1
|
Das N, Khan T, Halder B, Ghosh S, Sen P. Macromolecular crowding effects on protein dynamics. Int J Biol Macromol 2024; 281:136248. [PMID: 39374718 DOI: 10.1016/j.ijbiomac.2024.136248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Macromolecular crowding experiments bridge the gap between in-vivo and in-vitro studies by mimicking some of the cellular complexities like high viscosity and limited space, while still manageable for experiments and analysis. Macromolecular crowding impacts all biological processes and is a focus of contemporary research. Recent reviews have highlighted the effect of crowding on various protein properties. One of the essential characteristics of protein is its dynamic nature; however, how protein dynamics get modulated in the crowded milieu has been largely ignored. This article discusses how protein translational, rotational, conformational, and solvation dynamics change under crowded conditions, summarizing key observations in the literature. We emphasize our research on microsecond conformational and water dynamics in crowded milieus and their impact on enzymatic activity and stability. Lastly, we provided our outlook on how this field might move forward in the future.
Collapse
Affiliation(s)
- Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Tanmoy Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Bisal Halder
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Shreya Ghosh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India.
| |
Collapse
|
2
|
de Freitas Magalhães B, Fan G, Sontag E, Josić K, Bennett MR. Pattern Formation and Bistability in a Synthetic Intercellular Genetic Toggle. ACS Synth Biol 2024; 13:2844-2860. [PMID: 39214591 DOI: 10.1021/acssynbio.4c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Differentiation within multicellular organisms is a complex process that helps to establish spatial patterning and tissue formation within the body. Often, the differentiation of cells is governed by morphogens and intercellular signaling molecules that guide the fate of each cell, frequently using toggle-like regulatory components. Synthetic biologists have long sought to recapitulate patterned differentiation with engineered cellular communities, and various methods for differentiating bacteria have been invented. Here, we couple a synthetic corepressive toggle switch with intercellular signaling pathways to create a "quorum-sensing toggle". We show that this circuit not only exhibits population-wide bistability in a well-mixed liquid environment but also generates patterns of differentiation in colonies grown on agar containing an externally supplied morphogen. If coupled to other metabolic processes, circuits such as the one described here would allow for the engineering of spatially patterned, differentiated bacteria for use in biomaterials and bioelectronics.
Collapse
Affiliation(s)
| | - Gaoyang Fan
- Department of Mathematics, University of Houston, Houston, Texas 77204, United States
| | - Eduardo Sontag
- Department of Bioengineering and Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Krešimir Josić
- Department of Mathematics, University of Houston, Houston, Texas 77204, United States
| | - Matthew R Bennett
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
3
|
Bucci A, Tortarolo G, Held MO, Bega L, Perego E, Castagnetti F, Bozzoni I, Slenders E, Vicidomini G. 4D Single-particle tracking with asynchronous read-out single-photon avalanche diode array detector. Nat Commun 2024; 15:6188. [PMID: 39043637 PMCID: PMC11266502 DOI: 10.1038/s41467-024-50512-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 07/14/2024] [Indexed: 07/25/2024] Open
Abstract
Single-particle tracking techniques enable investigation of the complex functions and interactions of individual particles in biological environments. Many such techniques exist, each demonstrating trade-offs between spatiotemporal resolution, spatial and temporal range, technical complexity, and information content. To mitigate these trade-offs, we enhanced a confocal laser scanning microscope with an asynchronous read-out single-photon avalanche diode array detector. This detector provides an image of the particle's emission, precisely reflecting its position within the excitation volume. This localization is utilized in a real-time feedback system to drive the microscope scanning mechanism and ensure the particle remains centered inside the excitation volume. As each pixel is an independent single-photon detector, single-particle tracking is combined with fluorescence lifetime measurement. Our system achieves 40 nm lateral and 60 nm axial localization precision with 100 photons and sub-millisecond temporal sampling for real-time tracking. Offline tracking can refine this precision to the microsecond scale. We validated the system's spatiotemporal resolution by tracking fluorescent beads with diffusion coefficients up to 10 μm2/s. Additionally, we investigated the movement of lysosomes in living SK-N-BE cells and measured the fluorescence lifetime of the marker expressed on a membrane protein. We expect that this implementation will open other correlative imaging and tracking studies.
Collapse
Affiliation(s)
- Andrea Bucci
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
- Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi, University of Genoa, Genoa, Italy
| | - Giorgio Tortarolo
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
- Laboratory of Experimental Biophysics, EPFL, Lausanne, Switzerland
| | - Marcus Oliver Held
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Luca Bega
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Eleonora Perego
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
- Centre for Integrative Genomics, Université de Lausanne, Lausanne, Switzerland
| | - Francesco Castagnetti
- Non coding RNAs in Physiology and Pathology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Irene Bozzoni
- Non coding RNAs in Physiology and Pathology, Istituto Italiano di Tecnologia, Genoa, Italy
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Eli Slenders
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Giuseppe Vicidomini
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy.
| |
Collapse
|
4
|
Abstract
The translation of messenger RNA (mRNA) into proteins represents the culmination of gene expression. Recent technological advances have revolutionized our ability to investigate this process with unprecedented precision, enabling the study of translation at the single-molecule level in real time within live cells. In this review, we provide an overview of single-mRNA translation reporters. We focus on the core technology, as well as the rapid development of complementary probes, tags, and accessories that enable the visualization and quantification of a wide array of translation dynamics. We then highlight notable studies that have utilized these reporters in model systems to address key biological questions. The high spatiotemporal resolution of these studies is shedding light on previously unseen phenomena, uncovering the full heterogeneity and complexity of translational regulation.
Collapse
Affiliation(s)
- Tatsuya Morisaki
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA;
| | - O'Neil Wiggan
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA;
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA;
- Cell Biology Center and World Research Hub Initiative, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
5
|
Raja Venkatesh A, Le KH, Weld DM, Brandman O. Diffusive lensing as a mechanism of intracellular transport and compartmentalization. eLife 2024; 12:RP89794. [PMID: 38896469 PMCID: PMC11186627 DOI: 10.7554/elife.89794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
While inhomogeneous diffusivity has been identified as a ubiquitous feature of the cellular interior, its implications for particle mobility and concentration at different length scales remain largely unexplored. In this work, we use agent-based simulations of diffusion to investigate how heterogeneous diffusivity affects the movement and concentration of diffusing particles. We propose that a nonequilibrium mode of membrane-less compartmentalization arising from the convergence of diffusive trajectories into low-diffusive sinks, which we call 'diffusive lensing,' is relevant for living systems. Our work highlights the phenomenon of diffusive lensing as a potentially key driver of mesoscale dynamics in the cytoplasm, with possible far-reaching implications for biochemical processes.
Collapse
Affiliation(s)
- Achuthan Raja Venkatesh
- Department of Biochemistry, Stanford UniversityStanfordUnited States
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) MohaliMohaliIndia
| | - Kathy H Le
- Department of Biochemistry, Stanford UniversityStanfordUnited States
| | - David M Weld
- Department of Physics, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Onn Brandman
- Department of Biochemistry, Stanford UniversityStanfordUnited States
| |
Collapse
|
6
|
Kumar G, Ardekani AM. Concentration-Dependent Diffusion of Monoclonal Antibodies: Underlying Mechanisms of Anomalous Diffusion. Mol Pharm 2024; 21:2212-2222. [PMID: 38572979 DOI: 10.1021/acs.molpharmaceut.3c00973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The development, storage, transport, and subcutaneous delivery of highly concentrated monoclonal antibody formulations pose significant challenges due to the high solution viscosity and low diffusion of the antibody molecules in crowded environments. These issues often stem from the self-associating behavior of the antibody molecules, potentially leading to aggregation. In this work, we used a dissipative particle dynamics-based coarse-grained model to investigate the diffusion behavior of IgG1 antibody molecules in aqueous solutions with 15 and 32 mM NaCl and antibody concentrations ranging from 10 to 400 mg/mL. We determined the coarse-grained interaction parameters by matching the calculated structure factor with the computational and experimental data from the literature. Our results indicate Fickian diffusion for antibody concentrations of 10 and 25 mg/mL and anomalous diffusion for concentrations exceeding 50 mg/mL. The anomalous diffusion was observed for ∼0.33 to 0.4 μs, followed by Fickian diffusion for all antibody concentrations. We observed a strong linear correlation between the diffusion behavior of the antibody molecules (diffusion coefficient D and anomalous diffusion exponent α) and the amount of aggregates present in the solution and between the amount of aggregates and the Coulomb interaction energy. The investigation of underlying mechanisms for anomalous diffusion revealed that in crowded environments at high antibody concentrations, the attractive interaction between electrostatically complementary regions of the antibody molecules could further bring the neighboring molecules closer to one another, ultimately resulting in aggregate formation. Further, the Coulomb attraction can continue to draw more molecules together, forming larger aggregates.
Collapse
Affiliation(s)
- Gaurav Kumar
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
7
|
Thappeta Y, Cañas-Duarte SJ, Kallem T, Fragasso A, Xiang Y, Gray W, Lee C, Cegelski L, Jacobs-Wagner C. Glycogen phase separation drives macromolecular rearrangement and asymmetric division in E. coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590186. [PMID: 38659787 PMCID: PMC11042326 DOI: 10.1101/2024.04.19.590186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Bacteria often experience nutrient limitation in nature and the laboratory. While exponential and stationary growth phases are well characterized in the model bacterium Escherichia coli, little is known about what transpires inside individual cells during the transition between these two phases. Through quantitative cell imaging, we found that the position of nucleoids and cell division sites becomes increasingly asymmetric during transition phase. These asymmetries were coupled with spatial reorganization of proteins, ribosomes, and RNAs to nucleoid-centric localizations. Results from live-cell imaging experiments, complemented with genetic and 13C whole-cell nuclear magnetic resonance spectroscopy studies, show that preferential accumulation of the storage polymer glycogen at the old cell pole leads to the observed rearrangements and asymmetric divisions. In vitro experiments suggest that these phenotypes are likely due to the propensity of glycogen to phase separate in crowded environments, as glycogen condensates exclude fluorescent proteins under physiological crowding conditions. Glycogen-associated differences in cell sizes between strains and future daughter cells suggest that glycogen phase separation allows cells to store large glucose reserves without counting them as cytoplasmic space.
Collapse
Affiliation(s)
- Yashna Thappeta
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Silvia J. Cañas-Duarte
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, USA
| | - Till Kallem
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Alessio Fragasso
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Yingjie Xiang
- Mechanical Engineering and Materials Science, Yale University, New Haven, CT
| | - William Gray
- Mechanical Engineering and Materials Science, Yale University, New Haven, CT
| | - Cheyenne Lee
- Mechanical Engineering and Materials Science, Yale University, New Haven, CT
| | | | - Christine Jacobs-Wagner
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, USA
| |
Collapse
|
8
|
Raczyłło E, Gołowicz D, Skóra T, Kazimierczuk K, Kondrat S. Size Sensitivity of Metabolite Diffusion in Macromolecular Crowds. NANO LETTERS 2024; 24. [PMID: 38607288 PMCID: PMC11057039 DOI: 10.1021/acs.nanolett.3c05100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Metabolites play crucial roles in cellular processes, yet their diffusion in the densely packed interiors of cells remains poorly understood, compounded by conflicting reports in existing studies. Here, we employ pulsed-gradient stimulated-echo NMR and Brownian/Stokesian dynamics simulations to elucidate the behavior of nano- and subnanometer-sized tracers in crowded environments. Using Ficoll as a crowder, we observe a linear decrease in tracer diffusivity with increasing occupied volume fraction, persisting─somewhat surprisingly─up to volume fractions of 30-40%. While simulations suggest a linear correlation between diffusivity slowdown and particle size, experimental findings hint at a more intricate relationship, possibly influenced by Ficoll's porosity. Simulations and numerical calculations of tracer diffusivity in the E. coli cytoplasm show a nonlinear yet monotonic diffusion slowdown with particle size. We discuss our results in the context of nanoviscosity and discrepancies with existing studies.
Collapse
Affiliation(s)
- Edyta Raczyłło
- Institute
of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Department
of Theoretical Chemistry, Institute of Chemical Sciences, Faculty
of Chemistry, Maria Curie-Skłodowska
University in Lublin, 20-031 Lublin, Poland
| | - Dariusz Gołowicz
- Institute
of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Tomasz Skóra
- Institute
of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Scientific
Computing and Imaging Institute, University
of Utah, Salt Lake City, Utah 84112, United States
| | | | - Svyatoslav Kondrat
- Institute
of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Institute
for Computational Physics, University of
Stuttgart 70569, Stuttgart, Germany
| |
Collapse
|
9
|
Chang R, Davydov A, Jaroenlak P, Budaitis B, Ekiert DC, Bhabha G, Prakash M. Energetics of the microsporidian polar tube invasion machinery. eLife 2024; 12:RP86638. [PMID: 38381133 PMCID: PMC10942582 DOI: 10.7554/elife.86638] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Microsporidia are eukaryotic, obligate intracellular parasites that infect a wide range of hosts, leading to health and economic burdens worldwide. Microsporidia use an unusual invasion organelle called the polar tube (PT), which is ejected from a dormant spore at ultra-fast speeds, to infect host cells. The mechanics of PT ejection are impressive. Anncaliia algerae microsporidia spores (3-4 μm in size) shoot out a 100-nm-wide PT at a speed of 300 μm/s, creating a shear rate of 3000 s-1. The infectious cargo, which contains two nuclei, is shot through this narrow tube for a distance of ∼60-140 μm (Jaroenlak et al, 2020) and into the host cell. Considering the large hydraulic resistance in an extremely thin tube and the low-Reynolds-number nature of the process, it is not known how microsporidia can achieve this ultrafast event. In this study, we use Serial Block-Face Scanning Electron Microscopy to capture 3-dimensional snapshots of A. algerae spores in different states of the PT ejection process. Grounded in these data, we propose a theoretical framework starting with a systematic exploration of possible topological connectivity amongst organelles, and assess the energy requirements of the resulting models. We perform PT firing experiments in media of varying viscosity, and use the results to rank our proposed hypotheses based on their predicted energy requirement. We also present a possible mechanism for cargo translocation, and quantitatively compare our predictions to experimental observations. Our study provides a comprehensive biophysical analysis of the energy dissipation of microsporidian infection process and demonstrates the extreme limits of cellular hydraulics.
Collapse
Affiliation(s)
- Ray Chang
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Ari Davydov
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| | - Pattana Jaroenlak
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| | - Breane Budaitis
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| | - Damian C Ekiert
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
- Department of Microbiology, New York University School of MedicineNew YorkUnited States
| | - Gira Bhabha
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| | - Manu Prakash
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Woods Institute for the Environment, Stanford UniversityStanfordUnited States
| |
Collapse
|
10
|
Kompella VPS, Romano MC, Stansfield I, Mancera RL. What determines sub-diffusive behavior in crowded protein solutions? Biophys J 2024; 123:134-146. [PMID: 38073154 PMCID: PMC10808025 DOI: 10.1016/j.bpj.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/07/2023] [Accepted: 12/04/2023] [Indexed: 12/22/2023] Open
Abstract
The aqueous environment inside cells is densely packed. A typical cell has a macromolecular concentration in the range 90-450 g/L, with 5%-40% of its volume being occupied by macromolecules, resulting in what is known as macromolecular crowding. The space available for the free diffusion of metabolites and other macromolecules is thus greatly reduced, leading to so-called excluded volume effects. The slow diffusion of macromolecules under crowded conditions has been explained using transient complex formation. However, sub-diffusion noted in earlier works is not well characterized, particularly the role played by transient complex formation and excluded volume effects. We have used Brownian dynamics simulations to characterize the diffusion of chymotrypsin inhibitor 2 in protein solutions of bovine serum albumin and lysozyme at concentrations ranging from 50 to 300 g/L. The predicted changes in diffusion coefficient as a function of crowder concentration are consistent with NMR experiments. The sub-diffusive behavior observed in the sub-microsecond timescale can be explained in terms of a so-called cage effect, arising from rattling motion in a local molecular cage as a consequence of excluded volume effects. By selectively manipulating the nature of interactions between protein molecules, we determined that excluded volume effects induce sub-diffusive dynamics at sub-microsecond timescales. These findings may help to explain the diffusion-mediated effects of protein crowding on cellular processes.
Collapse
Affiliation(s)
- Vijay Phanindra Srikanth Kompella
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin Institute for Data Science, Curtin University, Perth, Western Australia, Australia; Department of Physics, Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, United Kingdom
| | - Maria Carmen Romano
- Department of Physics, Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, United Kingdom; Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Ian Stansfield
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Ricardo L Mancera
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin Institute for Data Science, Curtin University, Perth, Western Australia, Australia.
| |
Collapse
|
11
|
Sydor MJ, Serban MA. The Application of Fluorescence Anisotropy for Viscosity Measurements of Small Volume Biological Analytes. JOURNAL OF EXPERIMENTAL AND THEORETICAL ANALYSES 2023; 1:86-96. [PMID: 38633433 PMCID: PMC11022525 DOI: 10.3390/jeta1020007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Time-resolved fluorescence anisotropy has been extensively used to detect changes in bimolecular rotation associated with viscosity levels within cells and other solutions. Physiological alterations of the viscosity of biological fluids have been associated with numerous pathological causes. This current work serves as proof of concept for a method to measure viscosity changes in small analyte volumes representative of biological fluids. The fluorophores used in this study were fluorescein disodium salt and Enhanced Green Fluorescent Protein (EGFP). To assess the ability of the method to accurately detect viscosity values in small volume samples, we conducted measurements with 12 μL and 100 μL samples. No statistically significant changes in determined viscosities were recorded as a function of sample volume for either fluorescent probe. The anisotropy of both fluorescence probes was measured in low viscosity standards ranging from 1.02 to 1.31 cP, representative of physiological fluid values, and showed increasing rotational correlation times in response to increasing viscosity. We also showed that smaller fluid volumes can be diluted to accommodate available cuvette volume requirements without a loss in the accuracy of detecting discrete viscosity variations. Moreover, the ability of this technique to detect subtle viscosity changes in complex fluids similar to physiological ones was assessed by using fetal bovine serum (FBS) containing samples. The presence of FBS in the analytes did not alter the viscosity specific rotational correlation time of EGFP, indicating that this probe does not interact with the tested analyte components and is able to accurately reflect sample viscosity. We also showed that freeze-thaw cycles, reflective of the temperature-dependent processes that biological samples of interest could undergo from the time of collection to analyses, did not impact the viscosity measurements' accuracy. Overall, our data highlight the feasibility of using time-resolved fluorescence anisotropy for precise viscosity measurements in biological samples. This finding is relevant as it could potentially expand the use of this technique for in vitro diagnostic systems.
Collapse
Affiliation(s)
- Matthew J. Sydor
- BioSpectroscopy Core, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Monica A. Serban
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
- Montana Biotechnology Center (BIOTECH), University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
12
|
Kuramochi M, Sugawara I, Shinkai Y, Mio K, Sasaki YC. Time-Resolved X-ray Observation of Intracellular Crystallized Protein in Living Animal. Int J Mol Sci 2023; 24:16914. [PMID: 38069236 PMCID: PMC10706802 DOI: 10.3390/ijms242316914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Understanding the cellular environment as molecular crowding that supports the structure-specific functional expression of biomolecules has recently attracted much attention. Time-resolved X-ray observations have the remarkable capability to capture the structural dynamics of biomolecules with subnanometre precision. Nevertheless, the measurement of the intracellular dynamics within live organisms remains a challenge. Here, we explore the potential of utilizing crystallized proteins that spontaneously form intracellular crystals to investigate their intracellular dynamics via time-resolved X-ray observations. We generated transgenic Caenorhabditis elegans specifically expressing the crystallized protein in cells and observed the formation of the protein aggregates within the animal cells. From the toxic-effect observations, the aggregates had minimal toxic effects on living animals. Fluorescence observations showed a significant suppression of the translational diffusion movements in molecules constituting the aggregates. Moreover, X-ray diffraction measurements provided diffraction signals originating from these molecules. We also observed the blinking behaviour of the diffraction spots, indicating the rotational motion of these crystals within the animal cells. A diffracted X-ray blinking (DXB) analysis estimated the rotational motion of the protein crystals on the subnanometre scale. Our results provide a time-resolved X-ray diffraction technique for the monitoring of intracellular dynamics.
Collapse
Affiliation(s)
- Masahiro Kuramochi
- Graduate School of Science and Engineering, Ibaraki University, Hitachi 316-8511, Japan;
| | - Ibuki Sugawara
- Graduate School of Science and Engineering, Ibaraki University, Hitachi 316-8511, Japan;
| | - Yoichi Shinkai
- Molecular Neurobiology Research Group, Biomedical Research Institute, National Institute of Advance Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan;
| | - Kazuhiro Mio
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa 277-8565, Japan;
| | - Yuji C. Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan;
| |
Collapse
|
13
|
Htet PH, Lauga E. Cortex-driven cytoplasmic flows in elongated cells: fluid mechanics and application to nuclear transport in Drosophila embryos. J R Soc Interface 2023; 20:20230428. [PMID: 37963561 PMCID: PMC10645513 DOI: 10.1098/rsif.2023.0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Abstract
The Drosophila melanogaster embryo, an elongated multi-nucleated cell, is a classical model system for eukaryotic development and morphogenesis. Recent work has shown that bulk cytoplasmic flows, driven by cortical contractions along the walls of the embryo, enable the uniform spreading of nuclei along the anterior-posterior axis necessary for proper embryonic development. Here, we propose two mathematical models to characterize cytoplasmic flows driven by tangential cortical contractions in elongated cells. Assuming Newtonian fluid flow at low Reynolds number in a spheroidal cell, we first compute the flow field exactly, thereby bypassing the need for numerical computations. We then apply our results to recent experiments on nuclear transport in cell cycles 4-6 of Drosophila embryo development. By fitting the cortical contractions in our model to measurements, we reveal that experimental cortical flows enable near-optimal axial spreading of nuclei. A second mathematical approach, applicable to general elongated cell geometries, exploits a long-wavelength approximation to produce an even simpler solution, with errors below [Formula: see text] compared with the full model. An application of this long-wavelength result to transport leads to fully analytical solutions for the nuclear concentration that capture the essential physics of the system, including optimal axial spreading of nuclei.
Collapse
Affiliation(s)
- Pyae Hein Htet
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
| |
Collapse
|
14
|
Bonucci M, Shu T, Holt LJ. How it feels in a cell. Trends Cell Biol 2023; 33:924-938. [PMID: 37286396 PMCID: PMC10592589 DOI: 10.1016/j.tcb.2023.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
Life emerges from thousands of biochemical processes occurring within a shared intracellular environment. We have gained deep insights from in vitro reconstitution of isolated biochemical reactions. However, the reaction medium in test tubes is typically simple and diluted. The cell interior is far more complex: macromolecules occupy more than a third of the space, and energy-consuming processes agitate the cell interior. Here, we review how this crowded, active environment impacts the motion and assembly of macromolecules, with an emphasis on mesoscale particles (10-1000 nm diameter). We describe methods to probe and analyze the biophysical properties of cells and highlight how changes in these properties can impact physiology and signaling, and potentially contribute to aging, and diseases, including cancer and neurodegeneration.
Collapse
Affiliation(s)
- Martina Bonucci
- Institute for Systems Genetics, New York University Langone Medical Center, 435 E 30th Street, New York, NY 10016, USA
| | - Tong Shu
- Institute for Systems Genetics, New York University Langone Medical Center, 435 E 30th Street, New York, NY 10016, USA
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Medical Center, 435 E 30th Street, New York, NY 10016, USA.
| |
Collapse
|
15
|
Li M, Razumtcev A, Turner GA, Hwang Y, Simpson GJ. Fast Diffusion Characterization by Multiphoton Excited Fluorescence Recovery while Photobleaching. Anal Chem 2023; 95:14331-14340. [PMID: 37699550 DOI: 10.1021/acs.analchem.3c02638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Multiphoton-excited fluorescence recovery while photobleaching (FRWP) is demonstrated as a method for quantitative measurements of rapid molecular diffusion over microsecond to millisecond timescales. Diffusion measurements are crucial in assessing molecular mobility in cell biology, materials science, and pharmacology. Optical and fluorescence microscopy techniques enable non-invasive rapid analysis of molecular diffusion but can be challenging for systems with diffusion coefficients exceeding ∼100 μm2/s. As an example, fluorescence recovery after photobleaching (FRAP) operates on the implicit assumption of a comparatively fast photobleaching step prior to a relatively slow recovery and is not generally applicable for systems exhibiting substantial recovery during photobleaching. These challenges are exacerbated in multiphoton excitation by the lower excitation efficiency and competing effects from local heating. Herein, beam-scanning FRWP with patterned line-bleach illumination is introduced as a technique that addresses FRAP limitations and further extends its application range by measuring faster diffusion events. In FRWP, the recovery of fluorescence is continuously probed after each pass of a fast-scanning mirror, and the upper bound of measurable diffusion rates is, therefore, only limited by the mirror scanning frequency. A theoretical model describing transient fluctuations in fluorescence intensity arising as a result of combined contributions from photobleaching and localized photothermal effect is introduced along with a mathematical framework for quantifying fluorescence intensity temporal curves and recovering room-temperature diffusion coefficients. FRWP is then tested by characterization of normal diffusion of rhodamine-labeled bovine serum albumin, green fluorescence protein, and immunoglobulin G molecules in aqueous solutions of varying viscosity.
Collapse
Affiliation(s)
- Minghe Li
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Aleksandr Razumtcev
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Gwendylan A Turner
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Yechan Hwang
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Garth J Simpson
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
16
|
Chang R, Davydov A, Jaroenlak P, Budaitis B, Ekiert DC, Bhabha G, Prakash M. Energetics of the Microsporidian Polar Tube Invasion Machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524456. [PMID: 36711805 PMCID: PMC9884504 DOI: 10.1101/2023.01.17.524456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Microsporidia are eukaryotic, obligate intracellular parasites that infect a wide range of hosts, leading to health and economic burdens worldwide. Microsporidia use an unusual invasion organelle called the polar tube (PT), which is ejected from a dormant spore at ultra-fast speeds, to infect host cells. The mechanics of PT ejection are impressive. Anncaliia algerae microsporidia spores (3-4 μm in size) shoot out a 100-nm-wide PT at a speed of 300 μm/sec, creating a shear rate of 3000 sec-1. The infectious cargo, which contains two nuclei, is shot through this narrow tube for a distance of ~60-140 μm (Jaroenlak et al., 2020) and into the host cell. Considering the large hydraulic resistance in an extremely thin tube and the low-Reynolds-number nature of the process, it is not known how microsporidia can achieve this ultrafast event. In this study, we use Serial Block-Face Scanning Electron Microscopy to capture 3-dimensional snapshots of A. algerae spores in different states of the PT ejection process. Grounded in these data, we propose a theoretical framework starting with a systematic exploration of possible topological connectivity amongst organelles, and assess the energy requirements of the resulting models. We perform PT firing experiments in media of varying viscosity, and use the results to rank our proposed hypotheses based on their predicted energy requirement. We also present a possible mechanism for cargo translocation, and quantitatively compare our predictions to experimental observations. Our study provides a comprehensive biophysical analysis of the energy dissipation of microsporidian infection process and demonstrates the extreme limits of cellular hydraulics.
Collapse
Affiliation(s)
- Ray Chang
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Ari Davydov
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Pattana Jaroenlak
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Breane Budaitis
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Damian C. Ekiert
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Woods Institute for the Environment, Stanford University, Stanford, California, United States of America
| |
Collapse
|
17
|
Leonard TA, Loose M, Martens S. The membrane surface as a platform that organizes cellular and biochemical processes. Dev Cell 2023; 58:1315-1332. [PMID: 37419118 DOI: 10.1016/j.devcel.2023.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/22/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023]
Abstract
Membranes are essential for life. They act as semi-permeable boundaries that define cells and organelles. In addition, their surfaces actively participate in biochemical reaction networks, where they confine proteins, align reaction partners, and directly control enzymatic activities. Membrane-localized reactions shape cellular membranes, define the identity of organelles, compartmentalize biochemical processes, and can even be the source of signaling gradients that originate at the plasma membrane and reach into the cytoplasm and nucleus. The membrane surface is, therefore, an essential platform upon which myriad cellular processes are scaffolded. In this review, we summarize our current understanding of the biophysics and biochemistry of membrane-localized reactions with particular focus on insights derived from reconstituted and cellular systems. We discuss how the interplay of cellular factors results in their self-organization, condensation, assembly, and activity, and the emergent properties derived from them.
Collapse
Affiliation(s)
- Thomas A Leonard
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr. Bohr-Gasse 9, 1030, Vienna, Austria.
| | - Martin Loose
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| | - Sascha Martens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell Biology, Dr. Bohr-Gasse 9, 1030, Vienna, Austria.
| |
Collapse
|
18
|
Choi AA, Xiang L, Li W, Xu K. Single-Molecule Displacement Mapping Indicates Unhindered Intracellular Diffusion of Small (≲1 kDa) Solutes. J Am Chem Soc 2023; 145:10.1021/jacs.3c00597. [PMID: 37027457 PMCID: PMC10558625 DOI: 10.1021/jacs.3c00597] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
While fundamentally important, the intracellular diffusion of small (≲1 kDa) solutes has been difficult to elucidate due to challenges in both labeling and measurement. Here we quantify and spatially map the translational diffusion patterns of small solutes in mammalian cells by integrating several recent advances. In particular, by executing tandem stroboscopic illumination pulses down to 400 μs separation, we extend single-molecule displacement/diffusivity mapping (SMdM), a super-resolution diffusion quantification tool, to small solutes with high diffusion coefficients D of >300 μm2/s. We thus show that for multiple water-soluble dyes and dye-tagged nucleotides, intracellular diffusion is dominated by vast regions of high diffusivity ∼60-70% of that in vitro, up to ∼250 μm2/s in the fastest cases. Meanwhile, we also visualize sub-micrometer foci of substantial slowdowns in diffusion, thus underscoring the importance of spatially resolving the local diffusion behavior. Together, these results suggest that the intracellular diffusion of small solutes is only modestly scaled down by the slightly higher viscosity of the cytosol over water but otherwise not further hindered by macromolecular crowding. We thus lift a paradoxically low speed limit for intracellular diffusion suggested by previous experiments.
Collapse
Affiliation(s)
- Alexander A. Choi
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Limin Xiang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Wan Li
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
19
|
Redpath GMI, Ananthanarayanan V. Endosomal sorting sorted - motors, adaptors and lessons from in vitro and cellular studies. J Cell Sci 2023; 136:292583. [PMID: 36861885 DOI: 10.1242/jcs.260749] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Motor proteins are key players in exerting spatiotemporal control over the intracellular location of membrane-bound compartments, including endosomes containing cargo. In this Review, we focus on how motors and their cargo adaptors regulate positioning of cargoes from the earliest stages of endocytosis and through the two main intracellular itineraries: (1) degradation at the lysosome or (2) recycling back to the plasma membrane. In vitro and cellular (in vivo) studies on cargo transport thus far have typically focussed independently on either the motor proteins and adaptors, or membrane trafficking. Here, we will discuss recent studies to highlight what is known about the regulation of endosomal vesicle positioning and transport by motors and cargo adaptors. We also emphasise that in vitro and cellular studies are often performed at different scales, from single molecules to whole organelles, with the aim to provide a perspective on the unified principles of motor-driven cargo trafficking in living cells that can be learned from these differing scales.
Collapse
Affiliation(s)
- Gregory M I Redpath
- EMBL Australia Node in Single Molecule Science, Department of Molecular Medicine, School of Biomedical Sciences, The University of New South Wales, Sydney 2052, Australia
| | - Vaishnavi Ananthanarayanan
- EMBL Australia Node in Single Molecule Science, Department of Molecular Medicine, School of Biomedical Sciences, The University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
20
|
Gravity-driven microfluidic device placed on a slow-tilting table enables constant unidirectional perfusion culture of human induced pluripotent stem cells. J Biosci Bioeng 2023; 135:151-159. [PMID: 36586792 DOI: 10.1016/j.jbiosc.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/30/2022]
Abstract
Gravity-driven microfluidics, which utilizes gravity force to drive liquid flow, offers portability and multi-condition setting flexibility because they do not require pumps or connection tubes to drive the flow. However, because the flow rate decreases with time in gravity-driven microfluidics, it is not suitable for stem cell experiments, which require long-term (at least a day) stability. In this study, gravity-driven microfluidics and a slow-tilting table were developed to culture cells under constant unidirectional perfusion. The microfluidic device was placed on a slow-tilting table, which tilts unidirectionally at a rate of approximately 7° per day to compensate for the reduction in the flow rate. Computational simulations showed that the pulsation of the flow arising from the stepwise movement of the table was less than 0.2%, and the flow was laminar. Hydrophilization of the tanks increased the flow rate, which is consistent with the theoretical values. We showed that vitronectin is better than laminin 511 fragments as a coating material for adhering human induced pluripotent stem cells on a microchamber made of polydimethylsiloxane, and succeeded in culturing the cells for 3 days. It is believed that the system offers easy-to-use cell culture tools, such as conventional multiwell culture vessels, and enables the control of the cell microenvironment.
Collapse
|
21
|
Practical Guidance for Developing Small-Molecule Optical Probes for In Vivo Imaging. Mol Imaging Biol 2023; 25:240-264. [PMID: 36745354 DOI: 10.1007/s11307-023-01800-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 02/07/2023]
Abstract
The WMIS Education Committee (2019-2022) reached a consensus that white papers on molecular imaging could be beneficial for practitioners of molecular imaging at their early career stages and other scientists who are interested in molecular imaging. With this consensus, the committee plans to publish a series of white papers on topics related to the daily practice of molecular imaging. In this white paper, we aim to provide practical guidance that could be helpful for optical molecular imaging, particularly for small molecule probe development and validation in vitro and in vivo. The focus of this paper is preclinical animal studies with small-molecule optical probes. Near-infrared fluorescence imaging, bioluminescence imaging, chemiluminescence imaging, image-guided surgery, and Cerenkov luminescence imaging are discussed in this white paper.
Collapse
|
22
|
Choi AA, Xiang L, Li W, Xu K. Single-molecule displacement mapping indicates unhindered intracellular diffusion of small (<~1 kDa) solutes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525579. [PMID: 36747694 PMCID: PMC9900885 DOI: 10.1101/2023.01.26.525579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
While fundamentally important, the intracellular diffusion of small (<~1 kDa) solutes has been difficult to elucidate due to challenges in both labeling and measurement. Here we quantify and spatially map the translational diffusion patterns of small solutes in mammalian cells by integrating several recent advances. In particular, by executing tandem stroboscopic illumination pulses down to 400-μs separation, we extend single-molecule displacement/diffusivity mapping (SM d M), a super-resolution diffusion quantification tool, to small solutes with high diffusion coefficients D of >300 μm 2 /s. We thus show that for multiple water-soluble dyes and dye-tagged nucleotides, intracellular diffusion is dominated by vast regions of high diffusivity ~60-70% of that in vitro , up to ~250 μm 2 /s in the fastest cases. Meanwhile, we also visualize sub-micrometer foci of substantial slowdowns in diffusion, thus underscoring the importance of spatially resolving the local diffusion behavior. Together, these results suggest that the intracellular diffusion of small solutes is only modestly scaled down by the slightly higher viscosity of the cytosol over water, but otherwise not further hindered by macromolecular crowding. We thus lift a paradoxically low speed limit for intracellular diffusion suggested by previous experiments. Abstract Graphic
Collapse
|
23
|
Nieuwenhuis B, Laperrousaz E, Tribble JR, Verhaagen J, Fawcett JW, Martin KR, Williams PA, Osborne A. Improving adeno-associated viral (AAV) vector-mediated transgene expression in retinal ganglion cells: comparison of five promoters. Gene Ther 2023:10.1038/s41434-022-00380-z. [PMID: 36635457 DOI: 10.1038/s41434-022-00380-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
Recombinant adeno-associated viral vectors (AAVs) are an effective system for gene transfer. AAV serotype 2 (AAV2) is commonly used to deliver transgenes to retinal ganglion cells (RGCs) via intravitreal injection. The AAV serotype however is not the only factor contributing to the effectiveness of gene therapies. Promoters influence the strength and cell-selectivity of transgene expression. This study compares five promoters designed to maximise AAV2 cargo space for gene delivery: chicken β-actin (CBA), cytomegalovirus (CMV), short CMV early enhancer/chicken β-actin/short β-globulin intron (sCAG), mouse phosphoglycerate kinase (PGK), and human synapsin (SYN). The promoters driving enhanced green fluorescent protein (eGFP) were examined in adult C57BL/6J mice eyes and tissues of the visual system. eGFP expression was strongest in the retina, optic nerves and brain when driven by the sCAG and SYN promoters. CBA, CMV, and PGK had moderate expression by comparison. The SYN promoter had almost exclusive transgene expression in RGCs. The PGK promoter had predominant expression in both RGCs and AII amacrine cells. The ubiquitous CBA, CMV, and sCAG promoters expressed eGFP in a variety of cell types across multiple retinal layers including Müller glia and astrocytes. We also found that these promoters could transduce human retina ex vivo, although expression was predominantly in glial cells due to low RGC viability. Taken together, this promoter comparison study contributes to optimising AAV-mediated transduction in the retina, and could be valuable for research in ocular disorders, particularly those with large or complex genetic cargos.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK. .,Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
| | - Elise Laperrousaz
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands.,Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Centre of Reconstructive Neuroscience, Institute of Experimental Medicine, Prague, Czech Republic
| | - Keith R Martin
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Andrew Osborne
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK. .,Ikarovec Ltd, The Norwich Research Park Innovation Centre, Norwich, UK.
| |
Collapse
|
24
|
Sato R, Minamihata K, Wakabayashi R, Goto M, Kamiya N. Molecular crowding elicits the acceleration of enzymatic crosslinking of macromolecular substrates. Org Biomol Chem 2023; 21:306-314. [PMID: 36342388 DOI: 10.1039/d2ob01549h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cytoplasm contains high concentrations of biomacromolecules. Protein behavior under such crowded conditions is reportedly different from that in an aqueous buffer solution, mainly owing to the effect of volume exclusion caused by the presence of macromolecules. Using a crosslinking reaction catalyzed by microbial transglutaminase (MTG) as a model, we herein systematically determined how the substrate size affects enzymatic activity in both dilute and crowded solutions of dextran. We first observed a threefold reduction in MTG-mediated crosslinking of a pair of small peptide substrates in 15 wt% dextran solution. In contrast, when proteinaceous substrates were involved, the crosslinking rates in 15 wt% dextran solutions accelerated markedly to levels comparable with the level in the absence of dextran. Our results provide new insights into the action of enzymes with regard to macromolecular substrates under crowded conditions, of which the potential utility was demonstrated by the formation of highly crosslinked protein polymers.
Collapse
Affiliation(s)
- Ryo Sato
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan. .,Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan. .,Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
25
|
Bustos NA, Saad-Roy CM, Cherstvy AG, Wagner CE. Distributed medium viscosity yields quasi-exponential step-size probability distributions in heterogeneous media. SOFT MATTER 2022; 18:8572-8581. [PMID: 36373713 DOI: 10.1039/d2sm00952h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The analysis of the statistics of random walks undertaken by passive particles in complex media has important implications in a number of areas including pathogen transport and drug delivery. In several systems in which heterogeneity is important, the distribution of particle step-sizes has been found to be exponential in nature, as opposed to the Gaussian distribution associated with Brownian motion. Here, we first develop a theoretical framework to study a simplified version of this problem: the motion of passive tracers in a range of sub-environments with different viscosity. We show that in the limit of a large number of equi-distributed sub-environments spanning a broad viscosity range, an exact analytical expression for the underlying particle step-size distribution can be derived, which approaches an exponential distribution when step sizes are small. We then validate this using a simple experimental system of glycerol-water mixtures, in which the volume fraction of glycerol is systematically varied. Overall, the assumption of exponentially distributed step sizes may substantially over-estimate the incidence of large steps in heterogeneous systems, with important implications in the analysis of various biophysical processes.
Collapse
Affiliation(s)
- Nicole A Bustos
- Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA
| | - Chadi M Saad-Roy
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
- Miller Institute for Basic Research in Science, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrey G Cherstvy
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Caroline E Wagner
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada.
| |
Collapse
|
26
|
Iyer A, Sidhu A, Subramaniam V. How important is the N-terminal acetylation of alpha-synuclein for its function and aggregation into amyloids? Front Neurosci 2022; 16:1003997. [PMID: 36466161 PMCID: PMC9709446 DOI: 10.3389/fnins.2022.1003997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
N-α-acetylation is a frequently occurring post-translational modification in eukaryotic proteins. It has manifold physiological consequences on the regulation and function of several proteins, with emerging studies suggesting that it is a global regulator of stress responses. For decades, in vitro biochemical investigations into the precise role of the intrinsically disordered protein alpha-synuclein (αS) in the etiology of Parkinson's disease (PD) were performed using non-acetylated αS. The N-terminus of α-synuclein is now unequivocally known to be acetylated in vivo, however, there are many aspects of this post-translational modifications that are not understood well. Is N-α-acetylation of αS a constitutive modification akin to most cellular proteins, or is it spatio-temporally regulated? Is N-α-acetylation of αS relevant to the as yet elusive function of αS? How does the N-α-acetylation of αS influence the aggregation of αS into amyloids? Here, we provide an overview of the current knowledge and discuss prevailing hypotheses on the impact of N-α-acetylation of αS on its conformational, oligomeric, and fibrillar states. The extent to which N-α-acetylation of αS is vital for its function, membrane binding, and aggregation into amyloids is also explored here. We further discuss the overall significance of N-α-acetylation of αS for its functional and pathogenic implications in Lewy body formation and synucleinopathies.
Collapse
Affiliation(s)
- Aditya Iyer
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Arshdeep Sidhu
- Nitte University Centre for Science Education and Research, Nitte University (DU), Mangalore, India
| | | |
Collapse
|
27
|
Lamanna MM, Maurelli AT. What Is Motion? Recent Advances in the Study of Molecular Movement Patterns of the Peptidoglycan Synthesis Machines. J Bacteriol 2022; 204:e0059821. [PMID: 34928180 PMCID: PMC9017339 DOI: 10.1128/jb.00598-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
How proteins move through space and time is a fundamental question in biology. While great strides have been made toward a mechanistic understanding of protein movement, many questions remain. We discuss the biological implications of motion in the context of the peptidoglycan (PG) synthesis machines. We reviewed systems in several bacteria, including Escherichia coli, Bacillus subtilis, and Streptococcus pneumoniae, and present a comprehensive view of our current knowledge regarding movement dynamics. Discrepancies are also addressed because "one size does not fit all". For bacteria to divide, new PG is synthesized and incorporated into the growing cell wall by complex multiprotein nanomachines consisting of PG synthases (transglycosylases [TG] and/or transpeptidases [TP]) as well as a variety of regulators and cytoskeletal factors. Advances in imaging capabilities and labeling methods have revealed that these machines are not static but rather circumferentially transit the cell via directed motion perpendicular to the long axis of model rod-shaped bacteria such as E. coli and B. subtilis. The enzymatic activity of the TG:TPs drives motion in some species while motion is mediated by FtsZ treadmilling in others. In addition, both directed and diffusive motion of the PG synthases have been observed using single-particle tracking technology. Here, we examined the biological role of diffusion regarding transit. Lastly, findings regarding the monofunctional transglycosylases (RodA and FtsW) as well as the Class A PG synthases are discussed. This minireview serves to showcase recent advances, broach mechanistic unknowns, and stimulate future areas of study.
Collapse
Affiliation(s)
- Melissa Mae Lamanna
- Department of Environmental & Global Health and Emerging Pathogens Institute, University of Floridagrid.15276.37, Gainesville, Florida, USA
| | - Anthony T. Maurelli
- Department of Environmental & Global Health and Emerging Pathogens Institute, University of Floridagrid.15276.37, Gainesville, Florida, USA
| |
Collapse
|
28
|
Bellotto N, Agudo-Canalejo J, Colin R, Golestanian R, Malengo G, Sourjik V. Dependence of diffusion in Escherichia coli cytoplasm on protein size, environmental conditions, and cell growth. eLife 2022; 11:82654. [PMID: 36468683 PMCID: PMC9810338 DOI: 10.7554/elife.82654] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Inside prokaryotic cells, passive translational diffusion typically limits the rates with which cytoplasmic proteins can reach their locations. Diffusion is thus fundamental to most cellular processes, but the understanding of protein mobility in the highly crowded and non-homogeneous environment of a bacterial cell is still limited. Here, we investigated the mobility of a large set of proteins in the cytoplasm of Escherichia coli, by employing fluorescence correlation spectroscopy (FCS) combined with simulations and theoretical modeling. We conclude that cytoplasmic protein mobility could be well described by Brownian diffusion in the confined geometry of the bacterial cell and at the high viscosity imposed by macromolecular crowding. We observed similar size dependence of protein diffusion for the majority of tested proteins, whether native or foreign to E. coli. For the faster-diffusing proteins, this size dependence is well consistent with the Stokes-Einstein relation once taking into account the specific dumbbell shape of protein fusions. Pronounced subdiffusion and hindered mobility are only observed for proteins with extensive interactions within the cytoplasm. Finally, while protein diffusion becomes markedly faster in actively growing cells, at high temperature, or upon treatment with rifampicin, and slower at high osmolarity, all of these perturbations affect proteins of different sizes in the same proportions, which could thus be described as changes of a well-defined cytoplasmic viscosity.
Collapse
Affiliation(s)
- Nicola Bellotto
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | | | - Remy Colin
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany,Rudolf Peierls Centre for Theoretical Physics, University of OxfordOxfordUnited Kingdom
| | - Gabriele Malengo
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| |
Collapse
|
29
|
Nakatani E, Yamazaki W, Sugiura S, Kanamori T, Ohnuma K. Modeling of differentiation pattern formation in human induced pluripotent stem cells mediated by BMP4 and its inhibitor noggin secreted from cells. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Abstract
The concept of memory is traditionally associated with organisms possessing a nervous system. However, even very simple organisms store information about past experiences to thrive in a complex environment-successfully exploiting nutrient sources, avoiding danger, and warding off predators. How can simple organisms encode information about their environment? We here follow how the giant unicellular slime mold Physarum polycephalum responds to a nutrient source. We find that the network-like body plan of the organism itself serves to encode the location of a nutrient source. The organism entirely consists of interlaced tubes of varying diameters. Now, we observe that these tubes grow and shrink in diameter in response to a nutrient source, thereby imprinting the nutrient's location in the tube diameter hierarchy. Combining theoretical model and experimental data, we reveal how memory is encoded: a nutrient source locally releases a softening agent that gets transported by the cytoplasmic flows within the tubular network. Tubes receiving a lot of softening agent grow in diameter at the expense of other tubes shrinking. Thereby, the tubes' capacities for flow-based transport get permanently upgraded toward the nutrient location, redirecting future decisions and migration. This demonstrates that nutrient location is stored in and retrieved from the networks' tube diameter hierarchy. Our findings explain how network-forming organisms like slime molds and fungi thrive in complex environments. We here identify a flow networks' version of associative memory-very likely of relevance for the plethora of living flow networks as well as for bioinspired design.
Collapse
|
31
|
Tsubota H, Takayama A, Takeda Y, Yamada N, Hosoi H. Three Simultaneous Fluorescence Resonance Energy Transfer Processes and Structural Relaxation of Enhanced Yellow Fluorescent Protein Observed by Picosecond Time-Resolved Fluorescence Anisotropy. J Phys Chem B 2021; 125:7997-8009. [PMID: 34259526 DOI: 10.1021/acs.jpcb.1c03906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorescent proteins (FPs) have been widely used to visualize biological processes in living cells. It is essential to understand the underlying fluorescence mechanism to develop novel FPs and to interpret imaging data appropriately. Enhanced yellow fluorescent protein (eYFP) is one of the most typical FPs; however, several reports to date have been limited to individual discussion, which is insufficient to understand the full picture of the dynamics involved. In this study, we focused on the fluorescence resonance energy transfer (FRET) and dimerization behavior and performed picosecond time-resolved fluorescence measurements of eYFP and its A206K mutant, which does not form a dimer. The combination of the dissociation constant and the acid dissociation constant rationally explains the mechanism of ultrafast homo-FRET and ultrafast hetero-FRET. It is also shown that structural relaxation occurs in the dimer after excited-state proton transfer. The formation efficiencies and quaternary structures of dimers consisting of different protonation states are shown to be different. Furthermore, under high-concentration conditions, "slow" homo-FRET with tens of nanoseconds timescale occurs between monomers and dimers. The findings from this study will be applied to other fluorescent proteins such as Aequorea victoria green FP and its mutants and various red FPs with longer conjugation lengths.
Collapse
Affiliation(s)
- Hiroki Tsubota
- Department of Biomolecular Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Aimi Takayama
- Department of Biomolecular Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Yuri Takeda
- Department of Biomolecular Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Natsumi Yamada
- Department of Biomolecular Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Haruko Hosoi
- Department of Biomolecular Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| |
Collapse
|
32
|
Adhikari S, Moscatelli J, Puchner EM. Quantitative live-cell PALM reveals nanoscopic Faa4 redistributions and dynamics on lipid droplets during metabolic transitions of yeast. Mol Biol Cell 2021; 32:1565-1578. [PMID: 34161133 PMCID: PMC8351750 DOI: 10.1091/mbc.e20-11-0695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Lipid droplets (LDs) are dynamic organelles for lipid storage and homeostasis. Cells respond to metabolic changes by regulating the spatial distribution of LDs and enzymes required for LD growth and turnover. The small size of LDs precludes the observation of their associated enzyme densities and dynamics with conventional fluorescence microscopy. Here we employ quantitative photo-activated localization microscopy to study the density of the fatty acid (FA) activating enzyme Faa4 on LDs in live yeast cells with single-molecule sensitivity and 30 nm resolution. During the log phase LDs colocalize with the endoplasmic reticulum (ER) where their emergence and expansion are mediated by the highest observed Faa4 densities. During transition to the stationary phase, LDs with a ∼2-fold increased surface area translocate to the vacuolar surface and lumen and exhibit a ∼2.5-fold increase in Faa4 density. The increased Faa4 density on LDs further suggests its role in LD expansion, is caused by its ∼5-fold increased expression level, and is specific to exogenous FA chain-lengths. When lipolysis is induced by refreshed medium, Faa4 shuttles through ER- and lipophagy to the vacuole, where it may activate FAs for membrane expansion and degrade Faa4 to reset its cellular abundance to levels in the log phase.
Collapse
Affiliation(s)
- Santosh Adhikari
- School of Physics and Astronomy, University of Minnesota, Twin Cities, Physics and Nanotechnology (PAN), Minneapolis, MN 55455
| | - Joe Moscatelli
- School of Physics and Astronomy, University of Minnesota, Twin Cities, Physics and Nanotechnology (PAN), Minneapolis, MN 55455
| | - Elias M Puchner
- School of Physics and Astronomy, University of Minnesota, Twin Cities, Physics and Nanotechnology (PAN), Minneapolis, MN 55455
| |
Collapse
|
33
|
Natwick DE, Collins SR. Optimized iLID Membrane Anchors for Local Optogenetic Protein Recruitment. ACS Synth Biol 2021; 10:1009-1023. [PMID: 33843200 DOI: 10.1021/acssynbio.0c00511] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Optogenetic protein dimerization systems are powerful tools to investigate the biochemical networks that cells use to make decisions and coordinate their activities. These tools, including the improved Light-Inducible Dimer (iLID) system, offer the ability to selectively recruit components to subcellular locations, such as micron-scale regions of the plasma membrane. In this way, the role of individual proteins within signaling networks can be examined with high spatiotemporal resolution. Currently, consistent recruitment is limited by heterogeneous optogenetic component expression, and spatial precision is diminished by protein diffusion, especially over long time scales. Here, we address these challenges within the iLID system with alternative membrane anchoring domains and fusion configurations. Using live cell imaging and mathematical modeling, we demonstrate that the anchoring strategy affects both component expression and diffusion, which in turn impact recruitment strength, kinetics, and spatial dynamics. Compared to the commonly used C-terminal iLID fusion, fusion proteins with large N-terminal anchors show stronger local recruitment, slower diffusion of recruited components, efficient recruitment over wider gene expression ranges, and improved spatial control over signaling outputs. We also define guidelines for component expression regimes for optimal recruitment for both cell-wide and subcellular recruitment strategies. Our findings highlight key sources of imprecision within light-inducible dimer systems and provide tools that allow greater control of subcellular protein localization across diverse cell biological applications.
Collapse
Affiliation(s)
- Dean E. Natwick
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, United States
| | - Sean R. Collins
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
34
|
Yamamoto J, Matsui A, Gan F, Oura M, Ando R, Matsuda T, Gong JP, Kinjo M. Quantitative evaluation of macromolecular crowding environment based on translational and rotational diffusion using polarization dependent fluorescence correlation spectroscopy. Sci Rep 2021; 11:10594. [PMID: 34011998 PMCID: PMC8134472 DOI: 10.1038/s41598-021-89987-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
Macromolecular crowding (MMC) in cells is a hot topic in biology; therefore, well-characterized measurement standards for the evaluation of the nano-environment in MMC solutions are necessary. We propose to use polarization-dependent fluorescence correlation spectroscopy (Pol-FCS) for evaluation of macromolecular crowding in solutions. Pol-FCS can simultaneously measure the relaxation times of rotational and translational diffusion of fluorescent molecules at the same position, even in living cells with low damage. In this report, the differences in the nano-environment among solutions of small molecules, gels, and MMC solutions were evaluated by comparing their rotational and translational diffusion using Pol-FCS. Moreover, this method could distinguish the phase shift in the polyethylene glycol solution. Finally, we separately evaluated the nano-environment in the cytosol and nucleus of living cells in different cell lines and cell cycles. We expect this evaluation method to be useful in characterizing the nano-environment in MMC studies. In addition, the proposed method may be useful for other nano-environments such as liquid-liquid phase separation.
Collapse
Affiliation(s)
- Johtaro Yamamoto
- Bioimaging Research Group, Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan.
| | - Akito Matsui
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Fusako Gan
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Makoto Oura
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Riku Ando
- Graduate School of Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Takahiro Matsuda
- Laboratory of Soft & Wet Matter, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Jian Ping Gong
- Laboratory of Soft & Wet Matter, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, 001-0021, Japan
| | - Masataka Kinjo
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| |
Collapse
|
35
|
Laskaratou D, Fernández GS, Coucke Q, Fron E, Rocha S, Hofkens J, Hendrix J, Mizuno H. Quantification of FRET-induced angular displacement by monitoring sensitized acceptor anisotropy using a dim fluorescent donor. Nat Commun 2021; 12:2541. [PMID: 33953187 PMCID: PMC8099864 DOI: 10.1038/s41467-021-22816-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/23/2021] [Indexed: 02/03/2023] Open
Abstract
Förster resonance energy transfer (FRET) between fluorescent proteins has become a common platform for designing genetically encoded biosensors. For live cell imaging, the acceptor-to-donor intensity ratio is most commonly used to readout FRET efficiency, which largely depends on the proximity between donor and acceptor. Here, we introduce an anisotropy-based mode of FRET detection (FADED: FRET-induced Angular Displacement Evaluation via Dim donor), which probes for relative orientation rather than proximity alteration. A key element in this technique is suppression of donor bleed-through, which allows measuring purer sensitized acceptor anisotropy. This is achieved by developing Geuda Sapphire, a low-quantum-yield FRET-competent fluorescent protein donor. As a proof of principle, Ca2+ sensors were designed using calmodulin as a sensing domain, showing sigmoidal dose response to Ca2+. By monitoring the anisotropy, a Ca2+ rise in living HeLa cells is observed upon histamine challenging. We conclude that FADED provides a method for quantifying the angular displacement via FRET.
Collapse
Affiliation(s)
- Danai Laskaratou
- Laboratory for Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, Department of Chemistry, KU Leuven, Heverlee, Belgium
| | | | - Quinten Coucke
- Chem & Tech-Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Heverlee, Belgium
| | - Eduard Fron
- Chem & Tech-Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Heverlee, Belgium
- KU Leuven Core Facility for Advanced Spectroscopy, KU Leuven, Heverlee, Belgium
| | - Susana Rocha
- Chem & Tech-Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Heverlee, Belgium
| | - Johan Hofkens
- Chem & Tech-Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Heverlee, Belgium
| | - Jelle Hendrix
- Chem & Tech-Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Heverlee, Belgium
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute, Hasselt University, Agoralaan C (BIOMED), Diepenbeek, Belgium
| | - Hideaki Mizuno
- Laboratory for Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, Department of Chemistry, KU Leuven, Heverlee, Belgium.
| |
Collapse
|
36
|
The dynamic surface properties of green fluorescent protein and its mixtures with poly(N,N-diallyl-N-hexyl-N-methylammonium chloride). J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.04.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Tran BM, Prabha H, Iyer A, O'Byrne C, Abee T, Poolman B. Measurement of Protein Mobility in Listeria monocytogenes Reveals a Unique Tolerance to Osmotic Stress and Temperature Dependence of Diffusion. Front Microbiol 2021; 12:640149. [PMID: 33679676 PMCID: PMC7925416 DOI: 10.3389/fmicb.2021.640149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/21/2021] [Indexed: 11/18/2022] Open
Abstract
Protein mobility in the cytoplasm is essential for cellular functions, and slow diffusion may limit the rates of biochemical reactions in the living cell. Here, we determined the apparent lateral diffusion coefficient (DL) of GFP in Listeria monocytogenes as a function of osmotic stress, temperature, and media composition. We find that DL is much less affected by hyperosmotic stress in L. monocytogenes than under similar conditions in Lactococcus lactis and Escherichia coli. We find a temperature optimum for protein diffusion in L. monocytogenes at 30°C, which deviates from predicted trends from the generalized Stokes-Einstein equation under dilute conditions and suggests that the structure of the cytoplasm and macromolecular crowding vary as a function of temperature. The turgor pressure of L. monocytogenes is comparable to other Gram-positive bacteria like Bacillus subtilis and L. lactis but higher in a knockout strain lacking the stress-inducible sigma factor SigB. We discuss these findings in the context of how L. monocytogenes survives during environmental transmission and interaction with the human host.
Collapse
Affiliation(s)
- Buu Minh Tran
- Department of Biochemistry, University of Groningen, Groningen, Netherlands
| | - Haritha Prabha
- Department of Biochemistry, University of Groningen, Groningen, Netherlands
| | - Aditya Iyer
- Department of Biochemistry, University of Groningen, Groningen, Netherlands
| | - Conor O'Byrne
- School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Tjakko Abee
- Laboratory of Food Microbiology, Wageningen University Research, Wageningen, Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Groningen, Netherlands
| |
Collapse
|
38
|
Time-Resolved Fluorescence Anisotropy and Molecular Dynamics Analysis of a Novel GFP Homo-FRET Dimer. Biophys J 2020; 120:254-269. [PMID: 33345902 PMCID: PMC7840444 DOI: 10.1016/j.bpj.2020.11.2275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/06/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Förster resonance energy transfer (FRET) is a powerful tool to investigate the interaction between proteins in living cells. Fluorescence proteins, such as the green fluorescent protein (GFP) and its derivatives, are coexpressed in cells linked to proteins of interest. Time-resolved fluorescence anisotropy is a popular tool to study homo-FRET of fluorescent proteins as an indicator of dimerization, in which its signature consists of a very short component at the beginning of the anisotropy decay. In this work, we present an approach to study GFP homo-FRET via a combination of time-resolved fluorescence anisotropy, the stretched exponential decay model, and molecular dynamics simulations. We characterize a new, to our knowledge, FRET standard formed by two enhanced GFPs (eGFPs) and a flexible linker of 15 aminoacids (eGFP15eGFP) with this protocol, which is validated by using an eGFP monomer as a reference. An excellent agreement is found between the FRET efficiency calculated from the fit of the eGFP15eGFP fluorescence anisotropy decays with a stretched exponential decay model (〈EFRETexp〉 = 0.25 ± 0.05) and those calculated from the molecular dynamics simulations (〈EFRETMD〉 = 0.18 ± 0.14). The relative dipole orientation between the GFPs is best described by the orientation factors 〈κ2〉 = 0.17 ± 0.16 and 〈|κ|〉 = 0.35 ± 0.20, contextualized within a static framework in which the linker hinders the free rotation of the fluorophores and excludes certain configurations. The combination of time- and polarization-resolved fluorescence spectroscopy with molecular dynamics simulations is shown to be a powerful tool for the study and interpretation of homo-FRET.
Collapse
|
39
|
Persson LB, Ambati VS, Brandman O. Cellular Control of Viscosity Counters Changes in Temperature and Energy Availability. Cell 2020; 183:1572-1585.e16. [PMID: 33157040 DOI: 10.1016/j.cell.2020.10.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/26/2020] [Accepted: 10/08/2020] [Indexed: 11/18/2022]
Abstract
Cellular functioning requires the orchestration of thousands of molecular interactions in time and space. Yet most molecules in a cell move by diffusion, which is sensitive to external factors like temperature. How cells sustain complex, diffusion-based systems across wide temperature ranges is unknown. Here, we uncover a mechanism by which budding yeast modulate viscosity in response to temperature and energy availability. This "viscoadaptation" uses regulated synthesis of glycogen and trehalose to vary the viscosity of the cytosol. Viscoadaptation functions as a stress response and a homeostatic mechanism, allowing cells to maintain invariant diffusion across a 20°C temperature range. Perturbations to viscoadaptation affect solubility and phase separation, suggesting that viscoadaptation may have implications for multiple biophysical processes in the cell. Conditions that lower ATP trigger viscoadaptation, linking energy availability to rate regulation of diffusion-controlled processes. Viscoadaptation reveals viscosity to be a tunable property for regulating diffusion-controlled processes in a changing environment.
Collapse
Affiliation(s)
- Laura B Persson
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Vardhaan S Ambati
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Onn Brandman
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
40
|
Herman KC, Wösten HAB, Fricker MD, Bleichrodt RJ. Growth induced translocation effectively directs an amino acid analogue to developing zones in Agaricus bisporus. Fungal Biol 2020; 124:1013-1023. [PMID: 33213781 DOI: 10.1016/j.funbio.2020.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 01/15/2023]
Abstract
The vegetative mycelium of Agaricus bisporus supplies developing white button mushrooms with water and nutrients. However, it is not yet known which part of the mycelium contributes to the feeding of the mushrooms and how this depends on growth conditions. Here we used photon counting scintillation imaging to track translocation of the 14C-radiolabeled metabolically inert amino acid analogue α-aminoisobutyric acid (14C-AIB). Translocation to the periphery of the mycelium was observed in actively growing vegetative mycelium with a velocity of up to 6.6 mm h-1, which was 30-fold higher than the growth rate. Furthermore, 14C-AIB translocated to neighboring colonies after fusion by anastomosis depending on the relative growth rate in these colonies. When mushrooms started to develop, translocation of 14C-AIB was redirected to the fruiting bodies via mycelium and hyphal cords. More abundant mycelial cord formation and a 5-fold higher rate of translocation was observed for cultures growing directionally from inoculum located at one side of the substrate, when compared to non-directional growth (inoculum mixed throughout the substrate). The maximum translocation distance was also greater (≥50 and 22 cm, respectively). In conclusion, 14C-AIB translocation switches between vegetative growth and towards developing mushrooms, especially via cords and when source-sink relationships change.
Collapse
Affiliation(s)
- Koen C Herman
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Han A B Wösten
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Mark D Fricker
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Robert-Jan Bleichrodt
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.
| |
Collapse
|
41
|
Skóra T, Vaghefikia F, Fitter J, Kondrat S. Macromolecular Crowding: How Shape and Interactions Affect Diffusion. J Phys Chem B 2020; 124:7537-7543. [PMID: 32790396 DOI: 10.1021/acs.jpcb.0c04846] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A significant fraction of the cell volume is occupied by various proteins, polysaccharides, nucleic acids, etc., which considerably reduces the mobility of macromolecules. Theoretical and experimental work so far have mainly focused on the dependence of the mobility on the occupied volume, while the effect of a macromolecular shape received less attention. Herein, using fluorescence correlation spectroscopy (FCS) and Brownian dynamics (BD) simulations, we report on a dramatic slowdown of tracer diffusion by cylindrically shaped double-stranded (ds) DNAs (16 nm in length). We find, for instance, that the translational diffusion coefficient of a streptavidin tracer is reduced by about 60% for a volume fraction of dsDNA as low as just 5%. For comparison, for a spherical crowder (Ficoll70) the slowdown is only 10% at the same volume fraction and 60% reduction occurs at a volume fraction as high as 35%. BD simulations reveal that this reduction can be attributed to a larger volume excluded to a tracer by dsDNA particles, as compared with spherical Ficoll70 at the same volume fraction, and to the differences in the tracer-crowder attractive interactions. In addition, we find using BD simulations that rotational diffusion of dsDNA is less affected by the crowder shape than its translational motion. Our results show that diffusion in crowded systems is determined not merely by the occupied volume fraction, but that the shape and interactions can determine diffusion, which is relevant to the diverse intracellular environments inside living cells.
Collapse
Affiliation(s)
- Tomasz Skóra
- Department of Complex Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Farzaneh Vaghefikia
- I. Physikalisches Institut (IA), AG Biophysik, RWTH Aachen University, 52074 Aachen, Germany
| | - Jörg Fitter
- I. Physikalisches Institut (IA), AG Biophysik, RWTH Aachen University, 52074 Aachen, Germany.,Institut für Biologische Informationsprozesse (IBI-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Svyatoslav Kondrat
- Department of Complex Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.,Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, 70569 Stuttgart, Germany.,Institut für Theoretische Physik IV, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
42
|
de Vito G, Ricci P, Turrini L, Gavryusev V, Müllenbroich C, Tiso N, Vanzi F, Silvestri L, Pavone FS. Effects of excitation light polarization on fluorescence emission in two-photon light-sheet microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:4651-4665. [PMID: 32923069 PMCID: PMC7449752 DOI: 10.1364/boe.396388] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/20/2020] [Accepted: 07/07/2020] [Indexed: 05/05/2023]
Abstract
Light-sheet microscopy (LSM) is a powerful imaging technique that uses a planar illumination oriented orthogonally to the detection axis. Two-photon (2P) LSM is a variant of LSM that exploits the 2P absorption effect for sample excitation. The light polarization state plays a significant, and often overlooked, role in 2P absorption processes. The scope of this work is to test whether using different polarization states for excitation light can affect the detected signal levels in 2P LSM imaging of typical biological samples with a spatially unordered dye population. Supported by a theoretical model, we compared the fluorescence signals obtained using different polarization states with various fluorophores (fluorescein, EGFP and GCaMP6s) and different samples (liquid solution and fixed or living zebrafish larvae). In all conditions, in agreement with our theoretical expectations, linear polarization oriented parallel to the detection plane provided the largest signal levels, while perpendicularly-oriented polarization gave low fluorescence signal with the biological samples, but a large signal for the fluorescein solution. Finally, circular polarization generally provided lower signal levels. These results highlight the importance of controlling the light polarization state in 2P LSM of biological samples. Furthermore, this characterization represents a useful guide to choose the best light polarization state when maximization of signal levels is needed, e.g. in high-speed 2P LSM.
Collapse
Affiliation(s)
- Giuseppe de Vito
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child Health, Viale Pieraccini 6, Florence, FI 50139, Italy
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino, FI 50019, Italy
| | - Pietro Ricci
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino, FI 50019, Italy
| | - Lapo Turrini
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino, FI 50019, Italy
- University of Florence, Department of Physics and Astronomy, Via Sansone 1, Sesto Fiorentino, FI 50019, Italy
| | - Vladislav Gavryusev
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino, FI 50019, Italy
- University of Florence, Department of Physics and Astronomy, Via Sansone 1, Sesto Fiorentino, FI 50019, Italy
| | - Caroline Müllenbroich
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino, FI 50019, Italy
- School of Physics and Astronomy, Kelvin Building, University of Glasgow, Glasgow, G12 8QQ, UK
- National Institute of Optics, National Research Council, Via Nello Carrara 1, Sesto Fiorentino, FI 50019, Italy
| | - Natascia Tiso
- University of Padova, Department of Biology, Via Ugo Bassi 58/B, Padua, PD 35131, Italy
| | - Francesco Vanzi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino, FI 50019, Italy
- University of Florence, Department of Biology, Via Madonna del Piano 6, Sesto Fiorentino, FI 50019, Italy
| | - Ludovico Silvestri
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino, FI 50019, Italy
- University of Florence, Department of Physics and Astronomy, Via Sansone 1, Sesto Fiorentino, FI 50019, Italy
- National Institute of Optics, National Research Council, Via Nello Carrara 1, Sesto Fiorentino, FI 50019, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino, FI 50019, Italy
- University of Florence, Department of Physics and Astronomy, Via Sansone 1, Sesto Fiorentino, FI 50019, Italy
- National Institute of Optics, National Research Council, Via Nello Carrara 1, Sesto Fiorentino, FI 50019, Italy
| |
Collapse
|
43
|
Frank L, Rippe K. Repetitive RNAs as Regulators of Chromatin-Associated Subcompartment Formation by Phase Separation. J Mol Biol 2020; 432:4270-4286. [DOI: 10.1016/j.jmb.2020.04.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022]
|
44
|
Sheremet YE, Olifirov B, Okhrimenko A, Cherkas V, Bagatskaya O, Belan P. Hippocalcin Distribution between the Cytosol and Plasma Membrane of Living Cells. NEUROPHYSIOLOGY+ 2020. [DOI: 10.1007/s11062-020-09845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Back to the Future: Genetically Encoded Fluorescent Proteins as Inert Tracers of the Intracellular Environment. Int J Mol Sci 2020; 21:ijms21114164. [PMID: 32545175 PMCID: PMC7312867 DOI: 10.3390/ijms21114164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 01/08/2023] Open
Abstract
Over the past decades, the discovery and development of genetically encoded fluorescent proteins (FPs) has brought a revolution into our ability to study biologic phenomena directly within living matter. First, FPs enabled fluorescence-labeling of a variety of molecules of interest to study their localization, interactions and dynamic behavior at various scales-from cells to whole organisms/animals. Then, rationally engineered FP-based sensors facilitated the measurement of physicochemical parameters of living matter-especially at the intracellular level, such as ion concentration, temperature, viscosity, pressure, etc. In addition, FPs were exploited as inert tracers of the intracellular environment in which they are expressed. This oft-neglected role is made possible by two distinctive features of FPs: (i) the quite null, unspecific interactions of their characteristic β-barrel structure with the molecular components of the cellular environment; and (ii) their compatibility with the use of time-resolved fluorescence-based optical microscopy techniques. This review seeks to highlight the potential of such unique combinations of properties and report on the most significative and original applications (and related advancements of knowledge) produced to date. It is envisioned that the use of FPs as inert tracers of living matter structural organization holds a potential for several lines of further development in the next future, discussed in the last section of the review, which in turn can lead to new breakthroughs in bioimaging.
Collapse
|
46
|
Heckmeier PJ, Agam G, Teese MG, Hoyer M, Stehle R, Lamb DC, Langosch D. Determining the Stoichiometry of Small Protein Oligomers Using Steady-State Fluorescence Anisotropy. Biophys J 2020; 119:99-114. [PMID: 32553128 DOI: 10.1016/j.bpj.2020.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 11/19/2022] Open
Abstract
A large fraction of soluble and membrane-bound proteins exists as non-covalent dimers, trimers, and higher-order oligomers. The experimental determination of the oligomeric state or stoichiometry of proteins remains a nontrivial challenge. In one approach, the protein of interest is genetically fused to green fluorescent protein (GFP). If a fusion protein assembles into a non-covalent oligomeric complex, exciting their GFP moiety with polarized fluorescent light elicits homotypic Förster resonance energy transfer (homo-FRET), in which the emitted radiation is partially depolarized. Fluorescence depolarization is associated with a decrease in fluorescence anisotropy that can be exploited to calculate the oligomeric state. In a classical approach, several parameters obtained through time-resolved and steady-state anisotropy measurements are required for determining the stoichiometry of the oligomers. Here, we examined novel approaches in which time-resolved measurements of reference proteins provide the parameters that can be used to interpret the less expensive steady-state anisotropy data of candidates. In one approach, we find that using average homo-FRET rates (kFRET), average fluorescence lifetimes (τ), and average anisotropies of those fluorophores that are indirectly excited by homo-FRET (rET) do not compromise the accuracy of calculated stoichiometries. In the other approach, fractional photobleaching of reference oligomers provides a novel parameter a whose dependence on stoichiometry allows one to quantitatively interpret the increase of fluorescence anisotropy seen after photobleaching the candidates. These methods can at least reliably distinguish monomers from dimers and trimers.
Collapse
Affiliation(s)
- Philipp J Heckmeier
- Center for Integrated Protein Science Munich (CIPSM), Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Freising, Germany
| | - Ganesh Agam
- Physical Chemistry, Department of Chemistry, Center for Nano Science (CENS), Center for Integrated Protein Science (CIPSM) and Nanosystems Initiative München (NIM), Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Mark G Teese
- Center for Integrated Protein Science Munich (CIPSM), Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Freising, Germany
| | - Maria Hoyer
- Physical Chemistry, Department of Chemistry, Center for Nano Science (CENS), Center for Integrated Protein Science (CIPSM) and Nanosystems Initiative München (NIM), Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Ralf Stehle
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Center for Integrated Protein Science Munich (CIPSM), Chair Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nano Science (CENS), Center for Integrated Protein Science (CIPSM) and Nanosystems Initiative München (NIM), Ludwig-Maximilians-Universität Munich, Munich, Germany.
| | - Dieter Langosch
- Center for Integrated Protein Science Munich (CIPSM), Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Freising, Germany.
| |
Collapse
|
47
|
Li J, Jiang X, Singh A, Heinonen OG, Hernández-Ortiz JP, de Pablo JJ. Structure and dynamics of hydrodynamically interacting finite-size Brownian particles in a spherical cavity: Spheres and cylinders. J Chem Phys 2020; 152:204109. [DOI: 10.1063/1.5139431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Jiyuan Li
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Xikai Jiang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Abhinendra Singh
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Olle G. Heinonen
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Northwestern-Argonne Institute for Science and Engineering, Evanston, Illinois 60208, USA
| | - Juan P. Hernández-Ortiz
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Departmento de Materiales y Nanotecnología, Universidad Nacional de Colombia, Sede Medellin, Colombia
- Colombia/Wisconsin One-Health Consortium, Universidad Nacional de Colombia, Sede Medellin, Colombia
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| |
Collapse
|
48
|
Pal M, Dasgupta D, Somalwar N, Vr R, Tiwari M, Teja D, Narayana SM, Katke A, Rs J, Bhat R, Saini DK, Ghosh A. Helical nanobots as mechanical probes of intra- and extracellular environments. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:224001. [PMID: 31978922 DOI: 10.1088/1361-648x/ab6f89] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A rheological probe that can measure mechanical properties of biological milieu at well-defined locations with high spatial resolution, on a time scale faster than most biological processes, can further improve our understanding of how living systems operate and behave. Here, we demonstrate nanorobots actively driven in realistic ex vivo biological systems for fast mechanical measurements with high spatial accuracy. In the various demonstrations of magnetic nanobots as mechanical probes, we report the first direct observation of the internalization of probes by a living cell, the accurate measurement of the 'fluid phase' cytoplasmic viscosity of ~200 cP for a HeLa cell, demonstration of intracellular measurements in cells derived from human patients; all of which establish the strength of this novel technique for measurements in both intra- and extracellular environments.
Collapse
Affiliation(s)
- Malay Pal
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Culver D, Glaz B, Stanton S. A Dynamic Escape Problem of Molecular Motors. J Biomech Eng 2020; 142:051004. [PMID: 31513699 DOI: 10.1115/1.4044580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Indexed: 11/08/2022]
Abstract
Animal skeletal muscle exhibits very interesting behavior at near-stall forces (when the muscle is loaded so strongly that it can barely contract). Near this physical limit, the myosin II proteins may be unable to reach advantageous actin binding sites through simple attractive forces. It has been shown that the advantageous utilization of thermal agitation is a likely source for an increased force-production capacity and reach in myosin-V (a processing motor protein), and here we explore the dynamics of a molecular motor without hand-over-hand motion including Brownian motion to show how local elastic energy well boundaries may be overcome. We revisit a spatially two-dimensional mechanical model to illustrate how thermal agitation can be harvested for useful mechanical work in molecular machinery inspired by this biomechanical phenomenon without rate functions or empirically inspired spatial potential functions. Additionally, the model accommodates variable lattice spacing, and it paves the way for a full three-dimensional model of cross-bridge interactions where myosin II may be azimuthally misaligned with actin binding sites. With potential energy sources based entirely on realizable components, this model lends itself to the design of artificial, molecular-scale motors.
Collapse
Affiliation(s)
- Dean Culver
- U.S. Army Research Laboratory, Vehicle Technology Directorate, Interdisciplinary Mechanics Group, Aberdeen, MD 21001
| | - Bryan Glaz
- U.S. Army Research Laboratory, Vehicle Technology Directorate, Interdisciplinary Mechanics Group, Aberdeen, MD 21001
| | - Samuel Stanton
- U.S. Army Research Office, Engineering Sciences Directorate, Complex Systems and Dynamics, Durham, NC 27703
| |
Collapse
|
50
|
Miller RC, Aplin CP, Kay TM, Leighton R, Libal C, Simonet R, Cembran A, Heikal AA, Boersma AJ, Sheets ED. FRET Analysis of Ionic Strength Sensors in the Hofmeister Series of Salt Solutions Using Fluorescence Lifetime Measurements. J Phys Chem B 2020; 124:3447-3458. [PMID: 32267692 DOI: 10.1021/acs.jpcb.9b10498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Living cells are complex, crowded, and dynamic and continually respond to environmental and intracellular stimuli. They also have heterogeneous ionic strength with compartmentalized variations in both intracellular concentrations and types of ions. These challenges would benefit from the development of quantitative, noninvasive approaches for mapping the heterogeneous ionic strength fluctuations in living cells. Here, we investigated a class of recently developed ionic strength sensors that consists of mCerulean3 (a cyan fluorescent protein) and mCitrine (a yellow fluorescent protein) tethered via a linker made of two charged α-helices and a flexible loop. The two helices are designed to bear opposite charges, which is hypothesized to increase the ionic screening and therefore a larger intermolecular distance. In these protein constructs, mCerulean3 and mCitrine act as a donor-acceptor pair undergoing Förster resonance energy transfer (FRET) that is dependent on both the linker amino acids and the environmental ionic strength. Using time-resolved fluorescence of the donor (mCerulean3), we determined the sensitivity of the energy transfer efficiencies and the donor-acceptor distances of these sensors at variable concentrations of the Hofmeister series of salts (KCl, LiCl, NaCl, NaBr, NaI, Na2SO4). As controls, similar measurements were carried out on the FRET-incapable, enzymatically cleaved counterparts of these sensors as well as a construct designed with two electrostatically neutral α-helices (E6G2). Our results show that the energy transfer efficiencies of these sensors are sensitive to both the linker amino acid sequence and the environmental ionic strength, whereas the sensitivity of these sensors to the identity of the dissolved ions of the Hofmeister series of salts seems limited. We also developed a theoretical framework to explain the observed trends as a function of the ionic strength in terms of the Debye screening of the electrostatic interaction between the two charged α-helices in the linker region. These controlled solution studies represent an important step toward the development of rationally designed FRET-based environmental sensors while offering different models for calculating the energy transfer efficiency using time-resolved fluorescence that is compatible with future in vivo studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Arnold J Boersma
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056 Aachen, Germany
| | | |
Collapse
|