1
|
Robin AY, Brochier-Armanet C, Bertrand Q, Barette C, Girard E, Madern D. Deciphering Evolutionary Trajectories of Lactate Dehydrogenases Provides New Insights into Allostery. Mol Biol Evol 2023; 40:msad223. [PMID: 37797308 PMCID: PMC10583557 DOI: 10.1093/molbev/msad223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023] Open
Abstract
Lactate dehydrogenase (LDH, EC.1.1.127) is an important enzyme engaged in the anaerobic metabolism of cells, catalyzing the conversion of pyruvate to lactate and NADH to NAD+. LDH is a relevant enzyme to investigate structure-function relationships. The present work provides the missing link in our understanding of the evolution of LDHs. This allows to explain (i) the various evolutionary origins of LDHs in eukaryotic cells and their further diversification and (ii) subtle phenotypic modifications with respect to their regulation capacity. We identified a group of cyanobacterial LDHs displaying eukaryotic-like LDH sequence features. The biochemical and structural characterization of Cyanobacterium aponinum LDH, taken as representative, unexpectedly revealed that it displays homotropic and heterotropic activation, typical of an allosteric enzyme, whereas it harbors a long N-terminal extension, a structural feature considered responsible for the lack of allosteric capacity in eukaryotic LDHs. Its crystallographic structure was solved in 2 different configurations typical of the R-active and T-inactive states encountered in allosteric LDHs. Structural comparisons coupled with our evolutionary analyses helped to identify 2 amino acid positions that could have had a major role in the attenuation and extinction of the allosteric activation in eukaryotic LDHs rather than the presence of the N-terminal extension. We tested this hypothesis by site-directed mutagenesis. The resulting C. aponinum LDH mutants displayed reduced allosteric capacity mimicking those encountered in plants and human LDHs. This study provides a new evolutionary scenario of LDHs that unifies descriptions of regulatory properties with structural and mutational patterns of these important enzymes.
Collapse
Affiliation(s)
- Adeline Y Robin
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Céline Brochier-Armanet
- Laboratoire de Biométrie et Biologie Évolutive, Université Claude Bernard Lyon 1, CNRS, UMR5558, Villeurbanne F-69622, France
| | - Quentin Bertrand
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institut, Villigen, Switzerland
| | - Caroline Barette
- Université Grenoble Alpes, CEA, Inserm, IRIG, BGE, Grenoble 38000, France
| | - Eric Girard
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Dominique Madern
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| |
Collapse
|
2
|
Mugnai ML, Shi Y, Keatinge-Clay AT, Elber R. Molecular dynamics studies of modular polyketide synthase ketoreductase stereospecificity. Biochemistry 2015; 54:2346-59. [PMID: 25835227 DOI: 10.1021/bi501401g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ketoreductases (KRs) from modular polyketide synthases (PKSs) can perform stereospecific catalysis, selecting a polyketide with a D- or L-α-methyl substituent for NADPH-mediated reduction. In this report, molecular dynamics (MD) simulations were performed to investigate the interactions that control stereospecificity. We studied the A1-type KR from the second module of the amphotericin PKS (A1), which is known to be stereospecific for a D-α-methyl-substituted diketide substrate (dkD). MD simulations of two ternary complexes comprised of the enzyme, NADPH, and either the correct substrate, dkD, or its enantiomer (dkL) were performed. The coordinates for the A1/NADPH binary complex were obtained from a crystal structure (PDB entry 3MJS), and substrates were modeled in the binding pocket in conformations appropriate for reduction. Simulations were intended to reproduce the initial weak binding of the polyketide substrate to the enzyme. Long (tens of nanoseconds) MD simulations show that the correct substrate is retained in a conformation closer to the reactive configuration. Many short (up to a nanosecond) MD runs starting from the initial structures display evidence that Q364, three residues N-terminal to the catalytic tyrosine, forms a hydrogen bond to the incorrect dkL substrate to yield an unreactive conformation that is more favorable than the reactive configuration. This interaction is not as strong for dkD, as the D-α-methyl substituent is positioned between the glutamine and the reactive site. This result correlates with experimental findings [Zheng, J., et al. (2010) Structure 18, 913-922] in which a Q364H mutant was observed to lose stereospecificity.
Collapse
Affiliation(s)
- Mauro L Mugnai
- †Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yue Shi
- ‡Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Adrian T Keatinge-Clay
- †Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States.,§Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ron Elber
- †Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States.,∥Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Cohen BW, Polyansky DE, Achord P, Cabelli D, Muckerman JT, Tanaka K, Thummel RP, Zong R, Fujita E. Steric effect for proton, hydrogen-atom, and hydride transfer reactions with geometric isomers of NADH-model ruthenium complexes. Faraday Discuss 2012; 155:129-44; discussion 207-22. [PMID: 22470971 DOI: 10.1039/c1fd00094b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two isomers, [Ru(1)]2+ (Ru = Ru(bpy)2, bpy = 2,2'-bipyridine, 1 = 2-(pyrid-2'-yl)-1-azaacridine) and [Ru(2)]2+ (2 = 3-(pyrid-2'-yl)-4-azaacridine), are bioinspired model compounds containing the nicotinamide functionality and can serve as precursors for the photogeneration of C-H hydrides for studying reactions pertinent to the photochemical reduction of metal-C1 complexes and/or carbon dioxide. While it has been shown that the structural differences between the azaacridine ligands of [Ru(1)]2+ and [Ru(2)]2+ have a significant effect on the mechanism of formation of the hydride donors, [Ru(1HH)]2+ and [Ru(2HH)]2+, in aqueous solution, we describe the steric implications for proton, net-hydrogen-atom and net-hydride transfer reactions in this work. Protonation of [Ru(2*-)] in aprotic and even protic media is slow compared to that of [Ru(1*-)]+. The net hydrogen-atom transfer between *[Ru(1)]2+ and hydroquinone (H2Q) proceeds by one-step EPT, rather than stepwise electron-proton transfer. Such a reaction was not observed for *[Ru(2)]2+ because the non-coordinated N atom is not easily available for an interaction with H2Q. Finally, the rate of the net hydride ion transfer from [Ru(1HH)]2+ to [Ph3C]+ is significantly slower than that of [Ru (2HH)]2+ owing to steric congestion at the donor site.
Collapse
Affiliation(s)
- Brian W Cohen
- Chemistry Department, Brookhaven National Laboratory, Upton, New York, 11973-5000, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Warshel A, Kato M, Pisliakov AV. Polarizable Force Fields: History, Test Cases, and Prospects. J Chem Theory Comput 2007; 3:2034-45. [DOI: 10.1021/ct700127w] [Citation(s) in RCA: 278] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Arieh Warshel
- University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, California 90089-1062
| | - Mitsunori Kato
- University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, California 90089-1062
| | - Andrei V. Pisliakov
- University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, California 90089-1062
| |
Collapse
|
5
|
Warshel A, Sharma PK, Kato M, Parson WW. Modeling electrostatic effects in proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1647-76. [PMID: 17049320 DOI: 10.1016/j.bbapap.2006.08.007] [Citation(s) in RCA: 424] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 08/17/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
Electrostatic energies provide what is perhaps the most effective tool for structure-function correlation of biological molecules. This review considers the current state of simulations of electrostatic energies in macromolecules as well as the early developments of this field. We focus on the relationship between microscopic and macroscopic models, considering the convergence problems of the microscopic models and the fact that the dielectric 'constants' in semimacroscopic models depend on the definition and the specific treatment. The advances and the challenges in the field are illustrated considering a wide range of functional properties including pK(a)'s, redox potentials, ion and proton channels, enzyme catalysis, ligand binding and protein stability. We conclude by pointing out that, despite the current problems and the significant misunderstandings in the field, there is an overall progress that should lead eventually to quantitative descriptions of electrostatic effects in proteins and thus to quantitative descriptions of the function of proteins.
Collapse
Affiliation(s)
- Arieh Warshel
- University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, CA 90089-1062, USA.
| | | | | | | |
Collapse
|
6
|
Chen YQ, van Beek J, Deng H, Burgner J, Callender R. Vibrational Structure of NAD(P) Cofactors Bound to Three NAD(P) Dependent Enzymes: an Investigation of Ground State Activation. J Phys Chem B 2002. [DOI: 10.1021/jp025635u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yong-Qing Chen
- Physics Department, City College of the City University of New York, New York, New York 10031, Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, New York 10461, and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Jeroen van Beek
- Physics Department, City College of the City University of New York, New York, New York 10031, Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, New York 10461, and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Hua Deng
- Physics Department, City College of the City University of New York, New York, New York 10031, Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, New York 10461, and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - John Burgner
- Physics Department, City College of the City University of New York, New York, New York 10031, Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, New York 10461, and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Robert Callender
- Physics Department, City College of the City University of New York, New York, New York 10031, Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, New York 10461, and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
7
|
Deng H, Zhadin N, Callender R. Dynamics of protein ligand binding on multiple time scales: NADH binding to lactate dehydrogenase. Biochemistry 2001; 40:3767-73. [PMID: 11300756 DOI: 10.1021/bi0026268] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although the importance of atomic motion to how proteins function has been conjectured for several decades, the characterization of protein dynamics on multiple time scales is scant. This is because of severe experimental and theoretical difficulties, particularly characterizing the nanosecond to millisecond time scales. Here, we apply advanced laser-induced temperature-jump relaxation spectroscopic techniques to examine the kinetics of NADH binding to lactate dehydrogenase over this time scale. The bimolecular rate process, at about 290 micros, is easily observed as are multiple faster events (with relaxation times of 200 ns, 3.5 micros, and 24 micros), revealing a rich dynamical nature of the binding step. The results show that there are multiple structures of bound enzyme-ligand complexes, some of which are likely to be far from the catalytically productive structure. The results have important implications for interpretations of the binding thermodynamics of ligands to LDH and, by extension, to other proteins. The observed processes likely play a role in the dynamics of the chemistry that is catalyzed by lactate dehydrogenase.
Collapse
Affiliation(s)
- H Deng
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
8
|
Fields PA, Somero GN. Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A4 orthologs of Antarctic notothenioid fishes. Proc Natl Acad Sci U S A 1998; 95:11476-81. [PMID: 9736762 PMCID: PMC21668 DOI: 10.1073/pnas.95.19.11476] [Citation(s) in RCA: 291] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/1998] [Indexed: 11/18/2022] Open
Abstract
To elucidate mechanisms of enzymatic adaptation to extreme cold, we determined kinetic properties, thermal stabilities, and deduced amino acid sequences of lactate dehydrogenase A4 (A4-LDH) from nine Antarctic (-1.86 to 1 degree C) and three South American (4 to 10 degree C) notothenioid teleosts. Higher Michaelis-Menten constants (Km) and catalytic rate constants (kcat) distinguish orthologs of Antarctic from those of South American species, but no relationship exists between adaptation temperature and the rate at which activity is lost because of heat denaturation. In all species, active site residues are conserved fully, and differences in kcat and Km are caused by substitutions elsewhere in the molecule. Within geographic groups, identical kinetic properties are generated by different substitutions. By combining our data with A4-LDH sequences for other vertebrates and information on roles played by localized conformational changes in setting kcat, we conclude that notothenioid A4-LDHs have adapted to cold temperatures by increases in flexibility in small areas of the molecule that affect the mobility of adjacent active-site structures. Using these findings, we propose a model that explains linked temperature-adaptive variation in Km and kcat. Changes in sequence that increase flexibility of regions of the enzyme involved in catalytic conformational changes may reduce energy (enthalpy) barriers to these rate-governing shifts in conformation and, thereby, increase kcat. However, at a common temperature of measurement, the higher configurational entropy of a cold-adapted enzyme may foster conformations that bind ligands poorly, leading to high Km values relative to warm-adapted orthologs.
Collapse
Affiliation(s)
- P A Fields
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950-3094, USA.
| | | |
Collapse
|
9
|
Warshel A, Papazyan A. Electrostatic effects in macromolecules: fundamental concepts and practical modeling. Curr Opin Struct Biol 1998; 8:211-7. [PMID: 9631295 DOI: 10.1016/s0959-440x(98)80041-9] [Citation(s) in RCA: 253] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The past few years have seen an exponential growth in the calculations of electrostatic energies of macromolecules and an increased recognition of the crucial role of electrostatic effects. This review considers the current state of the field. Focus is placed on calculations of pKas, redox potentials and binding energies in macromolecules and clarification of the fact that the value of the dielectric 'constant' of a protein depends on its definition and that small dielectric constants should not be used in describing charge-charge interactions by current continuum models.
Collapse
Affiliation(s)
- A Warshel
- Department of Chemistry, University of Southern California, Los Angeles 90089, USA.
| | | |
Collapse
|