1
|
Immuno-receptors: from recognition to signaling and function. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:363-371. [PMID: 29600443 DOI: 10.1007/s00249-018-1294-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 03/06/2018] [Accepted: 03/13/2018] [Indexed: 01/20/2023]
Abstract
The vertebrate adaptive immune response is initiated by specific recognition of antigens. This is carried out by molecules, soluble or cell surface receptors that are members of the Multichain Immune Recognition Receptors (MIRR) group of proteins. The soluble arm of the response is based on antibodies. Kinetic analysis of antibody-antigenic epitope interactions pioneered insights into the complexity underlying the capacity of relatively limited repertoires of antibodies to recognize an essentially unlimited range of epitopes by employing conformational diversity of a given single sequence. The arm responsible for recognition of cellular targets involves a considerably more elaborate process, predominantly of antigen-derived peptides presented bound to molecules encoded by the major histocompatibility complex (MHC). This remarkable cellular recognition process performed by T-cell receptors requires earlier steps of peptide presentation and involves interactions of the receptor sites with the array of its MHC-peptide composite ligand. In both cases, antigen recognition needs to be followed by its coupling, by biochemical cascades, to different specific responses, namely activation of effector functions. The parameters required for coupling to functional responses are still a focus of intense research. In solution, antigen-antibody aggregation is one established activation process. Those required for coupling antigen recognition to cell activation, whether by Fc receptor bound antibodies or by the B-cell antigen receptor, are also still subject to active research efforts. Though activation by immune-receptors requires antigen recognition, considerable differences could exist among the requirements set by distinct cell types. Moreover, antigen binding requiring intercellular interactions introduces additional complexity.
Collapse
|
2
|
Targeting Intramembrane Protein-Protein Interactions: Novel Therapeutic Strategy of Millions Years Old. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 111:61-99. [PMID: 29459036 PMCID: PMC7102818 DOI: 10.1016/bs.apcsb.2017.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intramembrane protein-protein interactions (PPIs) are involved in transmembrane signal transduction mediated by cell surface receptors and play an important role in health and disease. Recently, receptor-specific modulatory peptides rationally designed using a general platform of transmembrane signaling, the signaling chain homooligomerization (SCHOOL) model, have been proposed to therapeutically target these interactions in a variety of serious diseases with unmet needs including cancer, sepsis, arthritis, retinopathy, and thrombosis. These peptide drug candidates use ligand-independent mechanisms of action (SCHOOL mechanisms) and demonstrate potent efficacy in vitro and in vivo. Recent studies surprisingly revealed that in order to modify and/or escape the host immune response, human viruses use similar mechanisms and modulate cell surface receptors by targeting intramembrane PPIs in a ligand-independent manner. Here, I review these intriguing mechanistic similarities and discuss how the viral strategies optimized over a billion years of the coevolution of viruses and their hosts can help to revolutionize drug discovery science and develop new, disruptive therapies. Examples are given.
Collapse
|
3
|
Deng Z, Weng IC, Li JR, Chen HY, Liu FT, Liu GY. Engineered nanostructures of antigen provide an effective means for regulating mast cell activation. ACS NANO 2011; 5:8672-83. [PMID: 21999491 PMCID: PMC3228856 DOI: 10.1021/nn202510n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nanostructures containing 2,4-dinitrophenyl (DNP) as antigen were designed and produced to investigate antibody-mediated activation of mast cells. The design consists of nanogrids of DNP termini inlaid in alkanethiol self-assembled monolayers (SAMs). Using scanning probe-based nanografting, nanometer precision was attained for designed geometry, size, and periodicity. Rat basophilic leukemia (RBL) cells exhibited high sensitivity to the geometry and local environment of DNP presented on these nanostructures. The impact included cellular adherence, spreading, membrane morphology, cytoskeleton structure, and activation. The highest level of spreading and activation was induced by nanogrids of 17 nm line width and 40 nm periodicity, with DNP haptens 1.4 nm above the surroundings. The high efficacy is attributed to two main factors. First, DNP sites in the nanostructure are highly accessible by anti-DNP IgE during recognition. Second, the arrangement or geometry of DNP termini in nanostructures promotes clustering of FcεRI receptors that are prelinked to IgE. The clustering effectively initiates Lyn-mediated signaling cascades, ultimately leading to the degranulation of RBL cells. This work demonstrates an important concept: that nanostructures of ligands provide new and effective cues for directing cellular signaling processes.
Collapse
Affiliation(s)
- Zhao Deng
- Department of Chemistry, University of California, Davis, CA 95616
| | - I-Chun Weng
- Department of Dermatology, School of Medicine, Sacramento, University of California at Davis, CA 95817
- Institute of Biomedical Sciences, Academia Sinica, Taiwan, ROC
| | - Jie-Ren Li
- Department of Chemistry, University of California, Davis, CA 95616
| | - Huan-Yuan Chen
- Department of Dermatology, School of Medicine, Sacramento, University of California at Davis, CA 95817
- Institute of Biomedical Sciences, Academia Sinica, Taiwan, ROC
| | - Fu-Tong Liu
- Department of Dermatology, School of Medicine, Sacramento, University of California at Davis, CA 95817
- Institute of Biomedical Sciences, Academia Sinica, Taiwan, ROC
- Author to whom correspondence should be addressed: Phone: (530) 754-9678: Fax: (530) 754-8557
| | - Gang-yu Liu
- Department of Chemistry, University of California, Davis, CA 95616
- Author to whom correspondence should be addressed: Phone: (530) 754-9678: Fax: (530) 754-8557
| |
Collapse
|
4
|
Sigalov AB. The SCHOOL of nature: III. From mechanistic understanding to novel therapies. SELF/NONSELF 2010; 1:192-224. [PMID: 21487477 PMCID: PMC3047783 DOI: 10.4161/self.1.3.12794] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/10/2010] [Accepted: 06/11/2010] [Indexed: 11/19/2022]
Abstract
Protein-protein interactions play a central role in biological processes and thus represent an appealing target for innovative drug design and development. They can be targeted by small molecule inhibitors, modulatory peptides and peptidomimetics, which represent a superior alternative to protein therapeutics that carry many disadvantages. Considering that transmembrane signal transduction is an attractive process to therapeutically control multiple diseases, it is fundamentally and clinically important to mechanistically understand how signal transduction occurs. Uncovering specific protein-protein interactions critical for signal transduction, a general platform for receptor-mediated signaling, the signaling chain homooligomerization (SCHOOL) platform, suggests these interactions as universal therapeutic targets. Within the platform, the general principles of signaling are similar for a variety of functionally unrelated receptors. This suggests that global therapeutic strategies targeting key protein-protein interactions involved in receptor triggering and transmembrane signal transduction may be used to treat a diverse set of diseases. This also assumes that clinical knowledge and therapeutic strategies can be transferred between seemingly disparate disorders, such as T cell-mediated skin diseases and platelet disorders or combined to develop novel pharmacological approaches. Intriguingly, human viruses use the SCHOOL-like strategies to modulate and/or escape the host immune response. These viral mechanisms are highly optimized over the millennia, and the lessons learned from viral pathogenesis can be used practically for rational drug design. Proof of the SCHOOL concept in the development of novel therapies for atopic dermatitis, rheumatoid arthritis, cancer, platelet disorders and other multiple indications with unmet needs opens new horizons in therapeutics.
Collapse
|
5
|
Sigalov AB. The SCHOOL of nature: I. Transmembrane signaling. SELF/NONSELF 2010; 1:4-39. [PMID: 21559175 PMCID: PMC3091606 DOI: 10.4161/self.1.1.10832] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 11/19/2022]
Abstract
Receptor-mediated transmembrane signaling plays an important role in health and disease. Recent significant advances in our understanding of the molecular mechanisms linking ligand binding to receptor activation revealed previously unrecognized striking similarities in the basic structural principles of function of numerous cell surface receptors. In this work, I demonstrate that the Signaling Chain Homooligomerization (SCHOOL)-based mechanism represents a general biological mechanism of transmembrane signal transduction mediated by a variety of functionally unrelated single- and multichain activating receptors. within the SCHOOL platform, ligand binding-induced receptor clustering is translated across the membrane into protein oligomerization in cytoplasmic milieu. This platform resolves a long-standing puzzle in transmembrane signal transduction and reveals the major driving forces coupling recognition and activation functions at the level of protein-protein interactions-biochemical processes that can be influenced and controlled. The basic principles of transmembrane signaling learned from the SCHOOL model can be used in different fields of immunology, virology, molecular and cell biology and others to describe, explain and predict various phenomena and processes mediated by a variety of functionally diverse and unrelated receptors. Beyond providing novel perspectives for fundamental research, the platform opens new avenues for drug discovery and development.
Collapse
Affiliation(s)
- Alexander B Sigalov
- Department of Pathology; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
6
|
Signaling Chain Homooligomerization (SCHOOL) Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 640:121-63. [DOI: 10.1007/978-0-387-09789-3_12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Ritchie K, Shan XY, Kondo J, Iwasawa K, Fujiwara T, Kusumi A. Detection of non-Brownian diffusion in the cell membrane in single molecule tracking. Biophys J 2004; 88:2266-77. [PMID: 15613635 PMCID: PMC1305276 DOI: 10.1529/biophysj.104.054106] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecules undergo non-Brownian diffusion in the plasma membrane, but the mechanism behind this anomalous diffusion is controversial. To characterize the anomalous diffusion in the complex system of the plasma membrane and to understand its underlying mechanism, single-molecule/particle methods that allow researchers to avoid ensemble averaging have turned out to be highly effective. However, the intrinsic problems of time-averaging (resolution) and the frequency of the observations have not been explored. These would not matter for the observations of simple Brownian particles, but they do strongly affect the observation of molecules undergoing anomalous diffusion. We examined these effects on the apparent motion of molecules undergoing simple, totally confined, or hop diffusion, using Monte Carlo simulations of particles undergoing short-term confined diffusion within a compartment and long-term hop diffusion between these compartments, explicitly including the effects of time-averaging during a single frame of the camera (exposure time) and the frequency of observations (frame rate). The intricate relationships of these time-related experimental parameters with the intrinsic diffusion parameters have been clarified, which indicated that by systematically varying the frame time and rate, the anomalous diffusion can be clearly detected and characterized. Based on these results, single-particle tracking of transferrin receptor in the plasma membrane of live PtK2 cells were carried out, varying the frame time between 0.025 and 33 ms (0.03-40 kHz), which revealed the hop diffusion of the receptor between 47-nm (average) compartments with an average residency time of 1.7 ms, with the aid of single fluorescent-molecule video imaging.
Collapse
Affiliation(s)
- Ken Ritchie
- Kusumi Membrane Organizer Project, Exploratory Research for Advanced Technology Organization (ERATO/SORST-JST), Department of Biological Science and Institute for Advanced Research, Nagoya University, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|
8
|
Posner RG, Paar JM, Licht A, Pecht I, Conrad DH, Hlavacek WS. Interaction of a monoclonal IgE-specific antibody with cell-surface IgE-Fc epsilon RI: characterization of equilibrium binding and secretory response. Biochemistry 2004; 43:11352-60. [PMID: 15366945 DOI: 10.1021/bi049686o] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aggregation of FcepsilonRI, the high-affinity cell-surface receptor for IgE antibody, is required for degranulation of basophils and mast cells, but not all receptor aggregates elicit this cellular response. The stereochemical constraints on clusters of FcepsilonRI that are able to signal cellular responses, such as degranulation, have yet to be fully defined. To improve our understanding of the properties of FcepsilonRI aggregates that influence receptor signaling, we have studied the interaction of 23G3, a rat IgG(1)(kappa) IgE-specific monoclonal antibody, with IgE-FcepsilonRI complexes on rat mucosal-type mast cells (RBL-2H3 line). We find that 23G3 is a potent secretagogue. This property and the structural features of 23G3 (two symmetrically arrayed IgE-specific binding sites) make 23G3 a potentially valuable reagent for investigating the relationship between FcepsilonRI clustering and FcepsilonRI-mediated signaling events. To develop a mathematical model of 23G3-induced aggregation of FcepsilonRI, we used fluorimetry and flow cytometry to quantitatively monitor equilibrium binding of FITC-labeled 23G3 intact Ab and its Fab' fragment to cell-surface IgE. The results indicate that IgE bound to FcepsilonRI expresses two epitopes for 23G3 binding; that 23G3 binds IgE resident on the cell surface with negative cooperativity; and that 23G3 appears to induce mostly but not exclusively noncyclic dimeric aggregates of FcepsilonRI. There is no simple relationship between receptor aggregation at equilibrium and the degranulation response. Further studies are needed to establish how 23G3-induced aggregation of IgE-FcepsilonRI correlates with cellular responses.
Collapse
Affiliation(s)
- Richard G Posner
- Department of Biology, Northern Arizona University, Flagstaff, Arizona 86011, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Sigalov A, Aivazian D, Stern L. Homooligomerization of the cytoplasmic domain of the T cell receptor zeta chain and of other proteins containing the immunoreceptor tyrosine-based activation motif. Biochemistry 2004; 43:2049-61. [PMID: 14967045 DOI: 10.1021/bi035900h] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antigen receptors on T cells, B cells, mast cells, and basophils all have cytoplasmic domains containing one or more copies of an immunoreceptor tyrosine-based activation motif (ITAM), tyrosine residues of which are phosphorylated upon receptor engagement in an early and obligatory event in the signaling cascade. How clustering of receptor extracellular domains leads to phosphorylation of cytoplasmic domain ITAMs is not known, and little structural or biochemical information is available for the ITAM-containing cytoplasmic domains. Here we investigate the conformation and oligomeric state of several immune receptor cytoplasmic domains, using purified recombinant proteins and a variety of biophysical and biochemical techniques. We show that all of the cytoplasmic domains of ITAM-containing signaling subunits studied are oligomeric in solution, namely, T cell antigen receptor zeta, CD3epsilon, CD3delta, and CD3gamma, B cell antigen receptor Igalpha and Igbeta, and Fc receptor FcepsilonRIgamma. For zeta(cyt), the oligomerization behavior is best described by a two-step monomer-dimer-tetramer fast dynamic equilibrium with dissociation constants in the order of approximately 10 microM (monomer-dimer) and approximately 1 mM (dimer-tetramer). In contrast to the other ITAM-containing proteins, Igalpha(cyt) forms stable dimers and tetramers even below 10 microM. Circular dichroic analysis reveals the lack of stable ordered structure of the cytoplasmic domains studied, and oligomerization does not change the random-coil-like conformation observed. The random-coil nature of zeta(cyt) was also confirmed by heteronuclear NMR. Phosphorylation of zeta(cyt) and FcepsilonRIgamma(cyt) does not significantly alter their oligomerization behavior. The implications of these results for transmembrane signaling and cellular activation by immune receptors are discussed.
Collapse
MESH Headings
- Amino Acid Motifs
- Chromatography, Gel
- Cross-Linking Reagents/chemistry
- Cytoplasm/chemistry
- Cytoplasm/metabolism
- Dimerization
- Escherichia coli/genetics
- Humans
- Light
- Lymphocyte Activation
- Membrane Proteins/biosynthesis
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/isolation & purification
- Nuclear Magnetic Resonance, Biomolecular
- Phosphorylation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/isolation & purification
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/chemistry
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Scattering, Radiation
- Solutions
- Temperature
- Thermodynamics
- Tyrosine/chemistry
- Tyrosine/metabolism
- Ultracentrifugation
Collapse
Affiliation(s)
- Alexander Sigalov
- Department of Pathology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA.
| | | | | |
Collapse
|
10
|
Schweitzer-Stenner R, Pecht I. Parameters determining the stimulatory capacity of the type I Fc epsilon-receptor. Immunol Lett 1999; 68:59-69. [PMID: 10397157 DOI: 10.1016/s0165-2478(99)00031-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Several experiments and theoretical considerations aimed at obtaining the parameters which determine the capacity of type I Fc epsilon-receptors to stimulate the secretion of mast cells are reviewed. Earlier studies have established that secretion requires Fc epsilon RI clustering at least two dimers. The roles of such clusters lifetimes and configuration requires a detailed and quantitative analysis of Fc epsilon RI clustering and stimulus secretion. Different approaches to these issues are described and discussed. We especially address the relevance of the general concept of kinetical proof reading (T.W. McKeithan, Proc. Natl. Acad. Sci. USA 92 (1995) 5042) which is based on the assumption that the stimulating receptors must stay in an active state sufficiently long to bridge the time interval between initiation and termination of cell activation. For mast cells which generally secrete upon clustering of type I Fc epsilon-receptors, this implies that effective stimulation requires a sufficiently long lifetime of such clusters. This notion is corroborated by results obtained from several experiments performed in the last 20 years which are briefly described and compared in this review.
Collapse
|
11
|
Sayers I, Cain SA, Swan JR, Pickett MA, Watt PJ, Holgate ST, Padlan EA, Schuck P, Helm BA. Amino acid residues that influence Fc epsilon RI-mediated effector functions of human immunoglobulin E. Biochemistry 1998; 37:16152-64. [PMID: 9819207 DOI: 10.1021/bi981456k] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Immunoglobulin E (IgE) mediates its effector functions via the Fc region of the molecule. IgE binding to and subsequent aggregation of the high-affinity receptor (Fc epsilon RI) by allergen plays a pivotal role in type I hypersensitivity responses. Earlier studies implicated the C epsilon 2 and 3 interface and the A-B loop in C epsilon 3 in the IgE-Fc epsilon RI interaction. These regions and glycosylation sites in C epsilon 3 were now targeted by site-specific mutagenesis. IgE binding to Fc epsilon RI was compared with surface plasmon resonance (SPR) measurements, which assessed the binding of the soluble extracellular domain of Fc epsilon RI to IgE. Kinetic analysis based on a pseudo-first-order model agrees with previous determinations. A more refined SPR-based kinetic analysis suggests a biphasic interaction. A model-free empirical analysis, comparing the binding strength and kinetics of native and mutant forms of IgE, identified changes in the kinetics of IgE-Fc epsilon RI interaction. Conservative substitutions introduced into the A-B loop have a small effect on binding, suggesting that the overall conformation of the loop is important for the complementary interaction, but multiple sites across the C epsilon 3 domain may influence IgE-Fc epsilon RI interactions. Asn394 is essential for the generation of a functional IgE molecule in mammalian cells. A role of Pro333 in the maintenance of a constrained conformation at the interface between C epsilon 2-3 emerged by studying the functional consequences of replacing this residue by Ala and Gly. These substitutions cause a dramatic decrease in the ability of the ligand to mediate stimulus secretion coupling, although only small changes in the association and dissociation rates are observed. Understanding the molecular basis of this phenomenon may provide important information for the design of inhibitors of mast cell degranulation.
Collapse
Affiliation(s)
- I Sayers
- Krebs Institute for Biomolecular Research, MBB, University of Sheffield, UK
| | | | | | | | | | | | | | | | | |
Collapse
|