforms significantly into warped and distorted spherical ones instantaneously at the pressure-induced interdigitation. The fluorescence intensities of amphiphilic probe Prodan and hydrophobic probe Laurdan in the dipalmitoyl-PC (DPPC) bilayer steeply decreased and increased, respectively, at the interdigitation, suggesting that the conformational change of the polar head group of DPPC molecule in the bilayer transiently occurred at the interdigitation. Further, it was found from the high-pressure DLS measurements that the size of the vesicle particles of the DPPC and DSPC transiently increases near the interdigitation pressure, whereas the chemically induced interdigitation by adding ethanol to the DSPC bilayer membrane under atmospheric pressure produce no such change in the particle size. Taking account of the critical packing parameter of the PC molecule, the above experimental results would lead us to the conclusion that the pressure-induced interdigitation is attributable to the increase in repulsive interaction between the polar head groups of the PC molecules resulting from the orientational change of the head group from a parallel alignment to a perpendicular one with respect to the bilayer surface by applying pressure, namely the transient state: it occurs when the repulsive interaction exceeds a threshold value for the balance between the repulsive interaction and the attractive interaction among the hydrophobic acyl chains.
Collapse
Affiliation(s)
- Masaki Goto
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Shuntaro Yoshida
- Department of Biological Science and Technology, Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | - Shigeyuki Habara
- Department of Biological Science and Technology, Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | - Agnieszka Wilk-Kohlbrecher
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland
| | - Joachim Kohlbrecher
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland
| | - Nobutake Tamai
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan.
| | - Hitoshi Matsuki
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| |
Collapse
|
2
|
Ito N, Watanabe NM, Okamoto Y, Umakoshi H. Multiplicity of solvent environments in lipid bilayer revealed by DAS deconvolution of twin probes: Comparative method of Laurdan and Prodan. Biophys J 2023; 122:4614-4623. [PMID: 37924207 PMCID: PMC10719072 DOI: 10.1016/j.bpj.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/03/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023] Open
Abstract
Laurdan and Prodan were designed for the evaluation of the surrounding hydration state. When inserted into lipid bilayer systems, both probes are located at different positions and their fluorescence properties are drastically varied, depending on their surrounding environment. In this study, a novel method using the above fluorescence probes was proposed on the basis of fluorescence lifetime (τ) and emission peak (λ), called as τ vs. λ plot, determined by global analysis of their multiple fluorescence decays and deconvolution of these decay-associated spectra. According to the evaluation of τ vs. λ plot, the existence of multiple fluorescence components in the membrane was revealed. In addition, their fluorescence distribution properties, described on τ vs. λ plot, of each probe tended to correspond to the phase state and vertical direction of the lipid membrane. To assess the contribution of environmental effect to each distribution, we defined the region in the τ vs. λ plot, which was modeled from a series of solvent mixtures (hexane, acetone, ethanol and water) to emulate the complex environment in the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine bilayer system. The distributions of fluorescence components of Laurdan and Prodan in lipid membranes were classified into each solvent species, and Prodan partition into bulk water was distinguished. The sensitivity of Prodan to the phase pretransition of the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine bilayer system was also observed in increasing the temperature. Noticeably, most of the fluorescence components was assigned to the solvent model, except for a single component that has longer lifetime and shorter emission wavelength. This component was dominant in solid-ordered phase; hence, it is assumed to be a specific component in lipid membranes that cannot be represented by solvents. Although these are still qualitative analytical methods, the unique approach proposed in this study provides novel insights into the multi-focal property of the membrane.
Collapse
Affiliation(s)
- Natsuumi Ito
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Nozomi Morishita Watanabe
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan.
| | - Yukihiro Okamoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan.
| |
Collapse
|
3
|
Tamai N, Matsuki H, Goto M. Phase Imaging of Phosphatidylcholine Bilayer Membranes by Prodan Fluorescence. MEMBRANES 2022; 12:1219. [PMID: 36557126 PMCID: PMC9784652 DOI: 10.3390/membranes12121219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Prodan (6-propiponyl-2-(N,N-dimethylamino)naphthalene) is well known as a polarity-sensitive fluorescent probe and has a high capability of detecting structural changes occurring within phospholipid bilayer membranes. In this study, we carried out the fluorescence spectroscopic observation of bilayer phase behavior for a series of symmetric saturated diacylphosphatidylcholines (CnPCs) with different acyl-chain length n (n = 12-15 and 19-22) using Prodan as a membrane probe to confirm the availability of Prodan along with the previous results for the CnPC bilayer membranes (n = 16-18). The results were discussed by constructing spectral three-dimensional (3D) imaging plots for visualizing the change in bilayer phase states with temperature or pressure to verify the functionality of this 3D imaging plot. It was found that the Prodan fluorescence technique is applicable to the detection of the changes in the bilayer phase states of all CnPCs with a few exceptions. One of the most crucial exceptions was that Prodan cannot be used for the detection of the bilayer-gel state of the C21PC bilayer membrane. It was also found that it is only to the CnPC bilayer membranes with n = 15-18 that the 3D imaging plot is adequately and accurately applicable as a useful graphical tool for visually detecting the bilayer phase states. This is a disadvantageous feature of this technique brought about by the high sensitivity of Prodan as a membrane probe. Further detailed studies on the molecular behavior of Prodan will enable us to find a more useful way of utilizing this membrane probe.
Collapse
Affiliation(s)
| | | | - Masaki Goto
- Correspondence: ; Tel.: +81-88-656-7520; Fax: +81-88-655-3162
| |
Collapse
|
4
|
Cheung E, Xia Y, Caporini MA, Gilmore JL. Tools shaping drug discovery and development. BIOPHYSICS REVIEWS 2022; 3:031301. [PMID: 38505278 PMCID: PMC10903431 DOI: 10.1063/5.0087583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/21/2022] [Indexed: 03/21/2024]
Abstract
Spectroscopic, scattering, and imaging methods play an important role in advancing the study of pharmaceutical and biopharmaceutical therapies. The tools more familiar to scientists within industry and beyond, such as nuclear magnetic resonance and fluorescence spectroscopy, serve two functions: as simple high-throughput techniques for identification and purity analysis, and as potential tools for measuring dynamics and structures of complex biological systems, from proteins and nucleic acids to membranes and nanoparticle delivery systems. With the expansion of commercial small-angle x-ray scattering instruments into the laboratory setting and the accessibility of industrial researchers to small-angle neutron scattering facilities, scattering methods are now used more frequently in the industrial research setting, and probe-less time-resolved small-angle scattering experiments are now able to be conducted to truly probe the mechanism of reactions and the location of individual components in complex model or biological systems. The availability of atomic force microscopes in the past several decades enables measurements that are, in some ways, complementary to the spectroscopic techniques, and wholly orthogonal in others, such as those related to nanomechanics. As therapies have advanced from small molecules to protein biologics and now messenger RNA vaccines, the depth of biophysical knowledge must continue to serve in drug discovery and development to ensure quality of the drug, and the characterization toolbox must be opened up to adapt traditional spectroscopic methods and adopt new techniques for unraveling the complexities of the new modalities. The overview of the biophysical methods in this review is meant to showcase the uses of multiple techniques for different modalities and present recent applications for tackling particularly challenging situations in drug development that can be solved with the aid of fluorescence spectroscopy, nuclear magnetic resonance spectroscopy, atomic force microscopy, and small-angle scattering.
Collapse
Affiliation(s)
- Eugene Cheung
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Yan Xia
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Marc A. Caporini
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Jamie L. Gilmore
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
5
|
Otaiza-González S, Cabadas M, Robert G, Stock R, Malacrida L, Lascano R, Bagatolli L. The innards of the cell: studies of water dipolar relaxation using the ACDAN fluorescent probe. Methods Appl Fluoresc 2022; 10. [PMID: 36027875 DOI: 10.1088/2050-6120/ac8d4c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/26/2022] [Indexed: 11/12/2022]
Abstract
This article reviews the use of the 6-acetyl-2-(dimethylamino)naphthalene (ACDAN) fluorophore to study dipolar relaxation in cells, tissues, and biomimetic systems. As the most hydrophilic member of the 6-acyl-2-(dimethylamino)naphthalene series, ACDAN markedly partitions to aqueous environments. In contrast to 6-lauroyl-2-(dimethylamino)naphthalene (LAURDAN), the hydrophobic and best-known member of the series used to explore relaxation phenomena in biological (or biomimetic) membranes, ACDAN allows mapping of spatial and temporal water dipolar relaxation in cytosolic and intra-organelle environments of the cell. This is also true for the 6-propionyl-2-(dimethylamino)naphthalene (PRODAN) derivative which, unlike LAURDAN, partitions to both hydrophobic and aqueous environments. We will i) summarize the mechanism which underlies the solvatochromic properties of the DAN probes, ii) expound on the importance of water relaxation to understand the intracellular environment, iii) discuss technical aspects of the use of ACDAN in eukaryotic cells and some specialized structures, including liquid condensates arising from processes leading to liquid immiscibility and, iv) present some novel studies in plant cells and tissues which demonstrate the kinds of information that can be uncovered using this approach to study dipolar relaxation in living systems.
Collapse
Affiliation(s)
- Santiago Otaiza-González
- CONICET- Universidad Nacional de Córdoba- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Friuli 2434, Cordoba, Córdoba, 5016, ARGENTINA
| | - Manuel Cabadas
- CONICET- Universidad Nacional de Córdoba- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Friuli 2434, Cordoba, 5016, ARGENTINA
| | - Germán Robert
- Plant Stress Biology Group, Unidad de Doble Dependencia INTA-CONICET (UDEA), Av. 11 de Septiembre 4755, Córdoba, X5020ICA, ARGENTINA
| | - Roberto Stock
- MEMPHYS - International and Interdisciplinary research network, Friuli 2434, Córdoba, 5016, ARGENTINA
| | - Leonel Malacrida
- Fisiopatología, Hospital del Clinicas, Av Italia sn, Piso 15, sala 1, Montevideo, Select One, 10400, URUGUAY
| | - Ramiro Lascano
- Plant Stress Biology Group, Unidad de Doble Dependencia INTA-CONICET (UDEA), Av. 11 de Septiembre 4755, Córdoba, X5020ICA, ARGENTINA
| | - Luis Bagatolli
- CONICET- Universidad Nacional de Córdoba- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Friuli 2434, Cordoba, 5016, ARGENTINA
| |
Collapse
|
6
|
Hedde PN, Cinco R, Malacrida L, Kamaid A, Gratton E. Phasor-based hyperspectral snapshot microscopy allows fast imaging of live, three-dimensional tissues for biomedical applications. Commun Biol 2021; 4:721. [PMID: 34117344 PMCID: PMC8195998 DOI: 10.1038/s42003-021-02266-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/26/2021] [Indexed: 01/31/2023] Open
Abstract
Hyperspectral imaging is highly sought after in many fields including mineralogy and geology, environment and agriculture, astronomy and, importantly, biomedical imaging and biological fluorescence. We developed ultrafast phasor-based hyperspectral snapshot microscopy based on sine/cosine interference filters for biomedical imaging not feasible with conventional hyperspectral detection methods. Current approaches rely on slow spatial or spectral scanning limiting their application in living biological tissues, while faster snapshot methods such as image mapping spectrometry and multispectral interferometry are limited in spatial and/or spectral resolution, are computationally demanding, and imaging devices are very expensive to manufacture. Leveraging light sheet microscopy, phasor-based hyperspectral snapshot microscopy improved imaging speed 10-100 fold which, combined with minimal light exposure and high detection efficiency, enabled hyperspectral metabolic imaging of live, three-dimensional mouse tissues not feasible with other methods. As a fit-free method that does not require any a priori information often unavailable in complex and evolving biological systems, the rule of linear combinations of the phasor could spectrally resolve subtle differences between cell types in the developing zebrafish retina and spectrally separate and track multiple organelles in 3D cultured cells over time. The sine/cosine snapshot method is adaptable to any microscope or imaging device thus making hyperspectral imaging and fit-free analysis based on linear combinations broadly available to researchers and the public.
Collapse
Affiliation(s)
- Per Niklas Hedde
- Laboratory for Fluorescence Dynamics, University of California, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA.
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, CA, USA.
| | - Rachel Cinco
- Laboratory for Fluorescence Dynamics, University of California, Irvine, CA, USA
| | - Leonel Malacrida
- Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Advanced Bioimaging Unit, Institut Pasteur of Montevideo and Universidad de la República, Montevideo, Uruguay
| | - Andrés Kamaid
- Advanced Bioimaging Unit, Institut Pasteur of Montevideo and Universidad de la República, Montevideo, Uruguay
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, University of California, Irvine, CA, USA.
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, CA, USA.
| |
Collapse
|
7
|
Brenac L, Baidoo EEK, Keasling JD, Budin I. Distinct functional roles for hopanoid composition in the chemical tolerance of Zymomonas mobilis. Mol Microbiol 2019; 112:1564-1575. [PMID: 31468587 DOI: 10.1111/mmi.14380] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2019] [Indexed: 11/29/2022]
Abstract
Hopanoids are a class of membrane lipids found in diverse bacterial lineages, but their physiological roles are not well understood. The ethanol fermenter Zymomonas mobilis features the highest measured concentration of hopanoids, leading to the hypothesis that these lipids can protect against the solvent toxicity. However, the lack of genetic tools for manipulating hopanoid composition in this bacterium has limited their further functional analysis. Due to the polyploidy (>50 genome copies per cell) of Z. mobilis, we found that disruptions of essential hopanoid biosynthesis (hpn) genes act as genetic knockdowns, reliably modulating the abundance of different hopanoid species. Using a set of hpn transposon mutants, we demonstrate that both reduced hopanoid content and modified hopanoid polar head group composition mediate growth and survival in ethanol. In contrast, the amount of hopanoids, but not their head group composition, contributes to fitness at low pH. Spectroscopic analysis of bacterial-derived liposomes showed that hopanoids protect against several ethanol-driven phase transitions in membrane structure, including lipid interdigitation and bilayer dissolution. We propose that hopanoids act through a combination of hydrophobic and inter-lipid hydrogen bonding interactions to stabilize bacterial membranes during solvent stress.
Collapse
Affiliation(s)
- Léa Brenac
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA.,Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.,Department of Chemistry, University of California, Berkeley, CA, 94720, USA.,Department of Bioengineering, University of California, Berkeley, CA, 94720, USA.,QB3 Institute, University of California, Berkeley, CA, 94270, USA.,Biological Systems & Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,The Novo Nordisk Foundation Center for Sustainability, Technical University of Denmark, Lyngby, Denmark.,Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Itay Budin
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA.,Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.,Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
8
|
Paliwal S, Tilak A, Sharma J, Dave V, Sharma S, Yadav R, Patel S, Verma K, Tak K. Flurbiprofen loaded ethosomes - transdermal delivery of anti-inflammatory effect in rat model. Lipids Health Dis 2019; 18:133. [PMID: 31170970 PMCID: PMC6554971 DOI: 10.1186/s12944-019-1064-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/06/2019] [Indexed: 11/10/2022] Open
Abstract
Background Ethosomes have been widely used in Transdermal Drug Delivery System (TDDS) as they increase the permeation of drug across the skin. Methods Flurbiprofen loaded vesicular ethosomes were formulated, optimized and characterized for particle size, entrapment efficiency, poly dispersive index (PDI), microscopy using Atomic force microscopy (AFM), Scanning electron microscope (SEM) and Transmission electron microscopy (TEM) and Interaction of drug and excipients were studied using Fourier transform infra-red (FTIR) spectroscopy, Differential scanning colorimetry (DSC), Thermo gravimetric analysis (TGA). Further, ethosomal formulations of flurbiprofen were evaluated for stability study of three months and in vitro drug permeation study was carried out using albino rat skin. In addition, skin irritation test was evaluated by Draize test and in vivo study of prepared formulation was examined through paw edema assay by inducing carrageenan and cold plate method. Results Amongst all formulations, EF5 formulation exhibited ideal surface morphology, with maximum entrapment efficiency (95%) with optimal excipient concentration i.e. 200 mg phospholipid and 35% ethanol. The ideal vesicle size was achieved as 162.2 ± 2 nm, with zeta potential − 48.14 ± 1.4 mV with the PDI of 0.341. In-vitro permeation study shows a release of 82.56 ± 2.11 g/cm2 in 24 h and transdermal flux was found as 226.1 μg/cm2/h. Cold plate test indicates that the formulation EF5 showed a marked analgesic activity and Carrageenan induced paw edema test indicates that the formulation EF5 inhibits the increase in paw edema. Ethosomal suspension at 4 °C showed maximum stability. Conclusions The overall study concluded that this ethosomal approach offers a new delivery system for sustained and targeted delivery for flurbiprofen. Electronic supplementary material The online version of this article (10.1186/s12944-019-1064-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, 304022, India
| | - Amita Tilak
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, 304022, India
| | - Jaiprakash Sharma
- Department of Pharmacy, SMS Medical College, Banasthali, Rajasthan, India
| | - Vivek Dave
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, 304022, India.
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, 304022, India
| | - Renubala Yadav
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, 304022, India
| | - Saraswati Patel
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, 304022, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, 304022, India
| | - Kajal Tak
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, 304022, India
| |
Collapse
|
9
|
Begarani F, D'Autilia F, Signore G, Del Grosso A, Cecchini M, Gratton E, Beltram F, Cardarelli F. Capturing Metabolism-Dependent Solvent Dynamics in the Lumen of a Trafficking Lysosome. ACS NANO 2019; 13:1670-1682. [PMID: 30649861 DOI: 10.1021/acsnano.8b07682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The eukaryotic cell compartmentalizes into spatially confined, membrane-enclosed, intracellular structures ( e. g., organelles, endosomes, and vesicles). Here, peculiar physicochemical properties of the local environment occur and participate in the regulation of ongoing molecular processes. In spite of the huge amount of available environmental probes, experiments on subcellular structures are severely challenged by their three-dimensional (3D) movement. This bottleneck is tackled here by focusing an excitation light beam in a periodic orbit around the structure of interest. The recorded signal is used as feedback to localize the structure position at high temporal resolution: microseconds along the orbit, milliseconds between orbits. The lysosome is selected as the intracellular target, together with 6-acetyl-2-dimethylaminonaphthalene (ACDAN) as probe of the physicochemical properties of the intralysosomal environment. Generalized polarization (GP) analysis of ACDAN emission is used to get a quantitative view on intralysosomal solvent dipolar relaxation. Thus, raster image correlation spectroscopy (RICS) analysis reveals that the ACDAN GP signal is fluctuating in the micro-to-millisecond time range during natural organelle 3D trafficking. We show that ACDAN GP fluctuations are characteristic of lysosomes in living cells, are selectively abolished by lysosomal basification, and depend on metabolic energy in the form of ATP. We argue that intralysosomal ACDAN GP fluctuates according to the ongoing organelle metabolism. Indeed, we report alterations in amplitude and timing of GP fluctuations in a cellular model of lysosomal storage disorder (LSD). The strategy proposed provides insight into the elusive local environment of a trafficking lysosome and supports similar molecular investigations at the subcellular level.
Collapse
Affiliation(s)
- Filippo Begarani
- Laboratorio NEST, Scuola Normale Superiore , Pisa 56127 , Italy
- Center for Nanotechnology Innovation@NEST (CNI@NEST) , Pisa 56127 , Italy
| | | | | | - Ambra Del Grosso
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore , Pisa 56127 , Italy
| | - Marco Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore , Pisa 56127 , Italy
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering , University of California , Irvine , California 92697-2715 , United States
| | - Fabio Beltram
- Laboratorio NEST, Scuola Normale Superiore , Pisa 56127 , Italy
| | | |
Collapse
|
10
|
Harper RA, Carpenter GH, Proctor GB, Harvey RD, Gambogi RJ, Geonnotti AR, Hider R, Jones SA. Diminishing biofilm resistance to antimicrobial nanomaterials through electrolyte screening of electrostatic interactions. Colloids Surf B Biointerfaces 2019; 173:392-399. [DOI: 10.1016/j.colsurfb.2018.09.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/30/2018] [Accepted: 09/08/2018] [Indexed: 02/06/2023]
|
11
|
Horochowska M, Cieślik-Boczula K, Rospenk M. Ethanol- and trifluoroethanol-induced changes in phase states of DPPC membranes. Prodan emission-excitation fluorescence spectroscopy supported by PARAFAC analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 192:16-22. [PMID: 29126003 DOI: 10.1016/j.saa.2017.10.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/05/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
It has been shown that Prodan emission-excitation fluorescence spectroscopy supported by Parallel Factor (PARAFAC) analysis is a fast, simple and sensitive method used in the study of the phase transition from the noninterdigitated gel (Lβ') state to the interdigitated gel (LβI) phase, triggered by ethanol and 2,2,2-trifluoroethanol (TFE) molecules in dipalmitoylphosphatidylcholines (DPPC) membranes. The relative contribution of lipid phases with spectral characteristics of each pure phase component has been presented as a function of an increase in alcohol concentration. It has been stated that both alcohol molecules can induce a formation of the LβI phase, but TFE is over six times stronger inducer of the interdigitated phase in DPPC membranes than ethanol molecules. Moreover, in the TFE-mixed DPPC membranes, the transition from the Lβ' to LβI phase is accompanied by a formation of the fluid phase, which most probably serves as a boundary phase between the Lβ' and LβI regions. Contrary to the three phase-state model of TFE-mixed DPPC membranes, in ethanol-mixed DPPC membranes only the two phase-state model has been detected.
Collapse
Affiliation(s)
- Martyna Horochowska
- Faculty of Chemistry, University of Wroclaw, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | | | - Maria Rospenk
- Faculty of Chemistry, University of Wroclaw, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
12
|
Nemkovich NA, Detert H, Roeder N. Electrooptical Absorption Measurements (EOAM) Testify Existence of two Conformers of Prodan and Laurdan with Different Dipole Moments in Equilibrium Ground and Franck-Condon Excited State. J Fluoresc 2016; 26:1563-72. [PMID: 27396483 DOI: 10.1007/s10895-016-1809-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 04/26/2016] [Indexed: 11/24/2022]
Affiliation(s)
- N A Nemkovich
- Institute of Organic Chemistry, J. Gutenberg-University of Mainz, Duesbergweg 10-14, 55099, Mainz, Germany.
| | - H Detert
- Institute of Organic Chemistry, J. Gutenberg-University of Mainz, Duesbergweg 10-14, 55099, Mainz, Germany.
| | - N Roeder
- Institute of Organic Chemistry, J. Gutenberg-University of Mainz, Duesbergweg 10-14, 55099, Mainz, Germany
| |
Collapse
|
13
|
Loison P, Gervais P, Perrier-Cornet JM, Kuimova MK. Effect of ethanol perturbation on viscosity and permeability of an inner membrane in Bacillus subtilis spores. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2060-2069. [PMID: 27267704 DOI: 10.1016/j.bbamem.2016.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 05/30/2016] [Accepted: 06/02/2016] [Indexed: 02/02/2023]
Abstract
In this work, we investigated how a combination of ethanol and high temperature (70°C), affect the properties of the inner membrane of Bacillus subtilis spores. We observed membrane permeabilization for ethanol concentrations ≥50%, as indicated by the staining of the spores' DNA by the cell impermeable dye Propidium Iodide. The loss of membrane integrity was also confirmed by a decrease in the peak corresponding to dipicolinic acid using infrared spectroscopy. Finally, the spore refractivity (as measured by phase contrast microscopy) was decreased after the ethanol-heat treatment, suggesting a partial rehydration of the protoplast. Previously we have used fluorescent lifetime imaging microscopy (FLIM) combined with the fluorescent molecular rotor Bodipy-C12 to study the microscopic viscosity in the inner membrane of B. subtilis spores, and showed that at normal conditions it is characterized by a very high viscosity. Here we demonstrate that the ethanol/high temperature treatment led to a decrease of the viscosity of the inner membrane, from 1000cP to 860cP for wild type spores at 50% of ethanol. Altogether, our present work confirms the deleterious effect of ethanol on the structure of B. subtilis spores, as well as demonstrates the ability of FLIM - Bodipy-C12 to measure changes in the microviscosity of the spores upon perturbation.
Collapse
Affiliation(s)
- Pauline Loison
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, PMB, F-21000 Dijon, France
| | - Patrick Gervais
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, PMB, F-21000 Dijon, France
| | - Jean-Marie Perrier-Cornet
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, PMB, F-21000 Dijon, France; Dimacell Imaging Resource Center, Univ. Bourgogne Franche-Comté, AgroSup Dijon, F-21000 Dijon, France.
| | - Marina K Kuimova
- Department of Chemistry, Imperial College London, Exhibition Road, SW7 2AZ, UK.
| |
Collapse
|
14
|
El Khoury E, Patra D. Length of hydrocarbon chain influences location of curcumin in liposomes: Curcumin as a molecular probe to study ethanol induced interdigitation of liposomes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 158:49-54. [PMID: 26945646 DOI: 10.1016/j.jphotobiol.2016.02.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/23/2016] [Indexed: 11/17/2022]
Abstract
Using fluorescence quenching of curcumin in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes by brominated derivatives of fatty acids, the location of curcumin has been studied, which indicates length of hydrocarbon chain has an effect on the location of curcumin in liposomes. Change of fluorescence intensity of curcumin with temperature in the presence of liposomes helps to estimate the phase transition temperature of these liposomes, thus, influence of cholesterol on liposome properties has been studied using curcumin as a molecule probe. The cooperativity due to the interactions between the hydrocarbon chains during melting accelerates the phase transition of DPPC liposomes in the presence of high percentage of cholesterol whereas high percentage of cholesterol generates a rather rigid DMPC liposome over a wide range of temperatures. We used ethanol to induce interdigitation between the hydrophobic chains of the lipids and studied this effect using curcumin as fluorescence probe. As a result of interdigitation, curcumin fluorescence is quenched in liposomes. The compact arrangement of the acyl chains prevents curcumin from penetrating deep near the midplane. In the liquid crystalline phase ethanol introduces a kind of order to the more fluid liposome, and does not leave space for curcumin to be inserted away from water.
Collapse
Affiliation(s)
- Elsy El Khoury
- Department of Chemistry, American University of Beirut, Beirut, Lebanon
| | - Digambara Patra
- Department of Chemistry, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
15
|
Thoke HS, Tobiesen A, Brewer J, Hansen PL, Stock RP, Olsen LF, Bagatolli LA. Tight coupling of metabolic oscillations and intracellular water dynamics in Saccharomyces cerevisiae. PLoS One 2015; 10:e0117308. [PMID: 25705902 PMCID: PMC4338026 DOI: 10.1371/journal.pone.0117308] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/22/2014] [Indexed: 01/20/2023] Open
Abstract
We detected very strong coupling between the oscillating concentration of ATP and the dynamics of intracellular water during glycolysis in Saccharomyces cerevisiae. Our results indicate that: i) dipolar relaxation of intracellular water is heterogeneous within the cell and different from dilute conditions, ii) water dipolar relaxation oscillates with glycolysis and in phase with ATP concentration, iii) this phenomenon is scale-invariant from the subcellular to the ensemble of synchronized cells and, iv) the periodicity of both glycolytic oscillations and dipolar relaxation are equally affected by D2O in a dose-dependent manner. These results offer a new insight into the coupling of an emergent intensive physicochemical property of the cell, i.e. cell-wide water dipolar relaxation, and a central metabolite (ATP) produced by a robustly oscillating metabolic process.
Collapse
Affiliation(s)
- Henrik Seir Thoke
- MEMPHYS—Center for Biomembrane Physics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK5230, Odense M, Denmark
| | - Asger Tobiesen
- MEMPHYS—Center for Biomembrane Physics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK5230, Odense M, Denmark
| | - Jonathan Brewer
- MEMPHYS—Center for Biomembrane Physics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK5230, Odense M, Denmark
| | - Per Lyngs Hansen
- MEMPHYS—Center for Biomembrane Physics, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK5230, Odense M, Denmark
| | - Roberto P. Stock
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (IBt-UNAM), Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - Lars F. Olsen
- CelCom group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK5230, Odense M, Denmark
| | - Luis A. Bagatolli
- MEMPHYS—Center for Biomembrane Physics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK5230, Odense M, Denmark
- * E-mail:
| |
Collapse
|
16
|
Bagatolli LA. Monitoring Membrane Hydration with 2-(Dimethylamino)-6-Acylnaphtalenes Fluorescent Probes. Subcell Biochem 2015; 71:105-125. [PMID: 26438263 DOI: 10.1007/978-3-319-19060-0_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A family of polarity sensitive fluorescent probes (2-(dimethylamino)-6-acylnaphtalenes, i.e. LAURDAN, PRODAN, ACDAN) was introduced by Gregorio Weber in 1979, with the aim to monitor solvent relaxation phenomena on protein matrices. In the following years, however, PRODAN and particularly LAURDAN, were used to study membrane lateral structure and associated dynamics. Once incorporated into membranes, the (nanosecond) fluorescent decay of these probes is strongly affected by changes in the local polarity and relaxation dynamics of restricted water molecules existing at the membrane/water interface. For instance, when glycerophospholipid containing membranes undertake a solid ordered (gel) to liquid disordered phase transition the fluorescence emission maximum of these probes shift ~ 50 nm with a significant change in their fluorescence lifetime. Furthermore, the fluorescence parameters of LAURDAN and PRODAN are exquisitely sensitive to cholesterol effects, allowing interpretations that correlate changes in membrane packing with membrane hydration. Different membrane model systems as well as innate biological membranes have been studied with this family of probes allowing interesting comparative studies. This chapter presents a short historical overview about these fluorescent reporters, discusses on different models proposed to explain their sensitivity to membrane hydration, and includes relevant examples from experiments performed in artificial and biological membranes.
Collapse
Affiliation(s)
- Luis A Bagatolli
- Membrane Biophysics and Biophotonics Group/MEMPHYS-Center for Biomembrane Physics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark.
| |
Collapse
|
17
|
Ngo AT, Jakubek ZJ, Lu Z, Joós B, Morris CE, Johnston LJ. Membrane order parameters for interdigitated lipid bilayers measured via polarized total-internal-reflection fluorescence microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2861-9. [PMID: 25073072 DOI: 10.1016/j.bbamem.2014.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/03/2014] [Accepted: 07/21/2014] [Indexed: 12/25/2022]
Abstract
Incorporating ethanol in lipid membranes leads to changes in bilayer structure, including the formation of an interdigitated phase. We have used polarized total-internal-reflection fluorescence microscopy (pTIRFM) to measure the order parameter for Texas Red DHPE incorporated in the ethanol-induced interdigitated phase (LβI) formed from ternary lipid mixtures comprising dioleoylphosphatidylcholine, cholesterol and egg sphingomyelin or dipalmitoylphosphatidylcholine. These lipid mixtures have 3 co-existing phases in the presence of ethanol: liquid-ordered, liquid-disordered and LβI. pTIRFM using Texas Red DHPE shows a reversal in fluorescence contrast between the LβI phase and the surrounding disordered phase with changes in the polarization angle. The contrast reversal is due to changes in the orientation of the dye, and provides a rapid method to identify the LβI phase. The measured order parameters for the LβI phase are consistent with a highly ordered membrane environment, similar to a gel phase. An acyl-chain labeled BODIPY-FL-PC was also tested for pTIRFM studies of ethanol-treated bilayers; however, this probe is less useful since the order parameters of the interdigitated phase are consistent with orientations that are close to random, either due to local membrane disorder or to a mixture of extended and looping conformations in which the fluorophore is localized in the polar headgroup region of the bilayer. In summary, we demonstrate that order parameter measurements via pTIRFM using Texas Red-DHPE can rapidly identify the interdigitated phase in supported bilayers. We anticipate that this technique will aid further research in the effects of alcohols and other additives on membranes.
Collapse
Affiliation(s)
- An T Ngo
- Measurement Science and Standards, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; Department of Physics, University of Ottawa Ottawa, ON K1N 6N5, Canada
| | - Zygmunt J Jakubek
- Measurement Science and Standards, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Zhengfang Lu
- Measurement Science and Standards, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Béla Joós
- Department of Physics, University of Ottawa Ottawa, ON K1N 6N5, Canada
| | | | - Linda J Johnston
- Measurement Science and Standards, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
| |
Collapse
|
18
|
Vequi-Suplicy CC, Coutinho K, Teresa Lamy M. Optical characterization of Prodan aggregates in water medium. Phys Chem Chem Phys 2013; 15:11800-7. [DOI: 10.1039/c3cp51776d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Bagatolli LA. LAURDAN Fluorescence Properties in Membranes: A Journey from the Fluorometer to the Microscope. SPRINGER SERIES ON FLUORESCENCE 2012. [DOI: 10.1007/4243_2012_42] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Matsuki H, Goto M, Kusube M, Tamai N. Imaging of Phosphatidylcholine Bilayers by a High-Pressure Fluorescence Technique: Detection of the Packing Difference. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2011. [DOI: 10.1246/bcsj.20110229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Parisio G, Marini A, Biancardi A, Ferrarini A, Mennucci B. Polarity-sensitive fluorescent probes in lipid bilayers: bridging spectroscopic behavior and microenvironment properties. J Phys Chem B 2011; 115:9980-9. [PMID: 21770447 DOI: 10.1021/jp205163w] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We have studied the emission features of the fluorescent polarity-sensitive probes known as Prodan and Laurdan in a liquid-crystalline DPPC bilayer. To this purpose, we have combined high-level quantum mechanical electronic structure calculations with a molecular field theory for the positional-orientational-conformational distribution of the probes, in their ground and excited states, inside of the lipid bilayer, taking into account at both levels the nonuniformity and anisotropy of the environment. Thus, we can interpret the features of the fluorescence spectra of Prodan and Laurdan in relation to the position and orientation of their chromophore in the bilayer. We have found that the environment polarity is not sufficient to explain the large red shifts experimentally observed and that specific effects due to hydrogen bonding must be considered. We show that the orientation of the probe is important in determining the accessibility to water of the H-bond-acceptor group; in the case of Laurdan interesting conformational effects are highlighted.
Collapse
Affiliation(s)
- Giulia Parisio
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy
| | | | | | | | | |
Collapse
|
22
|
Gorbenko G, Trusova V. Effects of oligomeric lysozyme on structural state of model membranes. Biophys Chem 2011; 154:73-81. [DOI: 10.1016/j.bpc.2011.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 01/12/2011] [Accepted: 01/14/2011] [Indexed: 12/01/2022]
|
23
|
Takeda K, Sano Y, Ichikawa S, Hirata Y, Matsuki H, Kaneshina S. Effect of a Local Anesthetic Lidocaine Hydrochloride on the Bilayer Structure of Phospholipids. J Oleo Sci 2009; 58:369-77. [DOI: 10.5650/jos.58.369] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Koichi Takeda
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima
- Pharmaceutical Technology Institute, Otsuka Pharmaceutical Factory, Inc
| | - You Sano
- Department of Physics, Kansai Medical University
| | - Sosaku Ichikawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Yuuki Hirata
- Pharmaceutical Technology Institute, Otsuka Pharmaceutical Factory, Inc
| | - Hitoshi Matsuki
- Department of Life System, Institute of Technology and Science, The University of Tokushima
| | - Shoji Kaneshina
- Department of Life System, Institute of Technology and Science, The University of Tokushima
| |
Collapse
|
24
|
Gadad P, Nanny MA. Influence of cations on noncovalent interactions between 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and dissolved fulvic and humic acids. WATER RESEARCH 2008; 42:4818-4826. [PMID: 18849058 DOI: 10.1016/j.watres.2008.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 08/21/2008] [Accepted: 08/26/2008] [Indexed: 05/26/2023]
Abstract
The influence of cations (Na(+), Ca(2+) and Mg(2+)) on noncovalent interactions between 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and dissolved fulvic acids (FAs) (Norman landfill leachate fulvic acid (NLFA) and Suwannee River fulvic acid (SRFA)) and dissolved humic acids (HAs) (Suwannee River humic acid (SRHA) and Leonardite humic acid (LHA)) was examined using steady-state fluorescence spectroscopy at pH 4, 7 and 10 as a function of cation concentration (up to 25-100mM). Regardless of pH and cation concentration, PRODAN quenching by FA was unaffected by cations. However, interactions between PRODAN and HA decreased in the presence of cations at pH 7 and 10. Cation concentrations below the HA charge density resulted in the greatest decrease of PRODAN quenching, while very little additional decrease in PRODAN quenching occurred at cation concentrations above the HA charge density. This suggests that as the HA carboxylic acid functional groups form inner sphere complexes with divalent cations, intramolecular interactions result in a contraction of the HA molecular structure, thereby preventing PRODAN from associating with the condensed aromatic, electron accepting moieties inherent within HA molecules and responsible for PRODAN quenching. However, once the HA carboxylic acid functional groups are fully titrated with divalent cations, PRODAN quenching is no longer significantly influenced by the further addition of cations, even though these additional cations facilitate intermolecular interactions between the HA molecules to form supramolecular HA aggregates that can continue to increase in size. Regardless of FA and HA type, pH, cation type and concentration, the lack of blue-shifted fluorescence emission spectra indicated that micelle-like hydrophobic regions, amenable to PRODAN partitioning, were not formed by intra- and intermolecular interactions of FA and HA.
Collapse
Affiliation(s)
- Praveen Gadad
- School of Civil Engineering and Environmental Science, College of Engineering, University of Oklahoma, Norman, Oklahoma 73019, U S
| | | |
Collapse
|
25
|
High vapor pressure perfluorocarbons cause vesicle fusion and changes in membrane packing. Biophys J 2008; 95:4737-47. [PMID: 18689464 DOI: 10.1529/biophysj.108.133496] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Perfluorocarbons (PFCs) hold great promise for biomedical applications. However, relatively little is known about the impact of these chemicals on membranes. We used unilamellar vesicles to explore the effects of PFCs on membrane packing and vesicle stability. Four clinically relevant PFCs with varying vapor pressures (PP1, 294 mbar; PP2, 141 mbar; PP4, 9.6 mbar; and PP9, 2.9 mbar) were examined. Microscopy imaging and spectroscopic measurements suggest that PFCs, especially those with high vapor pressures, lead to vesicle fusion within hours. Upon exposure to PP1 and PP2 for 72 h, vesicles retained a spherical shape, but the size changed from approximately 200 nm to approximately 20-40 mum. In addition, membrane packing underwent marked changes during this timeframe. A significant decrease in water content in the lipid polar headgroup regions occurred during the first 1-2-h exposure to PFCs, followed by a steady increase in water content over time. Possible mechanisms were proposed to explain these dramatic structural changes. The finding that chemically inert PFCs exhibited fusogenic activity and marked changes in membrane surface packing is novel, and should be considered when using PFCs for biomedical applications.
Collapse
|
26
|
Gadad P, Lei H, Nanny MA. Characterization of noncovalent interactions between 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and dissolved fulvic and humic acids. WATER RESEARCH 2007; 41:4488-96. [PMID: 17632208 DOI: 10.1016/j.watres.2007.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 05/31/2007] [Accepted: 06/06/2007] [Indexed: 05/16/2023]
Abstract
Noncovalent interactions between the fluorescent probe 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and dissolved Norman Landfill leachate fulvic acid, Suwannee River fulvic acid, Suwannee River humic acid, and Leonardite humic acid were examined as a function of pH, fulvic and humic acid (FA and HA) concentration, and solvent polarity using steady-state fluorescence spectroscopy. Static quenching processes, as indicated by linear Stern-Volmer plots and high K(d) values, were positively correlated with the % aromaticity of the FA and HAs, as well as with solution pH. Results illustrate that for FA molecules with relatively low % aromaticity values, solvophobic interactions between PRODAN and FA are the primary interaction mode. For HA molecules with higher % aromaticity, PRODAN engages in both solvophobic interactions and pi-pi interactions, in particular electron donor-acceptor interactions, via condensed aromatic, electron-accepting moieties inherent within HA molecules. Experiments modifying solvent polarity demonstrated that protonation of carboxylic acid functional groups at low pH ( approximately 4) increased the hydrophobicity of the dissolved FA and HA molecules, thereby enhancing noncovalent interactions with PRODAN through increased solvophobic forces.
Collapse
Affiliation(s)
- Praveen Gadad
- School of Civil Engineering and Environmental Science, College of Engineering, The University of Oklahoma, Norman 73019, USA
| | | | | |
Collapse
|
27
|
Vanounou S, Pines D, Pines E, Parola AH, Fishov I. Coexistence of Domains with Distinct Order and Polarity in Fluid Bacterial Membranes¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0760001codwdo2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Pappayee N, Mishra AK. Evaluation of 1-Naphthol as a Convenient Fluorescent Probe for Monitoring Ethanol-induced Interdigitation in Lipid Bilayer Membrane¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0730573eonaac2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Mukherjee S, Chattopadhyay A. Monitoring the organization and dynamics of bovine hippocampal membranes utilizing Laurdan generalized polarization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1714:43-55. [PMID: 16042963 DOI: 10.1016/j.bbamem.2005.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 06/23/2005] [Accepted: 06/23/2005] [Indexed: 11/18/2022]
Abstract
Organization and dynamics of cellular membranes in the nervous system are crucial for the function of neuronal membrane receptors. The lipid composition of neuronal cells is unique and has been correlated with the increased complexity in the organization of the nervous system during evolution. Previous work from our laboratory has established bovine hippocampal membranes as a convenient natural source for studying neuronal receptors such as the G-protein coupled serotonin1A receptor. In this paper, we have explored the organization and dynamics of bovine hippocampal membranes using the amphiphilic environment-sensitive fluorescent probe Laurdan. Our results show that the emission spectra of Laurdan display an additional red shifted peak as a function of increasing temperature in native as well as cholesterol-depleted membranes and liposomes made from lipid extracts of the native membrane. Interestingly, wavelength dependence of Laurdan generalized polarization (GP) in native membranes indicates the presence of an ordered gel-like phase at low temperatures, whereas characteristics of the liquid-ordered phase are observed at high temperatures. Similar experiments performed using cholesterol-depleted membranes show fluidization of the membrane with increasing cholesterol depletion. In addition, results from fluorescence polarization of DPH indicate that the hippocampal membrane is fairly ordered even at physiological temperature. The temperature dependence of Laurdan excitation GP provides a measure of the apparent thermal transition temperature and extent of cooperativity in these membranes. Analysis of time-resolved fluorescence measurements of Laurdan shows reduction in mean fluorescence lifetime with increasing temperature due to change in environmental polarity. These results constitute novel information on the dynamics of hippocampal membranes and its modulation by cholesterol depletion monitored using Laurdan fluorescence.
Collapse
Affiliation(s)
- Soumi Mukherjee
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
30
|
Klymchenko AS, Duportail G, Demchenko AP, Mély Y. Bimodal distribution and fluorescence response of environment-sensitive probes in lipid bilayers. Biophys J 2004; 86:2929-41. [PMID: 15111409 PMCID: PMC1304161 DOI: 10.1016/s0006-3495(04)74344-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A remarkable heterogeneity is often observed in the spectroscopic properties of environment-sensitive fluorescence probes in phospholipid bilayers. To explain its origin, we provided a detailed investigation of the fluorescence excitation and emission spectra of 4'-dimethylamino-3-hydroxyflavone (probe F) in bilayer vesicles with the variations of fatty acid composition, polar heads, temperature, and cholesterol content. Probe F, due to excited-state intramolecular proton transfer, exhibits two bands in emission that are differently sensitive to intermolecular interactions-thereby allowing us to distinguish universal (dipole-dipole) and specific (H-bonding) interactions within the bilayer. Spectroscopic, quenching, and anisotropy data suggest the presence of two forms of probe F at different locations in the bilayer: an H-bond free form located below sn(1)-carbonyls and an H-bonded form located at the polar membrane interface. We provide a quantitative analysis of the distribution of the probe between these two locations as well as the polarity of these locations, and show that both the distribution and the polarity contribute to the probe response. Moreover, analysis of literature data on other environment-sensitive probes (Prodan, Laurdan, Nile Red, NBD lipids, etc.) in lipid bilayers allows us to suggest that the bimodal distribution in the lipid bilayer is probably a general feature of low-polar molecules with polar groups capable of H-bonding interactions.
Collapse
Affiliation(s)
- Andrey S Klymchenko
- Laboratoire de Pharmacologie et Physicochimie, Unité Mixte de Recherche 7034 du Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université Louis Pasteur, Illkirch, France.
| | | | | | | |
Collapse
|
31
|
Hauet N, Artzner F, Boucher F, Grabielle-Madelmont C, Cloutier I, Keller G, Lesieur P, Durand D, Paternostre M. Interaction between artificial membranes and enflurane, a general volatile anesthetic: DPPC-enflurane interaction. Biophys J 2003; 84:3123-37. [PMID: 12719242 PMCID: PMC1302873 DOI: 10.1016/s0006-3495(03)70037-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2002] [Accepted: 01/14/2003] [Indexed: 10/21/2022] Open
Abstract
The structural modifications of the dipalmitoylphosphatidylcholine (DPPC) organization induced by increasing concentration of the volatile anesthetic enflurane have been studied by differential scanning calorimetry, small-angle, and wide-angle x-ray scattering. The interaction of enflurane with DPPC depends on at least two factors: the enflurane-to-lipid concentration ratio and the initial organization of the lipids. At 25 degrees C (gel state), the penetration of enflurane within the lipids induces the apparition of two different mixed lipid phases. At low anesthetic-to-lipid molar ratio, the smectic distance increases whereas the direction of the chain tilt changes from a tilt toward next-neighbors to a tilt between next-neighbors creating a new gel phase called L(beta')(2NNN). At high ratio, the smectic distance is much smaller than for the pure L(beta') DPPC phase, i.e., 50 A compared to 65 A, the aliphatic chains are perpendicular to the membrane and the fusion temperature of the phase is 33 degrees C. The electron profile of this phase that has been called L(beta)(i), indicates that the lipids are fully interdigitated. At 45 degrees C (fluid state), a new melted phase, called L(alpha)(2), was found, in which the smectic distance decreased compared to the initial pure L(alpha)(1) DPPC phase. The thermotropic behavior of the mixed phases has also been characterized by simultaneous x-ray scattering and differential scanning calorimetry measurements using the Microcalix calorimeter of our own. Finally, titration curves of enflurane effect in the mixed lipidic phase has been obtained by using the fluorescent lipid probe Laurdan. Measurements as a function of temperature or at constant temperature, i.e., 25 degrees C and 45 degrees C give, for the maximal effect, an enflurane-to-lipid ratio (M/M), within the membrane, of 1 and 2 for the L(alpha)(2) and the L(beta)(i) lamellar phase respectively. All the results taken together allowed to draw a pseudo-binary phase diagram of enflurane-dipalmitoylphosphatidylcholine in excess water.
Collapse
Affiliation(s)
- Nathalie Hauet
- Equipe Physicochimie des Systèmes Polyphasés, UMR 8612, Université Paris Sud, F-92296 Châtenay Malabry, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Svensson R, Grenö C, Johansson AS, Mannervik B, Morgenstern R. Synthesis and characterization of 6-chloroacetyl-2-dimethylaminonaphthalene as a fluorogenic substrate and a mechanistic probe for glutathione transferases. Anal Biochem 2002; 311:171-8. [PMID: 12470677 DOI: 10.1016/s0003-2697(02)00406-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Here we demonstrate that the thiol-reactive, environmentally sensitive fluorogenic molecules 6-bromoacetyl-2-dimethylaminonaphthalene and 6-acryloyl-2-dimethylaminonaphthalene are substrates for glutathione transferases (GSTs). Product formation can be measured by strong increase in fluorescence of the glutathione conjugate. As these substances display a high nonenzymatic background reaction rate, we have synthesized and characterized 6-chloroacetyl-2-dimethylaminonaphthalene, which is less reactive, favoring the enzyme-catalyzed reaction. 6-Chloroacetyl-2-dimethylaminonaphthalene was found to be a substrate for all GSTs tested. Apparent k(cat)/K(m) values (ranging between 10 and 500 mM(-1)s(-1)) revealed a strong preference for soluble GSTP1-1, GSTA1-1, and activated MGST1. Thus, 6-chloroacetyl-2-dimethylaminonaphthalene can be used in a highly sensitive assay of these GSTs. 6-Acetyl-2-dimethylaminonaphthalene derivatives are very sensitive toward solvent polarity and potentially also toward properties of binding sites in proteins. Upon binding of the conjugate to GSTs the fluorescence intensity decreased and the emission maximum was blue-shifted. Therefore the interaction of the conjugate with GSTs can be characterized with regard to both binding affinity and kinetics by stopped-flow measurements, and 6-chloroacetyl-2-dimethylaminonaphthalene can be a valuable aid in mechanistic investigations of GSTs, especially those which possess low intrinsic fluorescence.
Collapse
Affiliation(s)
- Richard Svensson
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
33
|
Vanounou S, Pines D, Pines E, Parola AH, Fishov I. Coexistence of domains with distinct order and polarity in fluid bacterial membranes. Photochem Photobiol 2002; 76:1-11. [PMID: 12126299 DOI: 10.1562/0031-8655(2002)076<0001:codwdo>2.0.co;2] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study we sought the detection and characterization of bacterial membrane domains. Fluorescence generalized polarization (GP) spectra of laurdan-labeled Escherichia coli and temperature dependencies of both laurdan's GP and fluorescence anisotropy of 1,3-diphenyl-1,3,5-hexatriene (DPH) (rDPH) affirmed that at physiological temperatures, the E. coli membrane is in a liquid-crystalline phase. However, the strong excitation wavelength dependence of rlaurdan at 37 degrees C reflects membrane heterogeneity. Time-resolved fluorescence emission spectra, which display distinct biphasic redshift kinetics, verified the coexistence of two subpopulations of laurdan. In the initial phase, <50 ps, the redshift in the spectral mass center is much faster for laurdan excited at the blue edge (350 nm), whereas at longer time intervals, similar kinetics is observed upon excitation at either blue or red edge (400 nm). Excitation in the blue region selects laurdan molecules presumably located in a lipid domain in which fast intramolecular relaxation and low anisotropy characterize laurdan's emission. In the proteo-lipid domain, laurdan motion and conformation are restricted as exhibited by a slower relaxation rate, higher anisotropy and a lower GP value. Triple-Gaussian decomposition of laurdan emission spectra showed a sharp phase transition in the temperature dependence of individual components when excited in the blue but not in the red region. At least two kinds of domains of distinct polarity and order are suggested to coexist in the liquid-crystalline bacterial membrane: a lipid-enriched and a proteolipid domain. In bacteria with chloramphenicol (Cam)-inhibited protein synthesis, laurdan showed reduced polarity and restoration of an isoemissive point in the temperature-dependent spectra. These results suggest a decrease in membrane heterogeneity caused by Cam-induced domain dissipation.
Collapse
Affiliation(s)
- Sharon Vanounou
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | |
Collapse
|
34
|
Hutterer R, Hof M. Probing Ethanol-Induced Phospholipid Phase Transitions by the Polarity Sensitive Fluorescence Probes Prodan and Patman. ACTA ACUST UNITED AC 2002. [DOI: 10.1524/zpch.2002.216.3.333] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The emission behaviour of the two polarity sensitive probes Prodan and Patman in phospholipid vesicles was studied as a function of the concentration of ethanol. Comparing the spectral shifts in both the symmetric lipid 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) showing a phase transition from a normal to a fully interdigitated gel phase and the strongly asymmetric lipid 1-stearoyl-2-lauroyl-sn-glycero-3-phosphatidylcholine (C(18):C(12)-PC) favouring a mixed interdigitated gel phase we show that the huge red shifts of Prodan in presence of higher ethanol concentrations cannot be easily attributed to a specific lipid phase transition. Rather, probe relocation and a pronounced increase in solvent relaxation (SR) as monitored by time-resolved emission spectra (TRES) in presence of ethanol contribute to the large shifts observable in both lipid systems in case of Prodan. While Patman exhibits a red shift caused by increased SR due to the ethanol induced formation of a fully interdigitated phase in DPPC, hardly any shift occurs in C(18):C(12)-PC, which is supposed not to undergo an ethanol-induced phase transition.
Collapse
|
35
|
Pappayee N, Mishra AK. Evaluation of 1-naphthol as a convenient fluorescent probe for monitoring ethanol-induced interdigitation in lipid bilayer membrane. Photochem Photobiol 2001; 73:573-8. [PMID: 11421061 DOI: 10.1562/0031-8655(2001)073<0573:eonaac>2.0.co;2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this work we have tried to evaluate the usefulness of 1-naphthol as an excited state proton transfer fluorescent probe for studying the ethanol-induced interdigitation in lipid bilayer membranes. When ethanol concentration in lipisome is progressively increased, the neutral form fluorescence of 1-naphthol is found to decrease with corresponding increase in the anionic form intensity. This behavior is in contrast to that observed in the absence of lipid where a reverse effect is noticed. Modification of lipid bilayer is known to occur in the presence of ethanol, which increases the packing density of the membrane. Due to this induction of interdigitated gel phase, redistribution of naphthol between the inner core and interfacial region of the lipid bilayer takes places, accounting for the reduction in neutral form fluorescence intensity. The partition coefficient values and the quenching studies also support the redistribution of 1-naphthol in the liposome membrane. The neutral form fluorescence of 1-naphthol successfully monitors the shift in phase transition temperature due to ethanol-induced interdigitation. It also explains the prevention of interdigitation in lipid bilayer at high cholesterol concentration.
Collapse
Affiliation(s)
- N Pappayee
- Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036, India
| | | |
Collapse
|
36
|
Krasnowska EK, Bagatolli LA, Gratton E, Parasassi T. Surface properties of cholesterol-containing membranes detected by Prodan fluorescence. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1511:330-40. [PMID: 11286976 DOI: 10.1016/s0005-2736(01)00286-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The fluorescent membrane probe 6-propionyl-2-dimethylaminonaphthalene (Prodan) displays a high sensitivity to the polarity and packing properties of lipid membrane. Contrary to 6-lauroyl-2-dimethylaminonaphthalene (Laurdan), Prodan can also monitor the properties of the membrane surface, i.e., the polar-head pretransition. In bilayers composed of coexisting gel and liquid-crystalline phases, Prodan shows a preferential partitioning in the latter, so that the detected membrane properties mainly belong to fluid domains. In the presence of cholesterol, the packing properties of the gel phase phospholipids are modified in such a way that Prodan can penetrate and label the membrane. Although Prodan labeling of the gel phase is a function of cholesterol concentration, 3 mol percent cholesterol is sufficient for a 60% Prodan labeling with respect to the maximum labeling reached at 15 mol percent cholesterol. We present steady-state and dynamical fluorescence measurements of Prodan in bilayers in the presence of cholesterol. Our results fit the liquid-ordered/liquid-disordered phase model for cholesterol-containing membranes and show that the presence of cholesterol, in addition to modification to the phase state of the hydrophobic portion of the bilayer, strongly affects the packing and the polarity of the membrane hydrophobic-hydrophilic interface.
Collapse
Affiliation(s)
- E K Krasnowska
- Istituto di Neurobiologia e Medicina Molecolare, CNR, Viale Marx 15-43, 00137 Rome, Italy
| | | | | | | |
Collapse
|
37
|
Bagatolli L, Gratton E, Khan TK, Chong PL. Two-photon fluorescence microscopy studies of bipolar tetraether giant liposomes from thermoacidophilic archaebacteria Sulfolobus acidocaldarius. Biophys J 2000; 79:416-25. [PMID: 10866967 PMCID: PMC1300945 DOI: 10.1016/s0006-3495(00)76303-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The effects of temperature and pH on Laurdan (6-lauroyl-2-(dimethylamino)naphthalene) fluorescence intensity images of giant unilamellar vesicles (GUVs) ( approximately 20-150 microm in diameter) composed of the polar lipid fraction E (PLFE) from the thermoacidophilic archaebacteria Sulfolobus acidocaldarius have been studied using two-photon excitation. PLFE GUVs made by the electroformation method were stable and well suited for microscopy studies. The generalized polarization (GP) of Laurdan fluorescence in the center cross section of the vesicles has been determined as a function of temperature at pH 7.23 and pH 2.68. At all of the temperatures and pHs examined, the GP values are low (below or close to 0), and the GP histograms show a broad distribution width (> 0.3). When excited with light polarized in the y direction, Laurdan fluorescence in the center cross section of the PLFE GUVs exhibits a photoselection effect showing much higher intensities in the x direction of the vesicles, a result opposite that previously obtained on monopolar diester phospholipids. This result indicates that the chromophore of Laurdan in PLFE GUVs is aligned parallel to the membrane surface. The x direction photoselection effect and the low GP values lead us to further propose that the Laurdan chromophore resides in the polar headgroup region of the PLFE liposomes, while the lauroyl tail inserts into the hydrocarbon core of the membrane. This unusual L-shaped disposition is presumably caused by the unique lipid structures and by the rigid and tight membrane packing in PLFE liposomes. The GP exhibited, at both pH values, a small but abrupt decrease near 50 degrees C, suggesting a conformational change in the polar headgroups of PLFE. This transition temperature fully agrees with the d-spacing data recently measured by small-angle x-ray diffraction and with the pyrene-labeled phosphatidylcholine and perylene fluorescence data previously obtained from PLFE multilamellar vesicles. Interestingly, the two-photon Laurdan fluorescence images showed snowflake-like lipid domains in PLFE GUVs at pH 7.23 and low temperatures (<20 degrees C in the cooling scan and <24 degrees C in the heating scan). These domains, attributable to lipid lateral separation, were stable and laterally immobile at low temperatures (<23 degrees C), again suggesting tight membrane packing in the PLFE GUVs.
Collapse
Affiliation(s)
- L Bagatolli
- Laboratory for Fluorescence Dynamics, Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
38
|
Bagatolli LA, Gratton E. Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. Biophys J 2000; 78:290-305. [PMID: 10620293 PMCID: PMC1300637 DOI: 10.1016/s0006-3495(00)76592-1] [Citation(s) in RCA: 297] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Images of giant unilamellar vesicles (GUVs) formed by different phospholipid mixtures (1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1, 2-dilauroyl-sn-glycero-3-phosphocholine (DPPC/DLPC) 1:1 (mol/mol), and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine/1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPE/DPPC), 7:3 and 3:7 (mol/mol) at different temperatures were obtained by exploiting the sectioning capability of a two-photon excitation fluorescence microscope. 6-Dodecanoyl-2-dimethylamino-naphthalene (LAURDAN), 6-propionyl-2-dimethylamino-naphthalene (PRODAN), and Lissamine rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (N-Rh-DPPE) were used as fluorescent probes to reveal domain coexistence in the GUVs. We report the first characterization of the morphology of lipid domains in unsupported lipid bilayers. From the LAURDAN intensity images the excitation generalized polarization function (GP) was calculated at different temperatures to characterize the phase state of the lipid domain. On the basis of the phase diagram of each lipid mixture, we found a homogeneous fluorescence distribution in the GUV images at temperatures corresponding to the fluid region in all lipid mixtures. At temperatures corresponding to the phase coexistence region we observed lipid domains of different sizes and shapes, depending on the lipid sample composition. In the case of GUVs formed by DPPE/DPPC mixture, the gel DPPE domains present different shapes, such as hexagonal, rhombic, six-cornered star, dumbbell, or dendritic. At the phase coexistence region, the gel DPPE domains are moving and growing as the temperature decreases. Separated domains remain in the GUVs at temperatures corresponding to the solid region, showing solid-solid immiscibility. A different morphology was found in GUVs composed of DLPC/DPPC 1:1 (mol/mol) mixtures. At temperatures corresponding to the phase coexistence, we observed the gel domains as line defects in the GUV surface. These lines move and become thicker as the temperature decreases. As judged by the LAURDAN GP histogram, we concluded that the lipid phase characteristics at the phase coexistence region are different between the DPPE/DPPC and DLPC/DPPC mixtures. In the DPPE/DPPC mixture the coexistence is between pure gel and pure liquid domains, while in the DLPC/DPPC 1:1 (mol/mol) mixture we observed a strong influence of one phase on the other. In all cases the domains span the inner and outer leaflets of the membrane, suggesting a strong coupling between the inner and outer monolayers of the lipid membrane. This observation is also novel for unsupported lipid bilayers.
Collapse
Affiliation(s)
- L A Bagatolli
- Laboratory for Fluorescence Dynamics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA.
| | | |
Collapse
|
39
|
Abstract
The fluorescent probe Prodan has been widely used as a probe of model and biological membranes. Its fluorescent maxima in phospholipid bilayers vary as a function of phase state, with maxima at 485 for the liquid crystal Lalpha, 435 nm for the gel L'beta, and 507 nm for the interdigitated gel LbetaI phase, with excitation at 359 nm. These spectral changes have been used for the detection of phase changes among these phases. In the present study, the fluorescent properties and partition coefficients of Prodan in model membranes of phosphatidylcholines and phosphatidylethanols have been studied as a function of lipid phase state and cholesterol content. It is shown that the Prodan spectrum in the presence of cholesterol no longer reflects the known phase state of the lipid; in each phase state, the presence of cholesterol leads to a spectrum with the maximum at 435 nm, characteristic of the noninterdigitated gel phase. The partition coefficient of Prodan into these lipids also varies with the phase state, giving values of 0.35 x 10(4) in the interdigitated gel, 1.8 x 10(4) in the noninterdigitated gel, and 7. 6 x 10(4) in the liquid crystal phase. In the presence of cholesterol these partition coefficients are increased to 13 x 10(4) for the liquid crystal and the gel phase, and 5.1 x 10(4) in the presence of 100 mg/ml ethanol. These results suggest that Prodan has preferential interactions with cholesterol, and is thus not a randomly distributed fluorescent reporter probe in membranes containing cholesterol. These results suggest that Prodan should be used only with great caution in complex lipid mixtures, particularly biological membranes.
Collapse
Affiliation(s)
- O P Bondar
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66103, and Veterans Administration Medical Center, Kansas City, Missouri 64128 USA
| | | |
Collapse
|
40
|
Krasnowska EK, Gratton E, Parasassi T. Prodan as a membrane surface fluorescence probe: partitioning between water and phospholipid phases. Biophys J 1998; 74:1984-93. [PMID: 9545057 PMCID: PMC1299539 DOI: 10.1016/s0006-3495(98)77905-6] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Fluorescence spectral features of 6-propionyl-2-dimethylaminonaphthalene (Prodan) in phospholipid vesicles of different phase states are investigated. Like the spectra of 6-lauroyl-2-dimethylaminonaphthalene (Laurdan), the steady-state excitation and emission spectra of Prodan are sensitive to the polarity of the environment, showing a relevant shift due to the dipolar relaxation phenomenon. Because of the different lengths of their acyl residues, the partitioning of the two probes between water and the membrane bilayer differs profoundly. To account for the contribution of Prodan fluorescence arising from water, we introduce a three-wavelength generalized polarization method that makes it possible to separate the spectral properties of Prodan in the lipid phase and in water, and to determine the probe partitioning between phospholipid and water and between the gel and the liquid-crystalline phases of phospholipids. In contrast to Laurdan, Prodan preferentially partitions in the liquid-crystalline phase with respect to the gel and is sensitive to the polar head pretransition, and its partition coefficient between the membrane and water depends on the phase state, i.e., on the packing of the bilayer. Prodan is sensitive to polarity variations occurring closer to the bilayer surface than those detected by Laurdan.
Collapse
Affiliation(s)
- E K Krasnowska
- Istituto di Medicina Sperimentale, Consiglio Nazionale delle Ricerche, Rome, Italy
| | | | | |
Collapse
|
41
|
Bondar OP, Pivovarenko VG, Rowe ES. Flavonols--new fluorescent membrane probes for studying the interdigitation of lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1369:119-30. [PMID: 9528680 DOI: 10.1016/s0005-2736(97)00218-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two flavonols, 3-hydroxy-4'-dimethylaminoflavone (FME) and 3-hydroxy-4'-(15-azacrown-5) flavone (FRC) have been investigated as new fluorescence probes for studying the formation of the interdigitated gel phase in lipid bilayers. The formation of the interdigitated gel phase in the saturated symmetrical phosphatidylcholines (PCs) and phosphatidylethanol (Peth) in the presence of ethanol has been well studied. The present study examines the behavior of these new probes in PC-ethanol and Peth-ethanol systems, as well as in PC-cholesterol and Peth-cholesterol vesicles. The present results demonstrate that both flavonols give distinctively different spectra in interdigitated lipid compared to non-interdigitated lipids, when examined in lipids in which the interdigitation behavior is known. This makes them useful for determinations of the structural state of unknown lipids, and for following the transitions between interdigitated and non-interdigitated phases. However, in the presence of cholesterol, only FCR gave appropriate indications of interdigitation. The results with FME in the presence of cholesterol were not consistent with the known behavior of the lipids examined; instead, FME appears to be located preferentially in the cholesterol-rich non-interdigitated regions of the bilayer.
Collapse
Affiliation(s)
- O P Bondar
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City 66103, USA
| | | | | |
Collapse
|
42
|
Boggs JM, Rangaraj G. Greater partitioning of small spin labels into interdigitated than into non-interdigitated gel phase bilayers. Chem Phys Lipids 1997. [DOI: 10.1016/s0009-3084(97)02663-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
43
|
Hutterer R, Schneider FW, Sprinz H, Hof M. Binding and relaxation behaviour of prodan and patman in phospholipid vesicles: a fluorescence and 1H NMR study. Biophys Chem 1996; 61:151-60. [PMID: 8956486 DOI: 10.1016/s0301-4622(96)02185-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The relative location, binding behaviour and the solvent relaxation behaviour of the polarity sensitive membrane probes 6-propionyl-2-(dimethylamino)naphthalene and 6-palmitoyl-2-[[trimethylammoniumethyl]methylamino]naphthalene chloride in vesicles composed of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine or egg yolk lecithin have been compared using steady-state and time-resolved fluorescence as well as high resolution NMR measurements. The reconstructed time-resolved emission spectra show unambiguously that the observed spectral shifts in vesicle systems have to be assigned to time-dependent solvent relaxation processes rather than to a probe relocation mechanism. All fluorescence as well as the NMR relaxation data suggest a deeper localization of Patman in the membrane, sensing a less polar and/or more restricted probe environment.
Collapse
Affiliation(s)
- R Hutterer
- Institute for Physical Chemistry, University of Wuerzburg, Germany
| | | | | | | |
Collapse
|
44
|
Abstract
Phosphatidylethanol is formed when ethanol substitutes in the transphosphatidylation reaction catalyzed by phospholipase D. The structural and thermotropic properties of dipalmitoylphosphatidylethanol and dimyristoylphosphatidylethanol have been studied using differential scanning calorimetry, fluorescence spectroscopy, and 31P nuclear magnetic resonance. These lipids exist in a bilayer phase with no indication of nonbilayer phase formation, as shown by 31P nuclear magnetic resonance. It was found that the phase behavior of these phospholipids before and during the main chain melting transition is different in 50 mM Tris buffer compared to salt solutions. The phase transition behavior and the 6-propionyl-2-(dimethylamino)naphthalene (Prodan) fluorescence spectra for both lipids are consistent with the formation of the interdigitated gel phase under certain conditions. Both lipids become interdigitated in Tris-HCl, and ethanol enhances the formation of this phase. Comparative studies of the 6-propionyl-2-(dimethylamino)naphthalene spectra in dipalmitoylphosphatidylglycerol, dielaidoylphosphatidylethanolamine, and dipalmitoylphosphatidylcholine further elucidate the value and limitations of this probe as a diagnostic tool for lipid structure.
Collapse
Affiliation(s)
- O P Bondar
- Veterans Affairs Medical Center, Kansas City, Missouri 64128, USA
| | | |
Collapse
|