1
|
Hong M. Solid-State NMR of Virus Membrane Proteins. Acc Chem Res 2025; 58:847-860. [PMID: 40019485 DOI: 10.1021/acs.accounts.4c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Enveloped viruses encode ion-conducting pores that permeabilize the host cell membranes and mediate the budding of new viruses. These viroporins are some of the essential membrane proteins of viruses, and have high sequence conservation, making them important targets of antiviral drugs. High-resolution structures of viroporins are challenging to determine by X-ray crystallography and cryoelectron microscopy, because these proteins are small, hydrophobic, and prone to induce membrane curvature. Solid-state NMR (ssNMR) spectroscopy is an ideal method for elucidating the structure, dynamics, and mechanism of action of viroporins in phospholipid membranes. This Account describes our investigations of influenza M2 proteins and the SARS-CoV-2 E protein using solid-state NMR.M2 proteins form acid-activated tetrameric proton channels that initiate influenza uncoating in the cell. 15N and 13C exchange NMR revealed that M2 shuttles protons into the virion using a crucial histidine, whose imidazole nitrogens pick up and release protons on the microsecond time scale at acidic pH. This proton exchange is synchronized with and facilitated by imidazole reorientation, which is observed in NMR spectra. Quantitative 15N NMR spectra yielded the populations of neutral and cationic histidines as a function of pH, giving four proton dissociation constants (pKa's). The pKa's of influenza AM2 indicate that the +3 charged channel has the highest time-averaged single-channel conductance; thus the third protonation event defines channel activation. In comparison, influenza BM2 exhibits lower pKa's due to a second, peripheral histidine, which accelerates proton dissociation from the central proton-selective histidine. Amantadine binding to AM2 suppressed proton exchange and imidazole reorientation, indicating that this antiviral drug acts by inhibiting proton shuttling. Solid-state NMR 13C-2H distance measurements revealed that amantadine binds the N-terminal pore of the channel near a crucial Ser31, whose mutation to asparagine causes amantadine resistance in circulating influenza A viruses. A second binding site, on the lipid-facing surface of the protein, only occurs when amantadine is in large excess in lipid bilayers. M2 not only functions as a proton channel but also conducts membrane scission during influenza budding in a cholesterol-dependent manner. Solid-state NMR distance experiments revealed that two cholesterol molecules bind asymmetrically to the surface of the tetrameric channel, thus recruiting the protein to the cholesterol-rich budding region of the cell membrane to cause membrane scission.To accelerate full structure determination of viroporins, we developed a suite of 19F solid-state NMR techniques that measure interatomic distances to 1-2 nm. Using this approach, we determined the atomic structures of influenza BM2, SARS-CoV-2 E, and EmrE, a multidrug-resistance bacterial transporter. pH-induced structural changes of these proteins gave detailed insights into the activation mechanisms of BM2 and E and the proton-coupled substrate transport mechanism of EmrE. The SARS-CoV-2 E protein forms pentameric helical bundles whose structures are distinct between the closed state at neutral pH and the open state at acidic pH. These 19F-enabled distance NMR experiments are also instrumental for identifying the binding mode and binding site of hexamethylene amiloride in E, paving the way for developing new antiviral drugs that target these pathogenic virus ion channels.
Collapse
Affiliation(s)
- Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Xie W, Kong Y, Ren C, Wen Y, Ying M, Xing H. Chemistries on the inner leaflet of the cell membrane. Chem Commun (Camb) 2025; 61:2387-2402. [PMID: 39810742 DOI: 10.1039/d4cc05186f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The cell membrane, characterized by its inherent asymmetry, functions as a dynamic barrier that regulates numerous cellular activities. This Highlight aims to provide the chemistry community with a comprehensive overview of the intriguing and underexplored inner leaflet, encompassing both fundamental biology and emerging synthetic modification strategies. We begin by describing the asymmetric nature of the plasma membrane, with a focus on the distinct roles of lipids, proteins, and glycan chains, highlighting the composition and biofunctions of the inner leaflet and the biological mechanisms that sustain membrane asymmetry. Next, we explore chemical biological strategies for engineering the inner leaflet, including genetic engineering, transmembrane peptides, and liposome fusion-based transport. In the perspective section, we discuss the challenges in developing chemistries for the inner leaflet of the cell membrane, aiming to inspire researchers and collaborators to explore this field and address its unanswered biological questions.
Collapse
Affiliation(s)
- Wenxue Xie
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Yuhan Kong
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Cong Ren
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Yujian Wen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | | | - Hang Xing
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
- Research Institute of Hunan University in Chongqing, Chongqing, 401100, China
| |
Collapse
|
3
|
Maraj JJ, Ringley JD, Sarles SA. Alamethicin channel inactivation caused by voltage-driven flux of alamethicin. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184386. [PMID: 39343086 DOI: 10.1016/j.bbamem.2024.184386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/16/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
We show that voltage alone can inactivate alamethicin channels, which has been previously observed for monazomycin and suzukacillin channels. The voltage required to trigger inactivation is above the potential to form channels, and, like with channel activation, this threshold reduces with increasing peptide concentration and membrane fluidity. Since similar monazomycin channels inactivate via channel break up and translocation, we hypothesized that inactivation of alamethicin channels occurs via the same mechanism. Our data prove this hypothesis to be true through two experiments. First, we show that inactivation of channels at positive voltages when peptides are supplied to only the cis side correlates to new channel activity on the trans side at negative potentials. This result indicates translocation of alamethicin peptides occurs only during voltage-induced inactivation. Second, we measured the ratio of steady-state (with inactivation) to ideal (without inactivation) conductance versus voltage for membranes with equal amounts of alamethicin on both sides and used these values to quantify alamethicin flux. Plotting flux versus steady-state conductance across multiple alamethicin concentrations shows a single linear dependence, signifying that translocated peptides originate from active channels that break up under prolonged voltage. Given the frequent use of alamethicin as model ion channels, these results add important understanding of their kinetic responses when subjected to prolonged, high voltages.
Collapse
Affiliation(s)
- Joshua J Maraj
- Department of Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Jessie D Ringley
- Department of Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Stephen A Sarles
- Department of Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
4
|
Ulmschneider JP, Ulmschneider MB. Melittin can permeabilize membranes via large transient pores. Nat Commun 2024; 15:7281. [PMID: 39179607 PMCID: PMC11343860 DOI: 10.1038/s41467-024-51691-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 08/15/2024] [Indexed: 08/26/2024] Open
Abstract
Membrane active peptides are known to porate lipid bilayers, but their exact permeabilization mechanism and the structure of the nanoaggregates they form in membranes have often been difficult to determine experimentally. For many sequences at lower peptide concentrations, transient leakage is observed in experiments, suggesting the existence of transient pores. For two well-know peptides, alamethicin and melittin, we show here that molecular mechanics simulations i) can directly distinguish equilibrium poration and non-equilibrium transient leakage processes, and ii) can be used to observe the detailed pore structures and mechanism of permeabilization in both cases. Our results are in very high agreement with numerous experimental evidence for these two peptides. This suggests that molecular simulations can capture key membrane poration phenomena directly and in the future may develop to be a useful tool that can assist experimental peptide design.
Collapse
Affiliation(s)
- Jakob P Ulmschneider
- Institute of Natural Sciences and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
| | | |
Collapse
|
5
|
Chatterjee H, Mahapatra AJ, Zacharias M, Sengupta N. Helical reorganization in the context of membrane protein folding: Insights from simulations with bacteriorhodopsin (BR) fragments. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184333. [PMID: 38740122 DOI: 10.1016/j.bbamem.2024.184333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/20/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Membrane protein folding is distinct from folding of soluble proteins. Conformational acquisition in major membrane protein subclasses can be delineated into insertion and folding processes. An exception to the "two stage" folding, later developed to "three stage" folding, is observed within the last two helices in bacteriorhodopsin (BR), a system that serves as a model membrane protein. We employ a reductionist approach to understand interplay of molecular factors underlying the apparent defiance. Leveraging available solution NMR structures, we construct, sample in silico, and analyze partially (PIn) and fully inserted (FIn) BR membrane states. The membrane lateral C-terminal helix (CH) in PIn is markedly prone to transient structural distortions over microsecond timescales; a disorder prone region (DPR) is thereby identified. While clear transmembrane propensities are not acquired, the distortions induce alterations in local membrane curvature and area per lipid. Importantly, energetic decompositions reveal that overall, the N-terminal helix (NH) is thermodynamically more stable in the PIn. Higher overall stability of the FIn arises from favorable interactions between the NH and the CH. Our results establish lack of spontaneous transition of the PIn to the FIn, and attributes their partitioning to barriers that exceed those accessible with thermal fluctuations. This work paves the way for further detailed studies aimed at determining the thermo-kinetic roles of the initial five helices, or complementary external factors, in complete helical folding and insertion in BR. We comment that complementing such efforts with the growing field of machine learning assisted energy landscape searches may offer unprecedented insights.
Collapse
Affiliation(s)
- Hindol Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Anshuman J Mahapatra
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Martin Zacharias
- Center for Functional Protein Assemblies, TUM School of Natural Sciences Technical University Munich, Ernst-Otto-Fischer-Straße 8, 85748 Garching, Germany.
| | - Neelanjana Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| |
Collapse
|
6
|
Ashrafuzzaman M, Koeppe RE, Andersen OS. Intrinsic Lipid Curvature and Bilayer Elasticity as Regulators of Channel Function: A Comparative Single-Molecule Study. Int J Mol Sci 2024; 25:2758. [PMID: 38474005 PMCID: PMC10931550 DOI: 10.3390/ijms25052758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Perturbations in bilayer material properties (thickness, lipid intrinsic curvature and elastic moduli) modulate the free energy difference between different membrane protein conformations, thereby leading to changes in the conformational preferences of bilayer-spanning proteins. To further explore the relative importance of curvature and elasticity in determining the changes in bilayer properties that underlie the modulation of channel function, we investigated how the micelle-forming amphiphiles Triton X-100, reduced Triton X-100 and the HII lipid phase promoter capsaicin modulate the function of alamethicin and gramicidin channels. Whether the amphiphile-induced changes in intrinsic curvature were negative or positive, amphiphile addition increased gramicidin channel appearance rates and lifetimes and stabilized the higher conductance states in alamethicin channels. When the intrinsic curvature was modulated by altering phospholipid head group interactions, however, maneuvers that promote a negative-going curvature stabilized the higher conductance states in alamethicin channels but destabilized gramicidin channels. Using gramicidin channels of different lengths to probe for changes in bilayer elasticity, we found that amphiphile adsorption increases bilayer elasticity, whereas altering head group interactions does not. We draw the following conclusions: first, confirming previous studies, both alamethicin and gramicidin channels are modulated by changes in lipid bilayer material properties, the changes occurring in parallel yet differing dependent on the property that is being changed; second, isolated, negative-going changes in curvature stabilize the higher current levels in alamethicin channels and destabilize gramicidin channels; third, increases in bilayer elasticity stabilize the higher current levels in alamethicin channels and stabilize gramicidin channels; and fourth, the energetic consequences of changes in elasticity tend to dominate over changes in curvature.
Collapse
Affiliation(s)
- Mohammad Ashrafuzzaman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Roger E. Koeppe
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Olaf S. Andersen
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA;
| |
Collapse
|
7
|
Chen EHL, Wang CH, Liao YT, Chan FY, Kanaoka Y, Uchihashi T, Kato K, Lai L, Chang YW, Ho MC, Chen RPY. Visualizing the membrane disruption action of antimicrobial peptides by cryo-electron tomography. Nat Commun 2023; 14:5464. [PMID: 37673860 PMCID: PMC10482868 DOI: 10.1038/s41467-023-41156-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
The abuse of antibiotics has led to the emergence of multidrug-resistant microbial pathogens, presenting a pressing challenge in global healthcare. Membrane-disrupting antimicrobial peptides (AMPs) combat so-called superbugs via mechanisms different than conventional antibiotics and have good application prospects in medicine, agriculture, and the food industry. However, the mechanism-of-action of AMPs has not been fully characterized at the cellular level due to a lack of high-resolution imaging technologies that can capture cellular-membrane disruption events in the hydrated state. Previously, we reported PepD2M, a de novo-designed AMP with potent and wide-spectrum bactericidal and fungicidal activity. In this study, we use cryo-electron tomography (cryo-ET) and high-speed atomic force microscopy (HS-AFM) to directly visualize the pepD2M-induced disruption of the outer and inner membranes of the Gram-negative bacterium Escherichia coli, and compared with a well-known pore-forming peptide, melittin. Our high-resolution cryo-ET images reveal how pepD2M disrupts the E. coli membrane using a carpet/detergent-like mechanism. Our studies reveal the direct membrane-disrupting consequence of AMPs on the bacterial membrane by cryo-ET, and this information provides critical insights into the mechanisms of this class of antimicrobial agents.
Collapse
Affiliation(s)
- Eric H-L Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Ting Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Feng-Yueh Chan
- Department of Physics, Nagoya University, Nagoya, 464-8602, Japan
| | - Yui Kanaoka
- Department of Physics, Nagoya University, Nagoya, 464-8602, Japan
| | - Takayuki Uchihashi
- Department of Physics, Nagoya University, Nagoya, 464-8602, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, 464-8602, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Longsheng Lai
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6059, USA
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6059, USA
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan.
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.
| | - Rita P-Y Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
8
|
Ioannou P, Baliou S, Kofteridis DP. Antimicrobial Peptides in Infectious Diseases and Beyond-A Narrative Review. Life (Basel) 2023; 13:1651. [PMID: 37629508 PMCID: PMC10455936 DOI: 10.3390/life13081651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Despite recent medical research and clinical practice developments, the development of antimicrobial resistance (AMR) significantly limits therapeutics for infectious diseases. Thus, novel treatments for infectious diseases, especially in this era of increasing AMR, are urgently needed. There is ongoing research on non-classical therapies for infectious diseases utilizing alternative antimicrobial mechanisms to fight pathogens, such as bacteriophages or antimicrobial peptides (AMPs). AMPs are evolutionarily conserved molecules naturally produced by several organisms, such as plants, insects, marine organisms, and mammals, aiming to protect the host by fighting pathogenic microorganisms. There is ongoing research regarding developing AMPs for clinical use in infectious diseases. Moreover, AMPs have several other non-medical applications in the food industry, such as preservatives, animal husbandry, plant protection, and aquaculture. This review focuses on AMPs, their origins, biology, structure, mechanisms of action, non-medical applications, and clinical applications in infectious diseases.
Collapse
Affiliation(s)
- Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- Internal Medicine, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Stella Baliou
- Internal Medicine, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Diamantis P. Kofteridis
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- Internal Medicine, University Hospital of Heraklion, 71110 Heraklion, Greece
| |
Collapse
|
9
|
Ganesan N, Mishra B, Felix L, Mylonakis E. Antimicrobial Peptides and Small Molecules Targeting the Cell Membrane of Staphylococcus aureus. Microbiol Mol Biol Rev 2023; 87:e0003722. [PMID: 37129495 PMCID: PMC10304793 DOI: 10.1128/mmbr.00037-22] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Clinical management of Staphylococcus aureus infections presents a challenge due to the high incidence, considerable virulence, and emergence of drug resistance mechanisms. The treatment of drug-resistant strains, such as methicillin-resistant S. aureus (MRSA), is further complicated by the development of tolerance and persistence to antimicrobial agents in clinical use. To address these challenges, membrane disruptors, that are not generally considered during drug discovery for agents against S. aureus, should be explored. The cell membrane protects S. aureus from external stresses and antimicrobial agents, but membrane-targeting antimicrobial agents are probably less likely to promote bacterial resistance. Nontypical linear cationic antimicrobial peptides (AMPs), highly modified AMPs such as daptomycin (lipopeptide), bacitracin (cyclic peptide), and gramicidin S (cyclic peptide), are currently in clinical use. Recent studies have demonstrated that AMPs and small molecules can penetrate the cell membrane of S. aureus, inhibit phospholipid biosynthesis, or block the passage of solutes between the periplasm and the exterior of the cell. In addition to their primary mechanism of action (MOA) that targets the bacterial membrane, AMPs and small molecules may also impact bacteria through secondary mechanisms such as targeting the biofilm, and downregulating virulence genes of S. aureus. In this review, we discuss the current state of research into cell membrane-targeting AMPs and small molecules and their potential mechanisms of action against drug-resistant physiological forms of S. aureus, including persister cells and biofilms.
Collapse
Affiliation(s)
- Narchonai Ganesan
- Infectious Diseases Division, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Biswajit Mishra
- Infectious Diseases Division, Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Department of Medicine, The Miriam Hospital, Providence, Rhode Island, USA
| | - LewisOscar Felix
- Infectious Diseases Division, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Eleftherios Mylonakis
- Infectious Diseases Division, Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Department of Medicine, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
10
|
Balázs D, Marik T, Szekeres A, Vágvölgyi C, Kredics L, Tyagi C. Structure-activity correlations for peptaibols obtained from clade Longibrachiatum of Trichoderma: A combined experimental and computational approach. Comput Struct Biotechnol J 2023; 21:1860-1873. [PMID: 36915379 PMCID: PMC10006723 DOI: 10.1016/j.csbj.2023.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Integrated disease management and plant protection have been discussed with much fervor in the past decade due to the rising environmental concerns of using industrially produced pesticides. Members of the genus Trichoderma are a subject of considerable research today due to their several properties as biocontrol agents. In our study, the peptaibol production of Trichoderma longibrachiatum SZMC 1775, T. longibrachiatum f. bissettii SZMC 12546, T. reesei SZMC 22616, T. reesei SZMC 22614, T. saturnisporum SZMC 22606 and T. effusum SZMC 22611 were investigated to elucidate structure-activity relationships (SARs) between the properties of peptaibols and their 3D structures. The effects of peptaibol mixtures obtained from every Trichoderma strain were examined against nine commonly known bacteria. The lowest minimum inhibitory concentrations (MIC, mg ml-1) were exerted by T. longibrachiatum f. bissettii SZMC 12546 against Gram-positive bacteria, which was also able to inhibit the plant pathogenic Gram-negative Rhizobium radiobacter. Accelerated molecular dynamics (aMD) simulations were performed in aqueous solvent to explore the folding dynamics of 12 selected peptaibol sequences. The most characteristic difference between the peptaibols from group A and B relies in the 'Gly-Leu-Aib-Pro' and 'Gly-Aib-Aib-Pro' motifs ('Aib' stands for α-aminoisobutyric acid), which imparted a significant effect on the folding dynamics in water and might be correlated with their expressed bioactivity. In our aMD simulation experiments, Group A peptaibols showed more restricted folding dynamics with well-folded helical conformations as the most stable representative structures. This structural stability and dynamics may contribute to their bioactivity against the selected bacterial species.
Collapse
Affiliation(s)
- Dóra Balázs
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Tamás Marik
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Chetna Tyagi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| |
Collapse
|
11
|
Wang C, Ma YH, Han X, Lu X. Re-Examining Interaction between Antimicrobial Peptide Aurein 1.2 and Model Cell Membranes via SFG. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:690-699. [PMID: 36576332 DOI: 10.1021/acs.langmuir.2c03068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Aurein 1.2 (Aur), a highly efficient 13-residue antimicrobial peptide (AMP) with a broad-spectrum antibiotic activity originally derived from the Australian frog skin secretions, can nonspecifically disrupt bacterial membranes. To deeply understand the molecular-level detail of the antimicrobial mechanism, here, we artificially established comparative experimental models to investigate the interfacial interaction process between Aur and negatively charged model cell membranes via sum frequency generation vibrational spectroscopy. Sequencing the vibrational signals of phenyl, C-H, and amide groups from Aur has characteristically helped us differentiate between the initial adsorption and subsequent insertion steps upon mutual interaction between Aur and the charged lipids. The phenyl group at the terminal phenylalanine residue can act as an anchor in the adsorption process. The time-dependent signal intensity of α-helices showed a sharp rise once the Aur molecules came into contact with the negatively charged lipids, indicating that the adsorption process was ongoing. Insertion of Aur into the charged lipids then offered the detectable interfacial C-H signals from Aur. The achiral and chiral amide I signals suggest that Aur had formed β-folding-like aggregates after interacting with the charged lipids, along with the subsequent descending α-helical amide I signals. The above-mentioned experimental results provide the molecular-level detail on how the Aur molecules interact with the cell membranes, and such a mechanism study can offer the necessary support for the AMP design and later application.
Collapse
Affiliation(s)
- Chu Wang
- State Key Laboratory of Bioelectronics, School of Biomedical Engineering, Southeast University, Nanjing 210096, China
| | - Yong-Hao Ma
- State Key Laboratory of Bioelectronics, School of Biomedical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaofeng Han
- State Key Laboratory of Bioelectronics, School of Biomedical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaolin Lu
- State Key Laboratory of Bioelectronics, School of Biomedical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
12
|
Kondoh M, Sano A, Kawamura I, Ishibashi TA. Total Internal Reflection Raman Spectra of Alamethicin Interacting with Supported Lipid Bilayers at a Silica/Water Interface. J Phys Chem B 2022; 126:10712-10720. [PMID: 36440848 DOI: 10.1021/acs.jpcb.2c06371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report total internal reflection (TIR)-Raman spectroscopy to study intermolecular interactions between membrane-binding peptides and lipid bilayer membranes. The method was applied to alamethicin (ALM), a model peptide for channel proteins, interacting with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayer membranes at a silica/water interface. After a dimethyl sulfoxide (DMSO) solution of ALM was added into the water subphase of the DPPC/DPPC bilayer, Raman signals in the CH stretching region increased in intensity reflecting the appearance of the Raman bands due to ALM and DMSO. To identify ALM-dependent spectral changes, we removed DPPC and DMSO contributions from the Raman spectra. We first subtracted the spectrum of the DPPC bilayer from those after the addition of the ALM solution. The contribution of DMSO was then removed by subtracting a DMSO spectrum from the resultant spectra. The DMSO spectrum was obtained in a similar way from a control experiment where DMSO alone was added into the subphase. With the use of this double difference approach, the ALM-dependent changes were successfully obtained. Experiments with DPPC bilayers with deuterated acyl chains revealed that most of the spectral change observed after the addition of ALM was due to the vibrational bands of ALM, not originated from ALM-induced conformational changes of the lipid bilayers.
Collapse
Affiliation(s)
- Masato Kondoh
- Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Japan
| | - Arisa Sano
- Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Japan
| | - Izuru Kawamura
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Taka-Aki Ishibashi
- Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Japan
| |
Collapse
|
13
|
Dias VHV, Mattos JJ, Bastolla CLV, Lüchmann KH, Bainy ACD. Characterisation of UDP-glucuronosyltransferase activity in sea turtle Chelonia mydas. Xenobiotica 2022; 52:1011-1019. [PMID: 36594659 DOI: 10.1080/00498254.2022.2164750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Uridine diphosphate glucuronosyltransferase (UGT) enzymes conjugate many lipophilic chemicals, such as drugs, environmental contaminants, and endogenous compounds, promoting their excretion. The complexity of UGT kinetics, and the location of enzyme active site in endoplasmic reticulum lumen, requires an accurate optimisation of enzyme assays.In the present study, we characterised UGT activity in liver microsomes of green turtles (Chelonia mydas), an endangered species. The conditions for measuring UGT activity were standardised through spectrofluorimetric methods, using the substrates 4-methylumbelliferone (4-MU) and uridine diphosphate glucuronic acid (UDPGA) at 30 °C and pH 7.4.The green turtles showed UGT activity at the saturating concentrations of substrates of 250 µM to 4-MU and 7 mM to UDPGA. The alamethicin, Brij®58, bovine serum albumin (BSA), and magnesium increased UGT activity. The assay using alamethicin (22 µg per mg of protein), magnesium (1 mM), and BSA (0.25%) reached the highest Vmax (1203 pmol·min-1mg·protein-1). Lithocholic acid and diclofenac inhibited UGT activity in green turtles.This study is the first report of UGT activity in the liver of green turtles and provides a base for future studies to understand the mechanisms of toxicity by exposure to contaminants in this charismatic species.
Collapse
Affiliation(s)
- Vera Helena V Dias
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Jacó J Mattos
- Aquaculture Pathology Research Center-NEPAQ, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Camila L V Bastolla
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Karim H Lüchmann
- Department of Scientific and Technological Education, Santa Catarina State University, Florianópolis, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
14
|
Juhl DW, Glattard E, Aisenbrey C, Bechinger B. Antimicrobial peptides: mechanism of action and lipid-mediated synergistic interactions within membranes. Faraday Discuss 2021; 232:419-434. [PMID: 34533138 DOI: 10.1039/d0fd00041h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Biophysical and structural studies of peptide-lipid interactions, peptide topology and dynamics have changed our view of how antimicrobial peptides insert and interact with membranes. Clearly, both peptides and lipids are highly dynamic, and change and mutually adapt their conformation, membrane penetration and detailed morphology on a local and a global level. As a consequence, peptides and lipids can form a wide variety of supramolecular assemblies in which the more hydrophobic sequences preferentially, but not exclusively, adopt transmembrane alignments and have the potential to form oligomeric structures similar to those suggested by the transmembrane helical bundle model. In contrast, charged amphipathic sequences tend to stay intercalated at the membrane interface. Although the membranes are soft and can adapt, at increasing peptide density they cause pronounced disruptions of the phospholipid fatty acyl packing. At even higher local or global concentrations the peptides cause transient membrane openings, rupture and ultimately lysis. Interestingly, mixtures of peptides such as magainin 2 and PGLa, which are stored and secreted naturally as a cocktail, exhibit considerably enhanced antimicrobial activities when investigated together in antimicrobial assays and also in pore forming experiments applied to biophysical model systems. Our most recent investigations reveal that these peptides do not form stable complexes but act by specific lipid-mediated interactions and the nanoscale properties of phospholipid bilayers.
Collapse
Affiliation(s)
- Dennis W Juhl
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4, rue Blaise Pascal, 67070 Strasbourg, France.
| | - Elise Glattard
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4, rue Blaise Pascal, 67070 Strasbourg, France.
| | - Christopher Aisenbrey
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4, rue Blaise Pascal, 67070 Strasbourg, France.
| | - Burkhard Bechinger
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4, rue Blaise Pascal, 67070 Strasbourg, France. .,Institut Universitaire de France, France
| |
Collapse
|
15
|
Zhang S, Ma M, Shao Z, Zhang J, Fu L, Li X, Fang W, Gao L. Structure and Formation Mechanism of Antimicrobial Peptides Temporin B- and L-Induced Tubular Membrane Protrusion. Int J Mol Sci 2021; 22:ijms222011015. [PMID: 34681675 PMCID: PMC8537239 DOI: 10.3390/ijms222011015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022] Open
Abstract
Temporins are a family of antimicrobial peptides (AMPs) isolated from frog skin, which are very short, weakly charged, and highly hydrophobic. They execute bactericidal activities in different ways from many other AMPs. This work investigated morphological changes of planar bilayer membranes composed of mixed zwitterionic and anionic phospholipids induced by temporin B and L (TB and TL) using all-atom and coarse-grained molecular dynamics simulations. We found that TB and TL fold to α-helices at the membrane surface and penetrate shallowly into the bilayer. These short AMPs have low propensity to induce membrane pore formation but possess high ability to extract lipids out. At relatively high peptide concentrations, the strong hydrophobicity of TB and TL promotes them to aggregate into clusters on the membrane surface. These aggregates attract a large amount of lipids out of the membrane to release compression induced by other dispersed peptides binding to the membrane. The extruded lipids mix evenly with the peptides in the cluster and form tubule-like protrusions. Certain water molecules follow the movement of lipids, which not only fill the cavities of the protrusion but also assist in maintaining the tubular structures. In contrast, the peptide-free leaflet remains intact. The present results unravel distinctive antimicrobial mechanisms of temporins disturbing membranes.
Collapse
|
16
|
Swana KW, Nagarajan R, Camesano TA. Atomic Force Microscopy to Characterize Antimicrobial Peptide-Induced Defects in Model Supported Lipid Bilayers. Microorganisms 2021; 9:microorganisms9091975. [PMID: 34576869 PMCID: PMC8465339 DOI: 10.3390/microorganisms9091975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) interact with bacterial cell membranes through a variety of mechanisms, causing changes extending from nanopore formation to microscale membrane lysis, eventually leading to cell death. Several AMPs also disrupt mammalian cell membranes, despite their significantly different lipid composition and such collateral hemolytic damage hinders the potential therapeutic applicability of the AMP as an anti-microbial. Elucidating the mechanisms underlying the AMP-membrane interactions is challenging due to the variations in the chemical and structural features of the AMPs, the complex compositional variations of cell membranes and the inadequacy of any single experimental technique to comprehensively probe them. (1) Background: Atomic Force Microscopy (AFM) imaging can be used in combination with other techniques to help understand how AMPs alter the orientation and structural organization of the molecules within cell membranes exposed to AMPs. The structure, size, net charge, hydrophobicity and amphipathicity of the AMPs affect how they interact with cell membranes of differing lipid compositions. (2) Methods: Our study examined two different types of AMPs, a 20-amino acid, neutral, α-helical (amphipathic) peptide, alamethicin, and a 13-amino acid, non-α-helical cationic peptide, indolicidin (which intramolecularly folds, creating a hydrophobic core), for their interactions with supported lipid bilayers (SLBs). Robust SLB model membranes on quartz supports, incorporating predominantly anionic lipids representative of bacterial cells, are currently not available and remain to be developed. Therefore, the SLBs of zwitterionic egg phosphatidylcholine (PC), which represents the composition of a mammalian cell membrane, was utilized as the model membrane. This also allows for a comparison with the results obtained from the Quartz Crystal Microbalance with Dissipation (QCM-D) experiments conducted for these peptides interacting with the same zwitterionic SLBs. Further, in the case of alamethicin, because of its neutrality, the lipid charge may be less relevant for understanding its membrane interactions. (3) Results: Using AFM imaging and roughness analysis, we found that alamethicin produced large, unstable defects in the membrane at 5 µM concentrations, and completely removed the bilayer at 10 µM. Indolicidin produced smaller holes in the bilayer at 5 and 10 µM, although they were able to fill in over time. The root-mean-square (RMS) roughness values for the images showed that the surface roughness caused by visible defects peaked after peptide injection and gradually decreased over time. (4) Conclusions: AFM is useful for helping to uncover the dynamic interactions between different AMPs and cell membranes, which can facilitate the selection and design of more efficient AMPs for use in therapeutics and antimicrobial applications.
Collapse
Affiliation(s)
- Kathleen W. Swana
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
- U.S. Army Combat Capabilities Development Command Soldier Center, Natick, MA 01760, USA;
| | - Ramanathan Nagarajan
- U.S. Army Combat Capabilities Development Command Soldier Center, Natick, MA 01760, USA;
| | - Terri A. Camesano
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
- Correspondence:
| |
Collapse
|
17
|
Dyett BP, Yu H, Lakic B, De Silva N, Dahdah A, Bao L, Blanch EW, Drummond CJ, Conn CE. Delivery of antimicrobial peptides to model membranes by cubosome nanocarriers. J Colloid Interface Sci 2021; 600:14-22. [PMID: 34000474 DOI: 10.1016/j.jcis.2021.03.161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/21/2021] [Accepted: 03/28/2021] [Indexed: 11/16/2022]
Abstract
Antimicrobial peptides (AMPs), which typically disrupt the bacterial wall prompting leakage or lysis of the cell, form a growing contingent in the arsenal against antibiotic resistant bacteria. The effectiveness of AMPs is, however, hampered by their low solubility, general chemical and physical instability, and short half-life in vivo. Lipid nanocarriers such as cubosomes are effective at encapsulating and protecting proteins while simultaneously showing promise in delivery applications. Here, the efficacy of cubosome mediated delivery of AMPs is evaluated by the in-situ surface characterization of model membranes with varying composition. The cubosomes were observed to initially fuse with the membranes, with subsequent membrane disruption observed after approximately 20 - 60 min. The time for the disruption was sensitive to the charge of the cubosome as well as the composition of the bilayer. More physiologically relevant bilayers including lipids with phospho-(1'-rac-glycerol) (PG) or phosphoethanolamine (PE) headgroups were more vulnerable than those of neat phosphocholine (PC). Notably, disruption to the bilayer occurred an order of magnitude faster for encapsulated AMP compared to free AMP.
Collapse
Affiliation(s)
- Brendan P Dyett
- School of Science, STEM College, RMIT University, Victoria, Australia
| | - Haitao Yu
- School of Science, STEM College, RMIT University, Victoria, Australia
| | - Biserka Lakic
- School of Science, STEM College, RMIT University, Victoria, Australia
| | - Nilamuni De Silva
- School of Science, STEM College, RMIT University, Victoria, Australia
| | - Anthony Dahdah
- School of Science, STEM College, RMIT University, Victoria, Australia
| | - Lei Bao
- School of Engineering, STEM College, RMIT University, Victoria, Australia
| | - Ewan W Blanch
- School of Science, STEM College, RMIT University, Victoria, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Victoria, Australia.
| | - Charlotte E Conn
- School of Science, STEM College, RMIT University, Victoria, Australia.
| |
Collapse
|
18
|
Alvares DS, Monti MR, Ruggiero Neto J, Wilke N. The antimicrobial peptide Polybia-MP1 differentiates membranes with the hopanoid, diplopterol from those with cholesterol. BBA ADVANCES 2021; 1:100002. [PMID: 37082019 PMCID: PMC10074923 DOI: 10.1016/j.bbadva.2021.100002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Polybia-MP1 is an antimicrobial peptide that shows a decreased activity in membranes with cholesterol (CHO). Since it is now accepted that hopanoids act as sterol-surrogates in some sterol-lacking bacteria, we here inquire about the impact of Polybia-MP1 on membranes containing the hopanoid diplopterol (DP) in comparison to membranes with CHO. We found that, despite the properties induced on lipid membranes by DP are similar to those induced by CHO, the effect of Polybia-MP1 on membranes with CHO or DP was significantly different. DP did not prevent dye release from LUVs, nor the insertion of Polybia-MP1 into monolayers, and peptide-membrane affinity was higher for those with DP than with CHO. Zeta potentials ( ζ ) for DP-containing LUVs showed a complex behavior at increasing peptide concentration. The effect of the peptide on membrane elasticity, investigated by nanotube retraction experiments, showed that peptide addition softened all membrane compositions, but membranes with DP got stiffer at long times. Considering this, and the ζ results, we propose that peptides accumulate at the interface adopting different arrangements, leading to a non-monotonic behavior. Possible correlations with cell membranes were inquired testing the antimicrobial activity of Polybia-MP1 against hopanoid-lacking bacteria pre-incubated with DP or CHO. The fraction of surviving cells was lower in cultures incubated with DP compared to those incubated with CHO. We propose that the higher activity of Polybia-MP1 against some bacteria compared to mammalian cells is not only related to membrane electrostatics, but also the composition of neutral lipids, particularly the hopanoids, could be important.
Collapse
|
19
|
Wu E, Jenschke RM, Hristova K, Wimley WC. Rational Modulation of pH-Triggered Macromolecular Poration by Peptide Acylation and Dimerization. J Phys Chem B 2020; 124:8835-8843. [PMID: 32892626 DOI: 10.1021/acs.jpcb.0c05363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The synthetically evolved pH-dependent delivery (pHD) peptides are a unique family that bind to membranes, fold into α-helices, and form macromolecule-sized pores at low concentration at pH < 6. These peptides have potential applications in drug delivery and tumor targeting. Here, we show how pHD peptide activity can be modulated without changing the amino acid sequence. We increased the hydrophobicity of a representative peptide, pHD108 (GIGEVLHELAEGLPELQEWIHAAQQLGC-amide), by coupling hydrophobic acyl groups of 6-16 carbons and by forming dimers. Unlike the parent peptide, almost all variants showed activity at pH 7. This was due to strong partitioning into phosphatidylcholine vesicle bilayers and induced helix formation. The dimer maintained some pH sensitivity while being the most active peptide studied in this work, with macromolecular poration occurring at 1:2000 peptide:lipid at pH 5. These results confirm that membrane binding, rather than pH, is the determining factor in activity, while also showing that acylation and dimerization are viable methods to modulate pHD108 activity. We propose a possible toroidal pore architecture with peptides in a parallel or mixed parallel/antiparallel orientation without strong electrostatic interactions between peptides in the pore as evidenced by a lack of dependence of activity on either pH or salt concentration.
Collapse
Affiliation(s)
- Eric Wu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Ramsey M Jenschke
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
20
|
Miners JO, Rowland A, Novak JJ, Lapham K, Goosen TC. Evidence-based strategies for the characterisation of human drug and chemical glucuronidation in vitro and UDP-glucuronosyltransferase reaction phenotyping. Pharmacol Ther 2020; 218:107689. [PMID: 32980440 DOI: 10.1016/j.pharmthera.2020.107689] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022]
Abstract
Enzymes of the UDP-glucuronosyltransferase (UGT) superfamily contribute to the elimination of drugs from almost all therapeutic classes. Awareness of the importance of glucuronidation as a drug clearance mechanism along with increased knowledge of the enzymology of drug and chemical metabolism has stimulated interest in the development and application of approaches for the characterisation of human drug glucuronidation in vitro, in particular reaction phenotyping (the fractional contribution of the individual UGT enzymes responsible for the glucuronidation of a given drug), assessment of metabolic stability, and UGT enzyme inhibition by drugs and other xenobiotics. In turn, this has permitted the implementation of in vitro - in vivo extrapolation approaches for the prediction of drug metabolic clearance, intestinal availability, and drug-drug interaction liability, all of which are of considerable importance in pre-clinical drug development. Indeed, regulatory agencies (FDA and EMA) require UGT reaction phenotyping for new chemical entities if glucuronidation accounts for ≥25% of total metabolism. In vitro studies are most commonly performed with recombinant UGT enzymes and human liver microsomes (HLM) as the enzyme sources. Despite the widespread use of in vitro approaches for the characterisation of drug and chemical glucuronidation by HLM and recombinant enzymes, evidence-based guidelines relating to experimental approaches are lacking. Here we present evidence-based strategies for the characterisation of drug and chemical glucuronidation in vitro, and for UGT reaction phenotyping. We anticipate that the strategies will inform practice, encourage development of standardised experimental procedures where feasible, and guide ongoing research in the field.
Collapse
Affiliation(s)
- John O Miners
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | | | | | | |
Collapse
|
21
|
Pieczara G, Manecki M, Rzepa G, Borkiewicz O, Gaweł A. Thermal Stability and Decomposition Products of P-Doped Ferrihydrite. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4113. [PMID: 32947936 PMCID: PMC7560356 DOI: 10.3390/ma13184113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 11/29/2022]
Abstract
This work aimed to determine the effect of various amounts of P admixtures in synthetic ferrihydrite on its thermal stability, transformation processes, and the properties of the products, at a broad range of temperatures up to 1000 °C. A detailed study was conducted using a series of synthetic ferrihydrites Fe5HO8·4H2O doped with phosphates at P/Fe molar ratios of 0.2, 0.5, and 1.0. Ferrihydrite was synthesized by a reaction of Fe2(SO4)3 with 1 M KOH at room temperature in the presence of K2HPO4 at pH 8.2. The products of the synthesis and the products of heating were characterized at various stages of transformation by using differential thermal analysis accompanied with X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy-energy dispersive X-ray spectroscopy. Coprecipitation of P with ferrihydrite results in the formation of P-doped 2-line ferrihydrite. A high P content reduces crystallinity. Phosphate significantly inhibits the thermal transformation processes. The temperature of thermal transformation increases from below 550 to 710-750 °C. Formation of intermediate maghemite and Fe-phosphates, is observed. The product of heating up to 1000 °C contains hematite associated with rodolicoite FePO4 and grattarolaite Fe3PO7. Higher P content greatly increases the thermal stability and transformation temperature of rodolicoite as well.
Collapse
Affiliation(s)
- Gabriela Pieczara
- Faculty of Geology, Geophysics and Environmental Protection, AGH-University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland; (G.P.); (G.R.); (A.G.)
| | - Maciej Manecki
- Faculty of Geology, Geophysics and Environmental Protection, AGH-University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland; (G.P.); (G.R.); (A.G.)
| | - Grzegorz Rzepa
- Faculty of Geology, Geophysics and Environmental Protection, AGH-University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland; (G.P.); (G.R.); (A.G.)
| | - Olaf Borkiewicz
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA;
| | - Adam Gaweł
- Faculty of Geology, Geophysics and Environmental Protection, AGH-University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland; (G.P.); (G.R.); (A.G.)
| |
Collapse
|
22
|
Munusamy S, Conde R, Bertrand B, Munoz-Garay C. Biophysical approaches for exploring lipopeptide-lipid interactions. Biochimie 2020; 170:173-202. [PMID: 31978418 PMCID: PMC7116911 DOI: 10.1016/j.biochi.2020.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
In recent years, lipopeptides (LPs) have attracted a lot of attention in the pharmaceutical industry due to their broad-spectrum of antimicrobial activity against a variety of pathogens and their unique mode of action. This class of compounds has enormous potential for application as an alternative to conventional antibiotics and for pest control. Understanding how LPs work from a structural and biophysical standpoint through investigating their interaction with cell membranes is crucial for the rational design of these biomolecules. Various analytical techniques have been developed for studying intramolecular interactions with high resolution. However, these tools have been barely exploited in lipopeptide-lipid interactions studies. These biophysical approaches would give precise insight on these interactions. Here, we reviewed these state-of-the-art analytical techniques. Knowledge at this level is indispensable for understanding LPs activity and particularly their potential specificity, which is relevant information for safe application. Additionally, the principle of each analytical technique is presented and the information acquired is discussed. The key challenges, such as the selection of the membrane model are also been briefly reviewed.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Renaud Conde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico.
| |
Collapse
|
23
|
NMR studies on the conformation, stability and dynamics of alamethicin in methanol. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2020; 49:113-124. [PMID: 31912177 DOI: 10.1007/s00249-019-01418-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 10/25/2022]
Abstract
Alamethicin is an antibiotic peptide comprising 20 amino acid residues and functions as an ion channel in biological membranes. Natural alamethicins have a variety of amino acid sequences. Two of them, used as a mixed sample in this study, are: UPUAUAQUVUGLUPVUUQQO and UPUAUUQUVUGLUPVUUQQO, where U and O represent α-aminoisobutyric acid and phenylalaninol, respectively. As indicated, only the amino acid at position six differs, and the two alamethicins are referred to as alamethicin-A6 and -U6, respectively. The conformation and thermal stability of alamethicin-A6 and -U6 in methanol were examined using proton nuclear magnetic resonance (NMR) spectroscopy. Both alamethicins form an α-helix between the 2nd and 11th residues. The N-terminal, 19th and C-terminal residues take a non-helical conformation. The structure between the 12th and 18th residues has not been well determined due to the absence of cross peaks in the two-dimensional NMR data. The α-helices are maintained up to 54 °C at least. In contrast to these similarities, it has been found that the length of the α-helix of alamethicin-U6 is somewhat shorter than that of alamethicin-A6, the intra-molecular hydrogen bonds formed by the amide proton of the seventh residue is much more thermally stable for alamethicin-U6 than for alamethicin-A6, and the C-terminal residue of alamethicin-U6 has higher mobility than that of alamethicin-A6. The mobility of the N- and C-terminal residues is discussed on the basis of a model chain which consists of particles connected by rigid links, and the physiological significance of the mobility is emphasized.
Collapse
|
24
|
Zhang S, Fu L, Wan M, Song J, Gao L, Fang W. Peripheral Antimicrobial Peptide Gomesin Induces Membrane Protrusion, Folding, and Laceration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13233-13242. [PMID: 31510749 DOI: 10.1021/acs.langmuir.9b02175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Optical microscopy shows that the peripheral antimicrobial peptide (AMP) gomesin does not disrupt the bacterial membrane by forming stable transmembrane pores but induces lipid accumulation domains, which is followed by a sudden burst near the domains. The molecular action mechanisms of gomesin on vesicle and planar bilayer membranes are investigated in this work using coarse-grained molecular dynamics simulations. By comparing the membrane morphology and property changes induced by gomesin and the pore-forming AMP melittin, we determined that the amphiphilic shape of the AMPs is a key factor affecting the mechanism of cell death. The binding of wedge-shaped gomesin, with a small hydrophobic surface, onto the membrane induces protrusion and folding of the outer monolayer followed by sudden membrane lacerations at the axillae of the protuberances. Alternatively, cylinder-shaped melittins with comparable hydrophilic and hydrophobic surfaces destroy membranes by forming stable pores coexisting with exocytosis-like buddings and endocytosis-like invaginations. The multiple actions of AMPs on the bacterial membrane suggest diverse paradigms for designing molecular carriers for delivering drugs to the cell.
Collapse
Affiliation(s)
- Shan Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , 19 Xin-Jie-Kou-Wai Street , Beijing 100875 , China
| | - Lei Fu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , 19 Xin-Jie-Kou-Wai Street , Beijing 100875 , China
| | - Mingwei Wan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , 19 Xin-Jie-Kou-Wai Street , Beijing 100875 , China
| | - Junjie Song
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , 19 Xin-Jie-Kou-Wai Street , Beijing 100875 , China
| | - Lianghui Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , 19 Xin-Jie-Kou-Wai Street , Beijing 100875 , China
| | - Weihai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , 19 Xin-Jie-Kou-Wai Street , Beijing 100875 , China
| |
Collapse
|
25
|
Salnikov ES, De Zotti M, Bobone S, Mazzuca C, Raya J, Siano AS, Peggion C, Toniolo C, Stella L, Bechinger B. Trichogin GA IV Alignment and Oligomerization in Phospholipid Bilayers. Chembiochem 2019; 20:2141-2150. [PMID: 31125169 DOI: 10.1002/cbic.201900263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 12/21/2022]
Abstract
Trichogin GA IV is a short peptaibol with antimicrobial activity. This uncharged, but amphipathic, sequence is aligned at the membrane interface and undergoes a transition to an aggregated state that inserts more deeply into the membrane, an assembly that predominates at a peptide-to-lipid ratio (P/L) of 1:20. In this work, the natural trichogin sequence was prepared and reconstituted into oriented lipid bilayers. The 15 N NMR chemical shift is indicative of a well-defined alignment of the peptide parallel to the membrane surface at P/Ls of 1:120 and 1:20. When the P/L is increased to 1:8, an additional peptide topology is observed that is indicative of a heterogeneous orientation, with helix alignments ranging from around the magic angle to perfectly in-plane. The topological preference of the trichogin helix for an orientation parallel to the membrane surface was confirmed by attenuated total reflection FTIR spectroscopy. Furthermore, 19 F CODEX experiments were performed on a trichogin sequence with 19 F-Phe at position 10. The CODEX decay is in agreement with a tetrameric complex, in which the 19 F sites are about 9-9.5 Å apart. Thus, a model emerges in which the monomeric peptide aligns along the membrane surface. When the peptide concentration increases, first dimeric and then tetrameric assemblies form, made up from helices oriented predominantly parallel to the membrane surface. The formation of these aggregates correlates with the release of vesicle contents including relatively large molecules.
Collapse
Affiliation(s)
- Evgeniy S Salnikov
- Institut de Chimie, University of Strasbourg, CNRS, UMR 7177, 4, rue Blaise Pascal, 67070, Strasbourg, France
| | - Marta De Zotti
- ICB, Padova Unit, CNR', Department of Chemistry, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Sara Bobone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Claudia Mazzuca
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Jesus Raya
- Institut de Chimie, University of Strasbourg, CNRS, UMR 7177, 4, rue Blaise Pascal, 67070, Strasbourg, France
| | - Alvaro S Siano
- Departamento de Química Organica, Facultad de Bioquímica y Ciencias Biologicas, Universidad Nacional del Litoral, Ciudad Universitaria UNL, Ruta Nacional N° 168, Km 472, Santa Fe, 3000, Argentina
| | - Cristina Peggion
- ICB, Padova Unit, CNR', Department of Chemistry, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Claudio Toniolo
- ICB, Padova Unit, CNR', Department of Chemistry, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Burkhard Bechinger
- Institut de Chimie, University of Strasbourg, CNRS, UMR 7177, 4, rue Blaise Pascal, 67070, Strasbourg, France
| |
Collapse
|
26
|
Abstract
Membrane permeabilizing peptides (MPPs) are as ubiquitous as the lipid bilayer membranes they act upon. Produced by all forms of life, most membrane permeabilizing peptides are used offensively or defensively against the membranes of other organisms. Just as nature has found many uses for them, translational scientists have worked for decades to design or optimize membrane permeabilizing peptides for applications in the laboratory and in the clinic ranging from antibacterial and antiviral therapy and prophylaxis to anticancer therapeutics and drug delivery. Here, we review the field of membrane permeabilizing peptides. We discuss the diversity of their sources and structures, the systems and methods used to measure their activities, and the behaviors that are observed. We discuss the fact that "mechanism" is not a discrete or a static entity for an MPP but rather the result of a heterogeneous and dynamic ensemble of structural states that vary in response to many different experimental conditions. This has led to an almost complete lack of discrete three-dimensional active structures among the thousands of known MPPs and a lack of useful or predictive sequence-structure-function relationship rules. Ultimately, we discuss how it may be more useful to think of membrane permeabilizing peptides mechanisms as broad regions of a mechanistic landscape rather than discrete molecular processes.
Collapse
Affiliation(s)
- Shantanu Guha
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Jenisha Ghimire
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Eric Wu
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - William C Wimley
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| |
Collapse
|
27
|
Abbasi F, Su Z, Alvarez-Malmagro J, Leitch JJ, Lipkowski J. Effects of Amiloride, an Ion Channel Blocker, on Alamethicin Pore Formation in Negatively Charged, Gold-Supported, Phospholipid Bilayers: A Molecular View. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5060-5068. [PMID: 30888178 DOI: 10.1021/acs.langmuir.9b00187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The effects of amiloride on the structure and conductivity of alamethicin ion pore formation within negatively charged, gold-supported, 1,2-dimyristoyl- sn-glycero-3-phosphocholine/Egg-PG membranes were investigated with the help of electrochemical impedance spectroscopy (EIS), photon polarization modulation-infrared reflection spectroscopy (PM-IRRAS), and atomic force microscopy (AFM). The EIS results indicate that ion conductivity across negatively charged phospholipid bilayers containing alamethicin decreases by an order of magnitude when amiloride is introduced to the system. Despite the reduction in ion conductivity, the PM-IRRAS data shows that amiloride does not inhibit ion channel formation by alamethicin peptides. High-resolution AFM images revealed that amiloride enlarges and distorts the shape of alamethicin ion pores when introduced to the system, indicating that it is inserting itself into the mouth of the alamethicin pores. This effect is driven by electrostatic interactions between positively charged amiloride molecules and the negative charge on the membrane.
Collapse
Affiliation(s)
- Fatemeh Abbasi
- Department of Chemistry , University of Guelph , Guelph , Ontario , Canada N1G 2W1
| | - ZhangFei Su
- Department of Chemistry , University of Guelph , Guelph , Ontario , Canada N1G 2W1
| | | | - J Jay Leitch
- Department of Chemistry , University of Guelph , Guelph , Ontario , Canada N1G 2W1
| | - Jacek Lipkowski
- Department of Chemistry , University of Guelph , Guelph , Ontario , Canada N1G 2W1
| |
Collapse
|
28
|
Sakamoto W, Masuda T, Ochiai T, Shimada N, Maruyama A. Cationic Copolymers Act As Chaperones of a Membrane-Active Peptide: Influence on Membrane Selectivity. ACS Biomater Sci Eng 2019; 5:5744-5751. [DOI: 10.1021/acsbiomaterials.8b01582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wakako Sakamoto
- School of Life Science and Technology, Tokyo Institute of Technology, B-57 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Tsukuru Masuda
- School of Life Science and Technology, Tokyo Institute of Technology, B-57 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Takuro Ochiai
- School of Life Science and Technology, Tokyo Institute of Technology, B-57 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Naohiko Shimada
- School of Life Science and Technology, Tokyo Institute of Technology, B-57 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Atsushi Maruyama
- School of Life Science and Technology, Tokyo Institute of Technology, B-57 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
29
|
The helix-to-sheet transition of an HIV-1 fusion peptide derivative changes the mechanical properties of lipid bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:565-572. [DOI: 10.1016/j.bbamem.2018.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 11/18/2022]
|
30
|
|
31
|
Electrophysiological interrogation of asymmetric droplet interface bilayers reveals surface-bound alamethicin induces lipid flip-flop. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:335-343. [DOI: 10.1016/j.bbamem.2018.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 01/16/2023]
|
32
|
Aisenbrey C, Marquette A, Bechinger B. The Mechanisms of Action of Cationic Antimicrobial Peptides Refined by Novel Concepts from Biophysical Investigations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1117:33-64. [PMID: 30980352 DOI: 10.1007/978-981-13-3588-4_4] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Even 30 years after the discovery of magainins, biophysical and structural investigations on how these peptides interact with membranes can still bear surprises and add new interesting detail to how these peptides exert their antimicrobial action. Early on, using oriented solid-state NMR spectroscopy, it was found that the amphipathic helices formed by magainins are active when being oriented parallel to the membrane surface. More recent investigations indicate that this in-planar alignment is also found when PGLa and magainin in combination exert synergistic pore-forming activities, where studies on the mechanism of synergistic interaction are ongoing. In a related manner, the investigation of dimeric antimicrobial peptide sequences has become an interesting topic of research which bears promise to refine our views how antimicrobial action occurs. The molecular shape concept has been introduced to explain the effects of lipids and peptides on membrane morphology, locally and globally, and in particular of cationic amphipathic helices that partition into the membrane interface. This concept has been extended in this review to include more recent ideas on soft membranes that can adapt to external stimuli including membrane-disruptive molecules. In this manner, the lipids can change their shape in the presence of low peptide concentrations, thereby maintaining the bilayer properties. At higher peptide concentrations, phase transitions occur which lead to the formation of pores and membrane lytic processes. In the context of the molecular shape concept, the properties of lipopeptides, including surfactins, are shortly presented, and comparisons with the hydrophobic alamethicin sequence are made.
Collapse
Affiliation(s)
| | - Arnaud Marquette
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, Strasbourg, France
| | - Burkhard Bechinger
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, Strasbourg, France. .,Faculté de chimie, Institut le Bel, Strasbourg, France.
| |
Collapse
|
33
|
Understanding the antimicrobial activity of water soluble γ-cyclodextrin/alamethicin complex. Colloids Surf B Biointerfaces 2018; 172:451-458. [DOI: 10.1016/j.colsurfb.2018.08.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/06/2018] [Accepted: 08/29/2018] [Indexed: 02/03/2023]
|
34
|
Abbasi F, Alvarez-Malmagro J, Su Z, Leitch JJ, Lipkowski J. Pore Forming Properties of Alamethicin in Negatively Charged Floating Bilayer Lipid Membranes Supported on Gold Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13754-13765. [PMID: 30265810 DOI: 10.1021/acs.langmuir.8b02554] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM), and photon polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) were employed to investigate the formation of alamethicin pores in negatively charged bilayers composed of a mixture of 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) and egg-PG floating at gold (111) electrode surfaces modified by self-assembled monolayers of 1-thio-β-d-glucose (β-Tg). The EIS data showed that the presence of alamethicin decreases the membrane resistivity by about 1 order of magnitude. PM-IRRAS measurements provided information about the tilt angles of peptide helical axis with respect to the bilayer normal. The small tilt angles obtained for the peptide helical axis prove that the alamethicin molecules were inserted into the DMPC/egg-PG membranes. The tilt angles decreased when negative potentials were applied, which correlates with the observed decrease in membrane resistivity, indicating that ion pore formation is assisted by the transmembrane potential. Molecular resolution AFM images provided visual evidence that alamethicin molecules aggregate forming hexagonal porous 2D lattices with periodicities of 2.0 ± 0.2 nm. The pore formation by alamethicin in the negatively charged membrane was compared with the interaction of this peptide with a bilayer formed by zwitterionic lipids. The comparison of these results showed that alamethicin preferentially forms ion translocating pores in negatively charged phospholipid membranes.
Collapse
Affiliation(s)
- Fatemeh Abbasi
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | | | - ZhangFei Su
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - J Jay Leitch
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Jacek Lipkowski
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| |
Collapse
|
35
|
Su Z, Shodiev M, Leitch JJ, Abbasi F, Lipkowski J. Role of Transmembrane Potential and Defects on the Permeabilization of Lipid Bilayers by Alamethicin, an Ion-Channel-Forming Peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6249-6260. [PMID: 29722994 DOI: 10.1021/acs.langmuir.8b00928] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The insertion and ion-conducting channel properties of alamethicin reconstituted into a 1,2-di- O-phytanyl- sn-glycero-3-phosphocholine bilayer floating on the surface of a gold (111) electrode modified with a 1-thio-β-d-glucose (β-Tg) self-assembled monolayer were investigated using a combination of electrochemical impedance spectroscopy (EIS) and polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS). The hydrophilic β-Tg monolayer separated the bilayer from the gold substrate and created a water-rich spacer region, which better represents natural cell membranes. The EIS measurements acquired information about the membrane resistivity (a measure of membrane porosity), and the PM-IRRAS experiments provided insight into the conformation and orientation of the membrane constituents as a function of the transmembrane potential. The results showed that the presence of alamethicin had a small effect on the conformation and orientation of phospholipid molecules within the bilayer for all studied potentials. In contrast, the alamethicin peptides assumed a surface state, where the helical axes adopted a large tilt angle with respect to the surface normal, at small transmembrane potentials, and inserted into the bilayer at sufficiently negative transmembrane potentials forming pores, which behaved as barrel-stave ion channels for ionic transport across the membrane. The results indicated that insertion of alamethincin peptides into the bilayer was driven by the dipole-field interactions and that the transitions between the inserted and surface states were electrochemically reversible. Additionally, the EIS measurements performed on phospholipid bilayers without alamethicin also showed that the application of negative transmembrane potentials introduces defects into the bilayer. The membrane resistances measured in both the absence and presence of alamethicin show similar dependencies on the electrode potential, suggesting that the insertion of the peptide may also be assisted by the electroporation of the membrane. The findings in this study provide new insights into the mechanism of alamethicin insertion into phospholipid bilayers.
Collapse
Affiliation(s)
- ZhangFei Su
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Muzaffar Shodiev
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - J Jay Leitch
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Fatemeh Abbasi
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Jacek Lipkowski
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| |
Collapse
|
36
|
Encapsulating Networks of Droplet Interface Bilayers in a Thermoreversible Organogel. Sci Rep 2018; 8:6494. [PMID: 29691447 PMCID: PMC5915452 DOI: 10.1038/s41598-018-24720-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/04/2018] [Indexed: 02/08/2023] Open
Abstract
The development of membrane-based materials that exhibit the range and robustness of autonomic functions found in biological systems remains elusive. Droplet interface bilayers (DIBs) have been proposed as building blocks for such materials, owing to their simplicity, geometry, and capability for replicating cellular phenomena. Similar to how individual cells operate together to perform complex tasks and functions in tissues, networks of functionalized DIBs have been assembled in modular/scalable networks. Here we present the printing of different configurations of picoliter aqueous droplets in a bath of thermoreversible organogel consisting of hexadecane and SEBS triblock copolymers. The droplets are connected by means of lipid bilayers, creating a network of aqueous subcompartments capable of communicating and hosting various types of chemicals and biomolecules. Upon cooling, the encapsulating organogel solidifies to form self-supported liquid-in-gel, tissue-like materials that are robust and durable. To test the biomolecular networks, we functionalized the network with alamethicin peptides and alpha-hemolysin (αHL) channels. Both channels responded to external voltage inputs, indicating the assembly process does not damage the biomolecules. Moreover, we show that the membrane properties may be regulated through the deformation of the surrounding gel.
Collapse
|
37
|
Marquette A, Bechinger B. Biophysical Investigations Elucidating the Mechanisms of Action of Antimicrobial Peptides and Their Synergism. Biomolecules 2018; 8:E18. [PMID: 29670065 PMCID: PMC6023007 DOI: 10.3390/biom8020018] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 01/30/2023] Open
Abstract
Biophysical and structural investigations are presented with a focus on the membrane lipid interactions of cationic linear antibiotic peptides such as magainin, PGLa, LL37, and melittin. Observations made with these peptides are distinct as seen from data obtained with the hydrophobic peptide alamethicin. The cationic amphipathic peptides predominantly adopt membrane alignments parallel to the bilayer surface; thus the distribution of polar and non-polar side chains of the amphipathic helices mirror the environmental changes at the membrane interface. Such a membrane partitioning of an amphipathic helix has been shown to cause considerable disruptions in the lipid packing arrangements, transient openings at low peptide concentration, and membrane disintegration at higher peptide-to-lipid ratios. The manifold supramolecular arrangements adopted by lipids and peptides are represented by the 'soft membranes adapt and respond, also transiently' (SMART) model. Whereas molecular dynamics simulations provide atomistic views on lipid membranes in the presence of antimicrobial peptides, the biophysical investigations reveal interesting details on a molecular and supramolecular level, and recent microscopic imaging experiments delineate interesting sequences of events when bacterial cells are exposed to such peptides. Finally, biophysical studies that aim to reveal the mechanisms of synergistic interactions of magainin 2 and PGLa are presented, including unpublished isothermal titration calorimetry (ITC), circular dichroism (CD) and dynamic light scattering (DLS) measurements that suggest that the peptides are involved in liposome agglutination by mediating intermembrane interactions. A number of structural events are presented in schematic models that relate to the antimicrobial and synergistic mechanism of amphipathic peptides when they are aligned parallel to the membrane surface.
Collapse
Affiliation(s)
- Arnaud Marquette
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4, rue Blaise Pascal, 67070 Strasbourg, France.
| | - Burkhard Bechinger
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4, rue Blaise Pascal, 67070 Strasbourg, France.
| |
Collapse
|
38
|
Abbasi F, Leitch JJ, Su Z, Szymanski G, Lipkowski J. Direct visualization of alamethicin ion pores formed in a floating phospholipid membrane supported on a gold electrode surface. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
EIS and PM-IRRAS studies of alamethicin ion channels in a tethered lipid bilayer. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.12.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Mizuguchi T, Matubayasi N. Free-Energy Analysis of Peptide Binding in Lipid Membrane Using All-Atom Molecular Dynamics Simulation Combined with Theory of Solutions. J Phys Chem B 2018; 122:3219-3229. [DOI: 10.1021/acs.jpcb.7b08241] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tomoko Mizuguchi
- Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
- Institute for the Promotion of University Strategy, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
41
|
Syryamina VN, De Zotti M, Toniolo C, Formaggio F, Dzuba SA. Alamethicin self-assembling in lipid membranes: concentration dependence from pulsed EPR of spin labels. Phys Chem Chem Phys 2018; 20:3592-3601. [DOI: 10.1039/c7cp07298h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The antimicrobial action of the peptide antibiotic alamethicin (Alm) is commonly related to peptide self-assembling resulting in the formation of voltage-dependent channels in bacterial membranes, which induces ion permeation.
Collapse
Affiliation(s)
- Victoria N. Syryamina
- Institute of Chemical Kinetics and Combustion
- RAS
- Novosibirsk 630090
- Russian Federation
- Novosibirsk State University
| | - Marta De Zotti
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Claudio Toniolo
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
- Institute of Biomolecular Chemistry
| | - Fernando Formaggio
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
- Institute of Biomolecular Chemistry
| | - Sergei A. Dzuba
- Institute of Chemical Kinetics and Combustion
- RAS
- Novosibirsk 630090
- Russian Federation
- Novosibirsk State University
| |
Collapse
|
42
|
Akimov SA, Aleksandrova VV, Galimzyanov TR, Bashkirov PV, Batishchev OV. Interaction of amphipathic peptides mediated by elastic membrane deformations. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2017. [DOI: 10.1134/s1990747817030035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Salnikov ES, Raya J, De Zotti M, Zaitseva E, Peggion C, Ballano G, Toniolo C, Raap J, Bechinger B. Alamethicin Supramolecular Organization in Lipid Membranes from 19F Solid-State NMR. Biophys J 2017; 111:2450-2459. [PMID: 27926846 DOI: 10.1016/j.bpj.2016.09.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/10/2016] [Accepted: 09/29/2016] [Indexed: 11/24/2022] Open
Abstract
Alamethicins (ALMs) are antimicrobial peptides of fungal origin. Their sequences are rich in hydrophobic amino acids and strongly interact with lipid membranes, where they cause a well-defined increase in conductivity. Therefore, the peptides are thought to form transmembrane helical bundles in which the more hydrophilic residues line a water-filled pore. Whereas the peptide has been well characterized in terms of secondary structure, membrane topology, and interactions, much fewer data are available regarding the quaternary arrangement of the helices within lipid bilayers. A new, to our knowledge, fluorine-labeled ALM derivative was prepared and characterized when reconstituted into phospholipid bilayers. As a part of these studies, C19F3-labeled compounds were characterized and calibrated for the first time, to our knowledge, for 19F solid-state NMR distance and oligomerization measurements by centerband-only detection of exchange (CODEX) experiments, which opens up a large range of potential labeling schemes. The 19F-19F CODEX solid-state NMR experiments performed with ALM in POPC lipid bilayers and at peptide/lipid ratios of 1:13 are in excellent agreement with molecular-dynamics calculations of dynamic pentameric assemblies. When the peptide/lipid ratio was lowered to 1:30, ALM was found in the dimeric form, indicating that the supramolecular organization is tuned by equilibria that can be shifted by changes in environmental conditions.
Collapse
Affiliation(s)
- Evgeniy S Salnikov
- Institute of Chemistry, University of Strasbourg/CNRS, UMR7177, Strasbourg, France
| | - Jesus Raya
- Institute of Chemistry, University of Strasbourg/CNRS, UMR7177, Strasbourg, France
| | - Marta De Zotti
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, Padova, Italy
| | - Ekaterina Zaitseva
- Department of Membrane Physiology and Technology, Institute of Physiology, University of Freiburg, Freiburg, Germany
| | - Cristina Peggion
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, Padova, Italy
| | - Gema Ballano
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, Padova, Italy
| | - Claudio Toniolo
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, Padova, Italy
| | - Jan Raap
- Leiden Institute of Chemistry, Gorlaeus Laboratories, University of Leiden, Leiden, the Netherlands
| | - Burkhard Bechinger
- Institute of Chemistry, University of Strasbourg/CNRS, UMR7177, Strasbourg, France.
| |
Collapse
|
44
|
Meikle TG, Zabara A, Waddington LJ, Separovic F, Drummond CJ, Conn CE. Incorporation of antimicrobial peptides in nanostructured lipid membrane mimetic bilayer cubosomes. Colloids Surf B Biointerfaces 2017; 152:143-151. [DOI: 10.1016/j.colsurfb.2017.01.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/27/2016] [Accepted: 01/03/2017] [Indexed: 11/28/2022]
|
45
|
Afanasyeva EF, Syryamina VN, Dzuba SA. Communication: Alamethicin can capture lipid-like molecules in the membrane. J Chem Phys 2017; 146:011103. [DOI: 10.1063/1.4973703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Ekaterina F. Afanasyeva
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia and Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Victoria N. Syryamina
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia and Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sergei A. Dzuba
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia and Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
46
|
Vollmer M, Klingebiel M, Rohn S, Maul R. Alamethicin for using in bioavailability studies? - Re-evaluation of its effect. Toxicol In Vitro 2016; 39:111-118. [PMID: 27940284 DOI: 10.1016/j.tiv.2016.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/25/2016] [Accepted: 11/29/2016] [Indexed: 11/24/2022]
Abstract
A major pathway for the elimination of drugs is the biliary and renal excretion following the formation of more hydrophilic secondary metabolites such as glucuronides. For in vitro investigations of the phase II metabolism, hepatic microsomes are commonly used in the combination with the pore-forming peptide alamethicin, also to give estimates for the in vivo situation. Thus, alamethicin may represent a neglected parameter in the characterization of microsomal in vitro assays. In the present study, the influence of varying alamethicin concentrations on glucuronide formation of selected phenolic compounds was investigated systematically. A correlation between the alamethicin impact and the lipophilicity of the investigated substrates was analyzed as well. Lipophilicity was determined by the logarithm of the octanol-water partition coefficient. For every substrate, a distinct alamethicin concentration could be detected leading to a maximal glucuronidation activity. Further increase of the alamethicin application led to negative effects. The differences between the maximum depletion rates with and without alamethicin addition varied between 2.7% and 18.2% depending on the substrate. A dependence on the lipophilicity could not be confirmed. Calculation of the apparent intrinsic clearance led to a more than 2-fold increase using the most effective alamethicin concentration compared to the alamethicin free control.
Collapse
Affiliation(s)
- Maren Vollmer
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany.
| | - Mirko Klingebiel
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany.
| | - Sascha Rohn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany.
| | - Ronald Maul
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany.
| |
Collapse
|
47
|
The Interaction of Melittin with Dimyristoyl Phosphatidylcholine-Dimyristoyl Phosphatidylserine Lipid Bilayer Membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2788-2794. [DOI: 10.1016/j.bbamem.2016.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/20/2016] [Accepted: 08/11/2016] [Indexed: 01/24/2023]
|
48
|
Malanovic N, Lohner K. Antimicrobial Peptides Targeting Gram-Positive Bacteria. Pharmaceuticals (Basel) 2016; 9:E59. [PMID: 27657092 PMCID: PMC5039512 DOI: 10.3390/ph9030059] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 01/01/2023] Open
Abstract
Antimicrobial peptides (AMPs) have remarkably different structures as well as biological activity profiles, whereupon most of these peptides are supposed to kill bacteria via membrane damage. In order to understand their molecular mechanism and target cell specificity for Gram-positive bacteria, it is essential to consider the architecture of their cell envelopes. Before AMPs can interact with the cytoplasmic membrane of Gram-positive bacteria, they have to traverse the cell wall composed of wall- and lipoteichoic acids and peptidoglycan. While interaction of AMPs with peptidoglycan might rather facilitate penetration, interaction with anionic teichoic acids may act as either a trap for AMPs or a ladder for a route to the cytoplasmic membrane. Interaction with the cytoplasmic membrane frequently leads to lipid segregation affecting membrane domain organization, which affects membrane permeability, inhibits cell division processes or leads to delocalization of essential peripheral membrane proteins. Further, precursors of cell wall components, especially the highly conserved lipid II, are directly targeted by AMPs. Thereby, the peptides do not inhibit peptidoglycan synthesis via binding to proteins like common antibiotics, but form a complex with the precursor molecule, which in addition can promote pore formation and membrane disruption. Thus, the multifaceted mode of actions will make AMPs superior to antibiotics that act only on one specific target.
Collapse
Affiliation(s)
- Nermina Malanovic
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Austria.
| | - Karl Lohner
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Austria.
- BioTechMed Graz, Humboldtstrasse 50/III, 8010 Graz, Austria.
| |
Collapse
|
49
|
Venkatesan GA, Sarles SA. Droplet immobilization within a polymeric organogel improves lipid bilayer durability and portability. LAB ON A CHIP 2016; 16:2116-2125. [PMID: 27164314 DOI: 10.1039/c6lc00391e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The droplet interface bilayer (DIB) is a promising technique for assembling lipid membrane-based materials and devices using water droplets in oil, but it has largely been limited to laboratory environments due to its liquid construction. With a vision to transform this lab-based technique into a more-durable embodiment, we investigate the use of a polymer-based organogel to encapsulate DIBs within a more-solid material matrix to improve their handling and portability. Specifically, a temperature-sensitive organogel formed from hexadecane and poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) triblock copolymer is used to replace the liquid solvent that surrounds the lipid-coated droplets to establish a novel liquid-in-gel DIB system. Through specific capacitance measurements and single-channel recordings of the pore forming peptide alamethicin, we verify that the structural and functional membrane properties are retained when DIBs are assembled within SEBS organogel. In addition, we demonstrate that organogel encapsulation offers improved handling of droplets and yields DIBs with a near 3× higher bilayer durability, as quantified by the lateral acceleration required to rupture the membrane, compared to liquid-in-liquid DIBs in oil. This encapsulated DIB system provides a barrier against contamination from the environment and offers a new material platform for supporting multilayered DIB-based devices as well as other digital microfluidic systems that feature water droplets in oil.
Collapse
Affiliation(s)
- Guru A Venkatesan
- Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, 1512 Middle Drive, 414 Dougherty Engineering Building, Knoxville, TN 37996, USA.
| | - Stephen A Sarles
- Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, 1512 Middle Drive, 414 Dougherty Engineering Building, Knoxville, TN 37996, USA.
| |
Collapse
|
50
|
LeBarron J, London E. Effect of lipid composition and amino acid sequence upon transmembrane peptide-accelerated lipid transleaflet diffusion (flip-flop). BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1812-20. [PMID: 27131444 DOI: 10.1016/j.bbamem.2016.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/21/2016] [Accepted: 04/21/2016] [Indexed: 12/15/2022]
Abstract
We examined how hydrophobic peptide-accelerated transleaflet lipid movement (flip-flop) was affected by peptide sequence and vesicle composition and properties. A peptide with a completely hydrophobic sequence had little if any effect upon flip-flop. While peptides with a somewhat less hydrophobic sequence accelerated flip-flop, the half-time remained slow (hours) with substantial (0.5mol%) peptide in the membranes. It appears that peptide-accelerated lipid flip-flop involves a rare event that may reflect a rare state of the peptide or lipid bilayer. There was no simple relationship between peptide overall hydrophobicity and flip-flop. In addition, flip-flop was not closely linked to whether the peptides were in a transmembrane or non-transmembrane (interfacial) inserted state. Flip-flop was also not associated with peptide-induced pore formation. We found that peptide-accelerated flip-flop is initially faster in small (highly curved) unilamellar vesicles relative to that in large unilamellar vesicles. Peptide-accelerated flip-flop was also affected by lipid composition, being slowed in vesicles with thick bilayers or those containing 30% cholesterol. Interestingly, these factors also slow spontaneous lipid flip-flop in the absence of peptide. Combined with previous studies, the results are most consistent with acceleration of lipid flip-flop by peptide-induced thinning of bilayer width.
Collapse
Affiliation(s)
- Jamie LeBarron
- Dept. of Biochemistry and Cell Biology, Stony Brook, NY 11794-5215, United States
| | - Erwin London
- Dept. of Biochemistry and Cell Biology, Stony Brook, NY 11794-5215, United States
| |
Collapse
|