1
|
Li L, Li W, Chen K, Zheng N, Yang M. Migration of an active colloidal cell in inhomogeneous environments. J Chem Phys 2022; 156:134903. [PMID: 35395881 DOI: 10.1063/5.0084490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Living cells on a substrate with mechanical inhomogeneities often migrate along or against the mechanical gradient, i.e., mechanotaxis, which inspires us to ask how biomimetic cells without biochemical signaling processes respond to environmental inhomogeneity. Here, we perform computer simulations to study the migration of a 2D active colloidal cell (ACC), which consists of active particles enclosed by a passive vesicle, in a heterogeneous environment composed of two adjoining uniform regions with different attributes (influencing the persistent length of the active particle). We find that the ACC can migrate unidirectionally across the interface separating the heterogeneous region and behave tactically. Interestingly, the tactic motion of the ACC is qualitatively different from that of the constituent active particles themselves. In addition, the ACC may also experience a directed drift along the interface of the heterogeneous environment. The tactic behavior of the ACC can be explained by analyzing the pressure distribution on the cell membrane exerted by the enclosed active particles. The findings provide insights into understanding the taxis of biological cells and designing biomimetic cells with environment-sensitive capabilities.
Collapse
Affiliation(s)
- Longfei Li
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Wenjian Li
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Ke Chen
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ning Zheng
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Takatori SC, Sahu A. Active Contact Forces Drive Nonequilibrium Fluctuations in Membrane Vesicles. PHYSICAL REVIEW LETTERS 2020; 124:158102. [PMID: 32357050 DOI: 10.1103/physrevlett.124.158102] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/20/2020] [Indexed: 05/24/2023]
Abstract
We analyze the nonequilibrium shape fluctuations of giant unilamellar vesicles encapsulating motile bacteria. Owing to bacteria-membrane collisions, we experimentally observe a significant increase in the magnitude of membrane fluctuations at low wave numbers, compared to the well-known thermal fluctuation spectrum. We interrogate these results by numerically simulating membrane height fluctuations via a modified Langevin equation, which includes bacteria-membrane contact forces. Taking advantage of the lengthscale and timescale separation of these contact forces and thermal noise, we further corroborate our results with an approximate theoretical solution to the dynamical membrane equations. Our theory and simulations demonstrate excellent agreement with nonequilibrium fluctuations observed in experiments. Moreover, our theory reveals that the fluctuation-dissipation theorem is not broken by the bacteria; rather, membrane fluctuations can be decomposed into thermal and active components.
Collapse
Affiliation(s)
- Sho C Takatori
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Amaresh Sahu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA
| |
Collapse
|
3
|
Bostick CD, Mukhopadhyay S, Pecht I, Sheves M, Cahen D, Lederman D. Protein bioelectronics: a review of what we do and do not know. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:026601. [PMID: 29303117 DOI: 10.1088/1361-6633/aa85f2] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We review the status of protein-based molecular electronics. First, we define and discuss fundamental concepts of electron transfer and transport in and across proteins and proposed mechanisms for these processes. We then describe the immobilization of proteins to solid-state surfaces in both nanoscale and macroscopic approaches, and highlight how different methodologies can alter protein electronic properties. Because immobilizing proteins while retaining biological activity is crucial to the successful development of bioelectronic devices, we discuss this process at length. We briefly discuss computational predictions and their connection to experimental results. We then summarize how the biological activity of immobilized proteins is beneficial for bioelectronic devices, and how conductance measurements can shed light on protein properties. Finally, we consider how the research to date could influence the development of future bioelectronic devices.
Collapse
Affiliation(s)
- Christopher D Bostick
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, United States of America. Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, United States of America
| | | | | | | | | | | |
Collapse
|
4
|
Mukhopadhyay S, Cohen SR, Marchak D, Friedman N, Pecht I, Sheves M, Cahen D. Nanoscale electron transport and photodynamics enhancement in lipid-depleted bacteriorhodopsin monomers. ACS NANO 2014; 8:7714-7722. [PMID: 25003581 DOI: 10.1021/nn500202k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Potential future use of bacteriorhodopsin (bR) as a solid-state electron transport (ETp) material requires the highest possible active protein concentration. To that end we prepared stable monolayers of protein-enriched bR on a conducting HOPG substrate by lipid depletion of the native bR. The ETp properties of this construct were then investigated using conducting probe atomic force microscopy at low bias, both in the ground dark state and in the M-like intermediate configuration, formed upon excitation by green light. Photoconductance modulation was observed upon green and blue light excitation, demonstrating the potential of these monolayers as optoelectronic building blocks. To correlate protein structural changes with the observed behavior, measurements were made as a function of pressure under the AFM tip, as well as humidity. The junction conductance is reversible under pressure changes up to ∼300 MPa, but above this pressure the conductance drops irreversibly. ETp efficiency is enhanced significantly at >60% relative humidity, without changing the relative photoactivity significantly. These observations are ascribed to changes in protein conformation and flexibility and suggest that improved electron transport pathways can be generated through formation of a hydrogen-bonding network.
Collapse
|
5
|
Last JA, Russell P, Nealey PF, Murphy CJ. The applications of atomic force microscopy to vision science. Invest Ophthalmol Vis Sci 2011; 51:6083-94. [PMID: 21123767 DOI: 10.1167/iovs.10-5470] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The atomic force microscope (AFM) is widely used in materials science and has found many applications in biological sciences but has been limited in use in vision science. The AFM can be used to image the topography of soft biological materials in their native environments. It can also be used to probe the mechanical properties of cells and extracellular matrices, including their intrinsic elastic modulus and receptor-ligand interactions. In this review, the operation of the AFM is described along with a review of how it has been thus far used in vision science. It is hoped that this review will serve to stimulate vision scientists to consider incorporating AFM as part of their research toolkit.
Collapse
Affiliation(s)
- Julie A Last
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
6
|
Dastmalchi S, Church WB, Morris MB. Modelling the structures of G protein-coupled receptors aided by three-dimensional validation. BMC Bioinformatics 2008; 9 Suppl 1:S14. [PMID: 18315845 PMCID: PMC2259415 DOI: 10.1186/1471-2105-9-s1-s14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background G protein-coupled receptors (GPCRs) are abundant, activate complex signalling and represent the targets for up to ~60% of pharmaceuticals but there is a paucity of structural data. Bovine rhodopsin is the first GPCR for which high-resolution structures have been completed but significant variations in structure are likely to exist among the GPCRs. Because of this, considerable effort has been expended on developing in silico tools for refining structures of individual GPCRs. We have developed REPIMPS, a modification of the inverse-folding software Profiles-3D, to assess and predict the rotational orientation and vertical position of helices within the helix bundle of individual GPCRs. We highlight the value of the method by applying it to the Baldwin GPCR template but the method can, in principle, be applied to any low- or high-resolution membrane protein template or structure. Results 3D models were built for transmembrane helical segments of 493 GPCRs based on the Baldwin template, and the models were then scored using REPIMPS and Profiles-3D. The compatibility scores increased significantly using REPIMPS because it takes into account the physicochemical properties of the (lipid) environment surrounding the helix bundle. The arrangement of helices in the helix bundle of the 493 models was then altered systematically by rotating the individual helices. For most GPCRs in the set, changes in the rotational position of one or more helices resulted in significant improvement in the compatibility scores. In particular, for most GPCRs, a rotation of helix VII by 240–300° resulted in improved scores. Bovine rhodopsin modelled using this method showed 3.31 Å RMSD to its crystal structure for 198 Cα atom pairs, suggesting the utility of the method even when starting with idealised structures such as the Baldwin template. Conclusion We have developed an in silico tool which can be used to test the validity of, and refine, models of GPCRs with respect to helix rotation and vertical position based on the physicochemical properties of amino acids and the surrounding environment. The method can be applied to any multi-pass membrane protein and potentially can be used in combination with other high-throughput methodologies to generate and refine models of membrane proteins.
Collapse
Affiliation(s)
- Siavoush Dastmalchi
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51664, Iran.
| | | | | |
Collapse
|
7
|
Gov N. Membrane undulations driven by force fluctuations of active proteins. PHYSICAL REVIEW LETTERS 2004; 93:268104. [PMID: 15698026 DOI: 10.1103/physrevlett.93.268104] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Indexed: 05/15/2023]
Abstract
We analyze the height undulations of a membrane due to fluctuations in the force generated by membrane-bound proteins that induce normal motion or bending. We compare our results to the results of experiments on red blood cells and vesicles with incorporated active proton pumps. We treat these proteins as having an intrinsic time scale for the force generation or conformational change, leading to nonthermal membrane fluctuations. We find that the active fluctuations are inversely proportional to the viscosity of the surrounding fluid. This highlights some universal features of active membrane undulations.
Collapse
Affiliation(s)
- N Gov
- Department of Chemical Physics, The Weizmann Institute of Science, P.O.B. 26, Rehovot, Israel 76100
| |
Collapse
|
8
|
Reich Z, Kapon R, Nevo R, Pilpel Y, Zmora S, Scolnik Y. Scanning force microscopy in the applied biological sciences. Biotechnol Adv 2001; 19:451-85. [PMID: 14538069 DOI: 10.1016/s0734-9750(01)00077-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Fifteen years after its invention, the scanning force microscope (SFM) is rooted deep in the biological sciences. Here we discuss the use of SFM in biotechnology and biomedical research. The spectrum of applications reviewed includes imaging, force spectroscopy and mapping, as well as sensor applications. It is our hope that this review will be useful for researchers considering the use of SFM in their studies but are uncertain about its scope of capabilities. For the benefit of readers unfamiliar with SFM technology, the fundamentals of SFM imaging and force measurement are also briefly introduced.
Collapse
Affiliation(s)
- Z Reich
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | | | | | |
Collapse
|
9
|
Balashev K, Jensen TR, Kjaer K, Bjørnholm T. Novel methods for studying lipids and lipases and their mutual interaction at interfaces. Part I. Atomic force microscopy. Biochimie 2001; 83:387-97. [PMID: 11368846 DOI: 10.1016/s0300-9084(01)01264-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mono-layers of lipids and their interaction with surface active enzymes (lipases) have been studied for more than a century. During the past decade new insight into this area has been obtained due to the development of scanning probe microscopy. This novel method provides direct microscopic information about the system in question and allows in situ investigations under near physiological conditions. In the present review the theory, experimental set-up and sample requirements of atomic force microscopy (AFM) are described. An overview of recent results is also presented with special emphasis on lipase hydrolysis and kinetics investigated in situ using AFM.
Collapse
Affiliation(s)
- K Balashev
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | | | | | | |
Collapse
|
10
|
Ludmann K, Gergely C, Dér A, Váró G. Electric signals during the bacteriorhodopsin photocycle, determined over a wide pH range. Biophys J 1998; 75:3120-6. [PMID: 9826632 PMCID: PMC1299983 DOI: 10.1016/s0006-3495(98)77753-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
From the electric signals measured after photoexcitation, the electrogenicity of the photocycle intermediates of bacteriorhodopsin were determined in a pH range of 4.5-9. Current measurements and absorption kinetic signals at five wavelengths were recorded in the time interval from 300 ns to 0.5 s. To fit the data, the model containing sequential intermediates connected by reversible first-order reactions was used. The electrogenicities were calculated from the integral of the current signal, by using the time-dependent concentrations of the intermediates, obtained from the fits. Almost all of the calculated electrogenicities were pH independent, suggesting that the charge motions occur inside the protein. Only the N intermediate exhibited pH-dependent electrogenicity, implying that the protonation of Asp96, from the intracellular part of the protein, is not from a well-determined proton donor. The calculated electrogenicities gave good approximations of all of the details of the measured electric signals.
Collapse
Affiliation(s)
- K Ludmann
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged H-6701, Hungary
| | | | | | | |
Collapse
|
11
|
Ulitsky A, Shalloway D. Variational calculation of macrostate transition rates. J Chem Phys 1998. [DOI: 10.1063/1.476882] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Rousso I, Khatchatryan E, Brodsky I, Nachustai R, Ottolenghi M, Sheves M, Lewis A. Atomic Force Sensing of Light-Induced Protein Dynamics with Microsecond Time Resolution in Bacteriorhodopsin and Photosynthetic Reaction Centers. J Struct Biol 1997; 119:158-64. [PMID: 9245756 DOI: 10.1006/jsbi.1997.3879] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This paper reports on experiments that have monitored protein microsecond dynamics with a cantilevered near-field optical glass fiber. In these experiments two photoactive proteins, bacteriorhodopsin (bR) and the photosynthetic reaction center (PS I), are used to demonstrate that such probes can measure light-induced microsecond protein dynamics even though the resonance frequencies of the glass cantilevers used are on the order of a few hundred kilohertz. In the case of the light-driven proton pump, bR, the light-induced atomic force sensing (AFS) signal is negative (indicating contraction) in the microsecond time domain of the L photointermediate and becomes positive (corresponding to expansion) in the subsequent M intermediate that lives for milliseconds. Double pulse experiments from M to bR show that the latter process reverses the AFS signal. Thus, the AFS structural changes are coupled with the (optical) photocycle intermediates. Light-induced contraction and expansion phenomena are also observed in the case of PS I. In both systems the time regime of the dynamic phenomena that have been measured with AFS is five orders of magnitude faster than the fastest previously recorded atomic force detection of dynamic phenomena. This advance portends a new era in dynamic imaging of protein conformational changes.
Collapse
Affiliation(s)
- I Rousso
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
13
|
Harms GS, Johnson CK. Reorientational Motions of the D96N and T46V/D96N Mutants of Bacteriorhodopsin in the Purple Membrane. Photochem Photobiol 1997. [DOI: 10.1111/j.1751-1097.1997.tb03150.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|