1
|
McCullagh M, Zeczycki TN, Kariyawasam CS, Durie CL, Halkidis K, Fitzkee NC, Holt JM, Fenton AW. What is allosteric regulation? Exploring the exceptions that prove the rule! J Biol Chem 2024; 300:105672. [PMID: 38272229 PMCID: PMC10897898 DOI: 10.1016/j.jbc.2024.105672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
"Allosteric" was first introduced to mean the other site (i.e., a site distinct from the active or orthosteric site), an adjective for "regulation" to imply a regulatory outcome resulting from ligand binding at another site. That original idea outlines a system with two ligand-binding events at two distinct locations on a macromolecule (originally a protein system), which defines a four-state energy cycle. An allosteric energy cycle provides a quantifiable allosteric coupling constant and focuses our attention on the unique properties of the four equilibrated protein complexes that constitute the energy cycle. Because many observed phenomena have been referenced as "allosteric regulation" in the literature, the goal of this work is to use literature examples to explore which systems are and are not consistent with the two-ligand thermodynamic energy cycle-based definition of allosteric regulation. We emphasize the need for consistent language so comparisons can be made among the ever-increasing number of allosteric systems. Building on the mutually exclusive natures of an energy cycle definition of allosteric regulation versus classic two-state models, we conclude our discussion by outlining how the often-proposed Rube-Goldberg-like mechanisms are likely inconsistent with an energy cycle definition of allosteric regulation.
Collapse
Affiliation(s)
- Martin McCullagh
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Tonya N Zeczycki
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | - Chathuri S Kariyawasam
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, USA
| | - Clarissa L Durie
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Konstantine Halkidis
- Department of Hematologic Malignancies and Cellular Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA; Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, USA
| | - Jo M Holt
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aron W Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
2
|
Muzika F, Schreiberová L, Schreiber I. Advanced Chemical Computing Using Discrete Turing Patterns in Arrays of Coupled Cells. Front Chem 2020; 8:559650. [PMID: 33195048 PMCID: PMC7658265 DOI: 10.3389/fchem.2020.559650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
We examine dynamical switching among discrete Turing patterns that enable chemical computing performed by mass-coupled reaction cells arranged as arrays with various topological configurations: three coupled cells in a cyclic array, four coupled cells in a linear array, four coupled cells in a cyclic array, and four coupled cells in a branched array. Each cell is operating as a continuous stirred tank reactor, within which the glycolytic reaction takes place, represented by a skeleton inhibitor-activator model where ADP plays the role of activator and ATP is the inhibitor. The mass coupling between cells is assumed to be operating in three possible transport regimes: (i) equal transport coefficients of the inhibitor and activator (ii) slightly faster transport of the activator, and (iii) strongly faster transport of the inhibitor. Each cellular array is characterized by two pairs of tunable parameters, the rate coefficients of the autocatalytic and inhibitory steps, and the transport coefficients of the coupling. Using stability and bifurcation analysis we identified conditions for occurrence of discrete Turing patterns associated with non-uniform stationary states. We found stable symmetric and/or asymmetric discrete Turing patterns coexisting with stable uniform periodic oscillations. To switch from one of the coexisting stable regimes to another we use carefully targeted perturbations, which allows us to build systems of logic gates specific to each topological type of the array, which in turn enables to perform advanced modes of chemical computing. By combining chemical computing techniques in the arrays with glycolytic excitable channels, we propose a cellular assemblage design for advanced chemical computing.
Collapse
Affiliation(s)
| | | | - Igor Schreiber
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, Czechia
| |
Collapse
|
3
|
H/D Exchange Characterization of Silent Coupling: Entropy-Enthalpy Compensation in Allostery. Biophys J 2020; 118:2966-2978. [PMID: 32479745 DOI: 10.1016/j.bpj.2020.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 11/24/2022] Open
Abstract
The allosteric coupling constant in K-type allosteric systems is defined as a ratio of the binding of substrate in the absence of effector to the binding of the substrate in the presence of a saturating concentration of effector. As a result, the coupling constant is itself an equilibrium value comprised of a ΔH and a TΔS component. In the scenario in which TΔS completely compensates ΔH, no allosteric influence of effector binding on substrate affinity is observed. However, in this "silent coupling" scenario, the presence of effector causes a change in the ΔH associated with substrate binding. A suggestion has now been made that "silent modulators" are ideal drug leads because they can be modified to act as either allosteric activators or inhibitors. Any attempt to rationally design the effector to be an allosteric activator or inhibitor is likely to be benefitted by knowledge of the mechanism that gives rise to coupling. Hydrogen/deuterium exchange with mass spectrometry detection has now been used to identify regions of proteins that experience conformational and/or dynamic changes in the allosteric regulation. Here, we demonstrate the expected temperature dependence of the allosteric regulation of rabbit muscle pyruvate kinase by Ala to demonstrate that this effector reduces substrate (phosphoenolpyruvate) affinity at 35°C and at 10°C but is silent at intermediate temperatures. We then explore the use of hydrogen/deuterium exchange with mass spectrometry to evaluate the areas of the protein that are modified in the mechanism that gives rise to the silent coupling between Ala and phosphoenolpyruvate. Many of the peptide regions of the protein identified as changing in this silent system (Ala as the effector) were included in changes previously identified for allosteric inhibition by Phe.
Collapse
|
4
|
Whitaker AM, Naik MT, Mosser RE, Reinhart GD. Propagation of the Allosteric Signal in Phosphofructokinase from Bacillus stearothermophilus Examined by Methyl-Transverse Relaxation-Optimized Spectroscopy Nuclear Magnetic Resonance. Biochemistry 2019; 58:5294-5304. [PMID: 31478644 PMCID: PMC9924234 DOI: 10.1021/acs.biochem.9b00229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Phosphofructokinase from Bacillus stearothermophilus (BsPFK) is a 136 kDa homotetromeric enzyme. Binding of the substrate, fructose 6-phosphate (Fru-6-P), is allosterically regulated by the K-type inhibitor phosphoenolpyruvate (PEP). The allosteric coupling between the substrate and inhibitor is quantified by a standard coupling free energy that defines an equilibrium with the Fru-6-P-bound and PEP-bound complexes on one side and the apo form and ternary complex on the other. Methyl-transverse relaxation-optimized spectroscopy (Me-TROSY) nuclear magnetic resonance was employed to gain structural information about BsPFK in all four states of ligation relevant to the allosteric coupling. BsPFK was uniformly labeled with 15N and 2H and specifically labeled with δ-[13CH3]-isoleucine utilizing an isotopically labeled α-keto acid isoleucine precursor. Me-TROSY experiments were conducted on all four ligation states, and all 30 isoleucines, which are well dispersed throughout each subunit of the enzyme, are well-resolved in chemical shift correlation maps of 13C and 1H. Assignments for 17 isoleucines were determined through three-dimensional HMQC-NOESY experiments with [U-15N,2H];Ileδ1-[13CH3]-BsPFK and complementary HNCA and HNCOCA experiments with [U-2H,15N,13C]-BsPFK. The assignments allowed for the mapping of resonances representing isoleucine residues to a previously determined X-ray crystallography structure. This analysis, performed for all four states of ligation, has allowed specific regions of the enzyme influenced by the binding of allosteric ligands and those involved in the propagation of the allosteric effect to be identified and distinguished from one another.
Collapse
Affiliation(s)
| | | | | | - Gregory D. Reinhart
- Corresponding Author Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128. . Phone: (979) 862-2263
| |
Collapse
|
5
|
Mutational mimics of allosteric effectors: a genome editing design to validate allosteric drug targets. Sci Rep 2019; 9:9031. [PMID: 31227746 PMCID: PMC6588628 DOI: 10.1038/s41598-019-45202-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/29/2019] [Indexed: 11/08/2022] Open
Abstract
Development of drugs that allosterically regulate enzyme functions to treat disease is a costly venture. Amino acid susbstitutions that mimic allosteric effectors in vitro will identify therapeutic regulatory targets enhancing the likelihood of developing a disease treatment at a reasonable cost. We demonstrate the potential of this approach utilizing human liver pyruvate kinase (hLPYK) as a model. Inhibition of hLPYK was the first desired outcome of this study. We identified individual point mutations that: 1) mimicked allosteric inhibition by alanine, 2) mimicked inhibition by protein phosphorylation, and 3) prevented binding of fructose-1,6-bisphosphate (Fru-1,6-BP). Our second desired outcome was activation of hLPYK. We identified individual point mutations that: 1) prevented hLPYK from binding alanine, the allosteric inhibitor, 2) prevented inhibitory protein phosphorylation, or 3) mimicked allosteric activation by Fru-1,6-BP. Combining the three activating point mutations produced a constitutively activated enzyme that was unresponsive to regulators. Expression of a mutant hLPYK transgene containing these three mutations in a mouse model was not lethal. Thus, mutational mimics of allosteric effectors will be useful to confirm whether allosteric activation of hLPYK will control glycolytic flux in the diabetic liver to reduce hepatic glucose production and, in turn, reduce or prevent hyperglycemia.
Collapse
|
6
|
Lisi GP, Currier AA, Loria JP. Glutamine Hydrolysis by Imidazole Glycerol Phosphate Synthase Displays Temperature Dependent Allosteric Activation. Front Mol Biosci 2018; 5:4. [PMID: 29468164 PMCID: PMC5808140 DOI: 10.3389/fmolb.2018.00004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/09/2018] [Indexed: 11/13/2022] Open
Abstract
The enzyme imidazole glycerol phosphate synthase (IGPS) is a model for studies of long-range allosteric regulation in enzymes. Binding of the allosteric effector ligand N'-[5'-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) stimulates millisecond (ms) timescale motions in IGPS that enhance its catalytic function. We studied the effect of temperature on these critical conformational motions and the catalytic mechanism of IGPS from the hyperthermophile Thermatoga maritima in an effort to understand temperature-dependent allostery. Enzyme kinetic and NMR dynamics measurements show that apo and PRFAR-activated IGPS respond differently to changes in temperature. Multiple-quantum Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments performed at 303, 323, and 343 K (30, 50, and 70°C) reveal that millisecond flexibility is enhanced to a higher degree in apo IGPS than in the PRFAR-bound enzyme as the sample temperature is raised. We find that the flexibility of the apo enzyme is nearly identical to that of its PRFAR activated state at 343 K, whereas conformational motions are considerably different between these two forms of the enzyme at room temperature. Arrhenius analyses of these flexible sites show a varied range of activation energies that loosely correlate to allosteric communities identified by computational methods and reflect local changes in dynamics that may facilitate conformational sampling of the active conformation. In addition, kinetic assays indicate that allosteric activation by PRFAR decreases to 65-fold at 343 K, compared to 4,200-fold at 303 K, which mirrors the decreased effect of PRFAR on ms motions relative to the unactivated enzyme. These studies indicate that at the growth temperature of T. maritima, PFRAR is a weaker allosteric activator than it is at room temperature and illustrate that the allosteric mechanism of IGPS is temperature dependent.
Collapse
Affiliation(s)
- George P Lisi
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Allen A Currier
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - J Patrick Loria
- Department of Chemistry, Yale University, New Haven, CT, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
7
|
Carlson GM, Fenton AW. What Mutagenesis Can and Cannot Reveal About Allostery. Biophys J 2017; 110:1912-23. [PMID: 27166800 DOI: 10.1016/j.bpj.2016.03.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/24/2016] [Accepted: 03/14/2016] [Indexed: 10/21/2022] Open
Abstract
Allosteric regulation of protein function is recognized to be widespread throughout biology; however, knowledge of allosteric mechanisms, the molecular changes within a protein that couple one binding site to another, is limited. Although mutagenesis is often used to probe allosteric mechanisms, we consider herein what the outcome of a mutagenesis study truly reveals about an allosteric mechanism. Arguably, the best way to evaluate the effects of a mutation on allostery is to monitor the allosteric coupling constant (Qax), a ratio of the substrate binding constants in the absence versus presence of an allosteric effector. A range of substitutions at a given residue position in a protein can reveal when a particular substitution causes gain-of-function, which addresses a key challenge in interpreting mutation-dependent changes in the magnitude of Qax. Thus, whole-protein mutagenesis studies offer an acceptable means of identifying residues that contribute to an allosteric mechanism. With this focus on monitoring Qax, and keeping in mind the equilibrium nature of allostery, we consider alternative possibilities for what an allosteric mechanism might be. We conclude that different possible mechanisms (rotation-of-solid-domains, movement of secondary structure, side-chain repacking, changes in dynamics, etc.) will result in different findings in whole-protein mutagenesis studies.
Collapse
Affiliation(s)
- Gerald M Carlson
- Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Aron W Fenton
- Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
8
|
Whitaker AM, Reinhart GD. The effect of introducing small cavities on the allosteric inhibition of phosphofructokinase from Bacillus stearothermophilus. Arch Biochem Biophys 2016; 607:1-6. [PMID: 27477958 DOI: 10.1016/j.abb.2016.06.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/07/2016] [Accepted: 06/25/2016] [Indexed: 11/17/2022]
Abstract
The allosteric coupling free energy between ligands fructose-6-phosphate (Fru-6-P) and phospho(enol)pyruvate (PEP) for phosphofructokinase-1 (PFK) from the moderate thermophile, Bacillus stearothermophilus (BsPFK), results from compensating enthalpy and entropy components. In BsPFK the positive coupling free energy that defines inhibition is opposite in sign from the negative enthalpy term and is therefore determined by the larger absolute value of the negative entropy term. Variants of BsPFK were made to determine the effect of adding small cavities to the structure on the allosteric function of the enzyme. The BsPFK Ile → Val (cavity containing) mutants have varied values for the coupling free energy between PEP and Fru-6-P, indicating that the modifications altered the effectiveness of PEP as an inhibitor. Notably, the mutation I153V had a substantial positive impact on the magnitude of inhibition by PEP. Van't Hoff analysis determined that this is the result of decreased entropy-enthalpy compensation with a larger change in the enthalpy term compared to the entropy term.
Collapse
Affiliation(s)
- Amy M Whitaker
- Department of Biochemistry and Biophysics, Texas A&M University and Texas AgriLife Research, 2128 TAMU, College Station, TX, 77843-2128, USA
| | - Gregory D Reinhart
- Department of Biochemistry and Biophysics, Texas A&M University and Texas AgriLife Research, 2128 TAMU, College Station, TX, 77843-2128, USA.
| |
Collapse
|
9
|
Muzika F, Schreiberová L, Schreiber I. Discrete Turing patterns in coupled reaction cells in a cyclic array. REACTION KINETICS MECHANISMS AND CATALYSIS 2016. [DOI: 10.1007/s11144-016-1004-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Herrera JE, Thompson JA, Rimmer MA, Nadeau OW, Carlson GM. Activation of Phosphorylase Kinase by Physiological Temperature. Biochemistry 2015; 54:7524-30. [PMID: 26632861 PMCID: PMC5014378 DOI: 10.1021/acs.biochem.5b01032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the six decades since its discovery, phosphorylase kinase (PhK) from rabbit skeletal muscle has usually been studied at 30 °C; in fact, not a single study has examined functions of PhK at a rabbit's body temperature, which is nearly 10 °C greater. Thus, we have examined aspects of the activity, regulation, and structure of PhK at temperatures between 0 and 40 °C. Between 0 and 30 °C, the activity at pH 6.8 of nonphosphorylated PhK predictably increased; however, between 30 and 40 °C, there was a dramatic jump in its activity, resulting in the nonactivated enzyme having a far greater activity at body temperature than was previously realized. This anomalous change in properties between 30 and 40 °C was observed for multiple functions, and both stimulation (by ADP and phosphorylation) and inhibition (by orthophosphate) were considerably less pronounced at 40 °C than at 30 °C. In general, the allosteric control of PhK's activity is definitely more subtle at body temperature. Changes in behavior related to activity at 40 °C and its control can be explained by the near disappearance of hysteresis at physiological temperature. In important ways, the picture of PhK that has emerged from six decades of study at temperatures of ≤30 °C does not coincide with that of the enzyme studied at physiological temperature. The probable underlying mechanism for the dramatic increase in PhK's activity between 30 and 40 °C is an abrupt change in the conformations of the regulatory β and catalytic γ subunits between these two temperatures.
Collapse
Affiliation(s)
| | - Jackie A. Thompson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Mary Ashley Rimmer
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Owen W. Nadeau
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Gerald M. Carlson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| |
Collapse
|
11
|
McGresham MS, Reinhart GD. Enhancing allosteric inhibition in Thermus thermophilus Phosphofructokinase. Biochemistry 2015; 54:952-8. [PMID: 25531642 PMCID: PMC4310622 DOI: 10.1021/bi501127a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
![]()
The
coupling between the binding of the substrate Fru-6-P and the
inhibitor phospho(enol)pyruvate (PEP) in phosphofructokinase
(PFK) from the extreme thermophile Thermus thermophilus is much weaker than that seen in a PFK from Bacillus stearothermophilus. From the crystal structures of Bacillus stearothermophilus PFK (BsPFK) the residues at positions 59, 158, and 215 in BsPFK
are located on the path leading from the allosteric site to the nearest
active site and are part of the intricate hydrogen-bonding network
connecting the two sites. Substituting the corresponding residues
in Thermus thermophilus PFK (TtPFK) with the amino
acids found at these positions in BsPFK allowed us to enhance the
allosteric inhibition by PEP by nearly 3 kcal mol–1 (50-fold) to a value greater than or equal to the coupling observed
in BsPFK. Interestingly, each single variant N59D, A158T, and S215H
produced a roughly 1 kcal mol–1 increase in coupling
free energy of inhibition. The effects of these variants were essentially
additive in the three combinations of double variants N59D/A158T,
N59D/S215H, and A158T/S215H as well as in the triple variant N59D/A158T/S215H.
Consequently, while the hydrogen-bonding network identified is likely
involved in the inhibitory allosteric communication, a model requiring
a linked chain of interactions connecting the sites is not supported
by these data. Despite the fact that the allosteric activator of the
bacterial PFK, MgADP, binds at the same allosteric site, the substitutions
at positions 59, 158, and 215 do not have an equally dramatic effect
on the binding affinity and the allosteric activation by MgADP. The
effect of the S215H and N59D/A158T/S215H substitutions on the activation
by MgADP could not be determined because of a dramatic drop in MgADP
binding affinity that resulted from the S215H substitution. The single
variants N59D and A158T supported binding but showed little change
in the free energy of activation by MgADP compared to the wild type
TtPFK. These results support previous suggestions that heterotropic
inhibition and activation occur by different pathways prokaryotic
PFK.
Collapse
Affiliation(s)
- Maria S McGresham
- Department of Biochemistry and Biophysics, Texas A&M University and Texas AgriLife Research , College Station, Texas 77843-2128, United States
| | | |
Collapse
|
12
|
McGresham MS, Lovingshimer M, Reinhart GD. Allosteric regulation in phosphofructokinase from the extreme thermophile Thermus thermophilus. Biochemistry 2014; 53:270-8. [PMID: 24328040 PMCID: PMC3982590 DOI: 10.1021/bi401402j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An investigation into the kinetics and regulatory properties of the type-1 phosphofructokinase (PFK) from the extreme thermophile Thermus thermophilus (TtPFK) reveals an enzyme that is inhibited by PEP and activated by ADP by modifying the affinity exhibited for the substrate fructose 6-phosphate (Fru-6-P) in a manner analogous to other prokaryotic PFKs. However, TtPFK binds both of these allosteric ligands significantly more tightly than other bacterial PFKs while effecting a substantially more modest extent of inhibition or activation at 25 °C, reinforcing the principle that binding affinity and effectiveness can be both independent and uncorrelated to one another. These properties have allowed us to establish rigorously that PEP only inhibits by antagonizing the binding of Fru-6-P and not by influencing turnover, a conclusion that requires kcat to be determined under conditions in which both inhibitor and substrate are saturating simultaneously. In addition, the temperature dependence of the allosteric effects on Fru-6-P binding indicate that the coupling free energies are entropy-dominated, as observed previously for PFK from Bacillus stearothermophilus but not for PFK from Escherichia coli , supporting the hypothesis that entropy-dominated allosteric effects may be a characteristic of enzymes derived from thermostable organisms. For such enzymes, the root cause of the allosteric effect may not be easily discerned from static structural information such as that obtained from X-ray crystallography.
Collapse
Affiliation(s)
| | - Michelle Lovingshimer
- Department of Biochemistry and Biophysics, Texas A&M University and
Texas AgriLife Research, College Station, TX 77843-2128
| | - Gregory D. Reinhart
- Department of Biochemistry and Biophysics, Texas A&M University and
Texas AgriLife Research, College Station, TX 77843-2128
| |
Collapse
|
13
|
Abstract
Using isothermal calorimetry (ITC), we have found one case where a well-characterized allosteric activator showed no sign of allostery in its ΔG° of binding to successive sites on multiple subunits and another case where successive binding showed no ΔG° binding allostery but did show large entropy-compensated flip-flopping enthalpy changes. This behavior, which we have termed "isoergonic cooperativity" and others have referred to as "silent coupling" is quite simply explained by basic linkage theory when reactions are considered beyond the ΔG° level. Thus, direct calorimetric determination of all thermodynamic parameters including ΔH°, ΔS°, ΔG°, ΔC (p)°, and d(ΔC (p)°/dt) provides a more informative depiction of a ligand binding event and its consequences than does the mere measurement of ΔG° alone. We further discuss the benefits and limitations of methods that have previously been used to study silent coupling. In particular, ITC is free of the numerous pitfalls inherent in the application of van't Hoff and Årrhenius plots to allosteric phenomena. Aside from having a 30-fold advantage in precision, ITC is capable of measuring changes in enthalpy directly at five more levels of mathematical differentiation than are available to van't Hoff type approaches.
Collapse
Affiliation(s)
- Harvey F Fisher
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
14
|
Mosser R, Reddy MCM, Bruning JB, Sacchettini JC, Reinhart GD. Structure of the apo form of Bacillus stearothermophilus phosphofructokinase. Biochemistry 2012; 51:769-75. [PMID: 22212099 DOI: 10.1021/bi201548p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crystal structure of the unliganded form of Bacillus stearothermophilus phosphofructokinase (BsPFK) was determined using molecular replacement to 2.8 Å resolution (Protein Data Bank entry 3U39 ). The apo BsPFK structure serves as the basis for the interpretation of any structural changes seen in the binary or ternary complexes. When the apo BsPFK structure is compared with the previously published liganded structures of BsPFK, the structural impact that the binding of the ligands produces is revealed. This comparison shows that the apo form of BsPFK resembles the substrate-bound form of BsPFK, a finding that differs from previous predictions.
Collapse
Affiliation(s)
- Rockann Mosser
- Department of Biochemistry and Biophysics, Texas A&M University and Texas AgriLife Research, College Station, Texas 77843-2128, United States
| | | | | | | | | |
Collapse
|
15
|
Martinez-Julvez M, Abian O, Vega S, Medina M, Velazquez-Campoy A. Studying the allosteric energy cycle by isothermal titration calorimetry. Methods Mol Biol 2012; 796:53-70. [PMID: 22052485 DOI: 10.1007/978-1-61779-334-9_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Isothermal titration calorimetry (ITC) is a powerful biophysical technique which allows a complete thermodynamic characterization of protein interactions with other molecules. The possibility of dissecting the Gibbs energy of interaction into its enthalpic and entropic contributions, as well as the detailed additional information experimentally accessible on the intermolecular interactions (stoichiometry, cooperativity, heat capacity changes, and coupled equilibria), make ITC a suitable technique for studying allosteric interactions in proteins. Two experimental methodologies for the characterization of allosteric heterotropic ligand interactions by ITC are described in this chapter, illustrated with two proteins with markedly different structural and functional features: a photosynthetic electron transfer protein and a drug target viral protease.
Collapse
Affiliation(s)
- Marta Martinez-Julvez
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, Zaragoza, Spain.
| | | | | | | | | |
Collapse
|
16
|
Fenton AW, Williams R, Trewhella J. Changes in small-angle X-ray scattering parameters observed upon binding of ligand to rabbit muscle pyruvate kinase are not correlated with allosteric transitions. Biochemistry 2010; 49:7202-9. [PMID: 20712377 DOI: 10.1021/bi100147w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein fluorescence and small-angle X-ray scattering (SAXS) have been used to monitor effector affinity and conformational changes previously associated with allosteric regulation in rabbit muscle pyruvate kinase (M(1)-PYK). In the absence of substrate [phosphoenolpyruvate (PEP)], SAXS-monitored conformational changes in M(1)-PYK elicited by the binding of phenylalanine (an allosteric inhibitor that reduces the affinity of M(1)-PYK for PEP) are similar to those observed upon binding of alanine or 2-aminobutyric acid. Under our assay conditions, these small amino acids bind to the protein but elicit a minimal change in the affinity of the protein for PEP. Therefore, if changes in scattering signatures represent cleft closure via domain rotation as previously interpreted, we can conclude that these motions are not sufficient to elicit allosteric inhibition. Additionally, although PEP has similar affinities for the free enzyme and the M(1)-PYK-small amino acid complexes (i.e., the small amino acids have minimal allosteric effects), PEP binding elicits different changes in the SAXS signature of the free enzyme versus the M(1)-PYK-small amino acid complexes.
Collapse
Affiliation(s)
- Aron W Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, MS 3030, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA.
| | | | | |
Collapse
|
17
|
Fenton AW. Allostery: an illustrated definition for the 'second secret of life'. Trends Biochem Sci 2008; 33:420-5. [PMID: 18706817 DOI: 10.1016/j.tibs.2008.05.009] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 05/15/2008] [Accepted: 05/28/2008] [Indexed: 11/29/2022]
Abstract
Although allosteric regulation is the 'second secret of life', the molecular mechanisms that give rise to allostery currently elude understanding. In my opinion, experimental progress is hampered by a commonly used but misleading definition of allostery as protein structural changes that are elicited by the binding of a single ligand. Allostery is more strictly defined in functional terms as a comparison of how one ligand binds in the absence, versus the presence, of a second ligand. Therefore, as each of the two binding events involves two protein complexes, a study of allostery must consider four complexes and not just two. Such a comparison can distinguish allosteric from non-allosteric protein changes, the importance of which is frequently overlooked. When a study of all four complexes is not feasible, an alternative, albeit limited, strategy can identify subsets of allosteric-specific changes.
Collapse
Affiliation(s)
- Aron W Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| |
Collapse
|
18
|
Velazquez-Campoy A, Goñi G, Peregrina JR, Medina M. Exact analysis of heterotropic interactions in proteins: Characterization of cooperative ligand binding by isothermal titration calorimetry. Biophys J 2006; 91:1887-904. [PMID: 16766617 PMCID: PMC1544317 DOI: 10.1529/biophysj.106.086561] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intramolecular interaction networks in proteins are responsible for heterotropic ligand binding cooperativity, a biologically important, widespread phenomenon in nature (e.g., signaling transduction cascades, enzymatic cofactors, enzymatic allosteric activators or inhibitors, gene transcription, or repression). The cooperative binding of two (or more) different ligands to a macromolecule is the underlying principle. To date, heterotropic effects have been studied mainly kinetically in enzymatic systems. Until now, approximate approaches have been employed for studying equilibrium heterotropic ligand binding effects, except in two special cases in which an exact analysis was developed: independent binding (no cooperativity) and competitive binding (maximal negative cooperativity). The exact analysis and methodology for characterizing ligand binding cooperativity interactions in the general case (any degree of cooperativity) using isothermal titration calorimetry are presented in this work. Intramolecular interaction pathways within the allosteric macromolecule can be identified and characterized using this methodology. As an example, the thermodynamic characterization of the binding interaction between ferredoxin-NADP+ reductase and its three substrates, NADP+, ferredoxin, and flavodoxin, as well as the characterization of their binding cooperativity interaction, is presented.
Collapse
Affiliation(s)
- Adrian Velazquez-Campoy
- Institute of Biocomputation and Complex Systems Physics (BIFI), Universidad de Zaragoza, Zaragoza, Spain.
| | | | | | | |
Collapse
|
19
|
Pendergrass DC, Williams R, Blair JB, Fenton AW. Mining for allosteric information: Natural mutations and positional sequence conservation in pyruvate kinase. IUBMB Life 2006; 58:31-8. [PMID: 16540430 DOI: 10.1080/15216540500531705] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Although the amino acid sequences and the structures of pyruvate kinase (PYK) isozymes are highly conserved, allosteric regulations differ. This suggests that amino acids with low conservation play important roles in the allosteric mechanism. The current work exploits a 'natural screen'- the 122 point mutations identified in the human gene encoding the erythrocyte PYK isozyme and associated with nonspherocytic hemolytic anemia - to learn what amino acid positions in PYK may be important for allosteric regulations. In addition to the mutations, we consider the conservation of each amino acid position across 241 PYK sequences. Three groups of residue positions have been created, those with: (1) no disease causing mutation identified; (2) a disease causing mutation identified and high conservation across isozymes; and (3) a disease causing mutation identified and low conservation. Mutations at positions not identified in the natural screen are likely to be tolerated with minimal loss of function. Mutations at highly conserved positions are more likely to disrupt properties common to all PYK isozymes (e.g., structure, catalysis). Residues in the third group are likely to be involved in roles that are necessary for function but not common to all isozymes (e.g., allostery). Many of the Group 3 residues are located in the C-domain and to a lesser extent the A domain.
Collapse
Affiliation(s)
- David C Pendergrass
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, USA
| | | | | | | |
Collapse
|
20
|
Pham AS, Reinhart GD. MgATP-dependent activation by phosphoenolpyruvate of the E187A mutant of Escherichia coli phosphofructokinase. Biochemistry 2001; 40:4150-8. [PMID: 11300796 DOI: 10.1021/bi001769r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using enzymatic assays and steady-state fluorescence emission, we performed a linkage analysis of the three-ligand interaction of fructose 6-phosphate (Fru-6-P), phosphoenolpyruvate (PEP), and MgATP on E187A mutant Escherichia coli phosphofructokinase (PFK). PEP allosterically inhibits Fru-6-P binding to E. coli PFK. The magnitude of antagonism is 90-fold in the absence and 60-fold in the presence of a saturating concentration of MgATP [Johnson, J. J., and Reinhart, G. D. (1997) Biochemistry 36, 12814-12822]. Substituting an alanine for the glutamate at position 187, located in the allosteric site (i.e., mutant E187A), activates Fru-6-P binding and inhibits the maximal rate of enzyme turnover [Lau, F. T.-K., and Fersht, A. R. (1987) Nature 326, 811-812]. The allosteric action of PEP appears to depend on the presence of the cosubstrate MgATP. In the presence of a saturating concentration of MgATP, PEP enhances the binding of Fru-6-P to the enzyme by a modest 2-fold. Decreasing the concentration of MgATP mitigates the extent of activation. At MgATP concentrations approaching 25 microM, PEP becomes insensitive to the binding of Fru-6-P. At MgATP concentrations < 25 microM, PEP "crosses over" and becomes antagonistic toward substrate binding. The present study examines the role of Glu 187 at the allosteric site in the binding of Fru-6-P and offers a more complex explanation of the mechanism than that described by traditional allosteric mechanistic models.
Collapse
Affiliation(s)
- A S Pham
- Division of Pathology and Laboratory Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | |
Collapse
|
21
|
Liu L, Guo QX. Isokinetic relationship, isoequilibrium relationship, and enthalpy-entropy compensation. Chem Rev 2001; 101:673-95. [PMID: 11712500 DOI: 10.1021/cr990416z] [Citation(s) in RCA: 512] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- L Liu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China.
| | | |
Collapse
|
22
|
Kimmel JL, Reinhart GD. Reevaluation of the accepted allosteric mechanism of phosphofructokinase from Bacillus stearothermophilus. Proc Natl Acad Sci U S A 2000; 97:3844-9. [PMID: 10759544 PMCID: PMC18104 DOI: 10.1073/pnas.050588097] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The binding of phosphoenolpyruvate (PEP) to the single allosteric site on phosphofructokinase (EC ) from Bacillus stearothermophilus (BsPFK) diminishes the ability of the enzyme to bind the substrate fructose 6-phosphate (Fru-6-P). Comparisons of crystal structures with either Fru-6-P or phosphoglycolate, an analog of PEP, bound have shown that Arg-162 interacts with the negatively charged Fru-6-P. Upon the binding of phosphoglycolate, Arg-162 is virtually replaced by Glu-161, which introduces a potential coulombic repulsion between enzyme and substrate [Schirmer, T. & Evans, P. R. (1990) Nature (London) 343, 140-145]. It has previously been proposed that this structural transition explains the allosteric inhibition in BsPFK, and this explanation has appeared in textbooks to illustrate how an allosteric ligand can influence substrate binding at a distance. Site-directed mutagenesis has been employed to create three mutants of BsPFK that substitute an alanine residue for Glu-161, Arg-162, or both. The E161A mutation does not affect the inhibition of BsPFK by PEP at 25 degrees C, and while the R162A mutation decreases BsPFK's affinity for Fru-6-P by approximately 30-fold, R162A diminishes the effectiveness of PEP inhibition by only 1/3. Combining E161A and R162A produces behavior comparable to R162A alone. These and other data suggest that the movement of Glu-161 and Arg-162 does not play the central role in producing the allosteric inhibition by PEP as originally envisioned in the Schirmer and Evans mechanism.
Collapse
Affiliation(s)
- J L Kimmel
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | | |
Collapse
|
23
|
Horjales E, Altamirano MM, Calcagno ML, Garratt RC, Oliva G. The allosteric transition of glucosamine-6-phosphate deaminase: the structure of the T state at 2.3 A resolution. Structure 1999; 7:527-37. [PMID: 10378272 DOI: 10.1016/s0969-2126(99)80069-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The allosteric hexameric enzyme glucosamine-6-phosphate deaminase from Escherichia coli catalyses the regulatory step of N-acetylglucosamine catabolism, which consists of the isomerisation and deamination of glucosamine 6-phosphate (GlcN6P) to form fructose 6-phosphate (Fru6P) and ammonia. The reversibility of the catalysis and its rapid-equilibrium random kinetic mechanism, among other properties, make this enzyme a good model for studying allosteric processes. RESULTS Here we present the structure of P6(3)22 crystals, obtained in sodium acetate, of GlcN6P deaminase in its ligand-free T state. These crystals are very sensitive to X-ray radiation and have a high (78%) solvent content. The activesite lid (residues 162-185) is highly disordered in the T conformer; this may contribute significantly to the free-energy change of the whole allosteric transition. Comparison of the structure with the crystallographic coordinates of the R conformer (Brookhaven Protein Data Bank entry 1 dea) allows us to describe the geometrical changes associated with the allosteric transition as the movement of two rigid entities within each monomer. The active site, located in a deep cleft between these two rigid entities, presents a more open geometry in the T conformer than in the R conformer. CONCLUSIONS The differences in active-site geometry are related to alterations in the substrate-binding properties associated with the allosteric transition. The rigid nature of the two mobile structural units of each monomer seems to be essential in order to explain the observed kinetics of the deaminase hexamer. The triggers for both the homotropic and heterotropic allosteric transitions are discussed and particular residues are assigned to these functions. A structural basis for an entropic term in the allosteric transition is an interesting new feature that emerges from this study.
Collapse
Affiliation(s)
- E Horjales
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mor, Mexico.
| | | | | | | | | |
Collapse
|