1
|
Yun H, Joe HE, Song DH, Song YJ, Hong S, Kim CH, Kim NY, Hur GH, Yu CH. Toxicity and Efficacy Evaluation of Soluble Recombinant Ricin Vaccine. Vaccines (Basel) 2024; 12:1116. [PMID: 39460284 PMCID: PMC11511097 DOI: 10.3390/vaccines12101116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Ricin, a toxin extracted from the seeds of Ricinus communis, is classified as a ribosome-inactivating protein. The A-subunit of ricin shows RNA N-glycosidase activity that cleaves ribosomal RNA (rRNA) and exhibits toxicity by inhibiting protein synthesis and inducing vascular leak syndrome. METHODS In this study, we created a truncated version of the previously developed R51 ricin vaccine (RTA 1-194 D75C Y80C) through in silico analysis. RESULTS The resulting R51-3 vaccine showed a more-than-six-fold increase in soluble protein expression when compared to R51, with over 85% solubility. In a pilot toxicity test, no toxicity was observed in hematological and biochemical parameters in BALB/c mice and New Zealand white rabbits following five repeated administrations of R51-3. Furthermore, R51-3 successfully protected mice and rabbits from a 20 × LD50 ricin challenge after three intramuscular injections spaced 2 weeks apart. Similarly, monkeys that received three injections of R51-3 survived a 60 µg/kg ricin challenge. CONCLUSIONS These findings support R51-3 as a promising candidate antigen for ricin vaccine development.
Collapse
Affiliation(s)
- Hyeongseok Yun
- Defense Advanced Science and Technology Research Institute, Agency for Defense Development, Daejeon 34186, Republic of Korea
| | - Hae Eun Joe
- Defense Advanced Science and Technology Research Institute, Agency for Defense Development, Daejeon 34186, Republic of Korea
| | - Dong Hyun Song
- Defense Advanced Science and Technology Research Institute, Agency for Defense Development, Daejeon 34186, Republic of Korea
| | - Young-Jo Song
- Defense Advanced Science and Technology Research Institute, Agency for Defense Development, Daejeon 34186, Republic of Korea
| | | | - Chang-Hwan Kim
- Defense Advanced Science and Technology Research Institute, Agency for Defense Development, Daejeon 34186, Republic of Korea
| | | | - Gyeung Haeng Hur
- Defense Advanced Science and Technology Research Institute, Agency for Defense Development, Daejeon 34186, Republic of Korea
| | - Chi Ho Yu
- Defense Advanced Science and Technology Research Institute, Agency for Defense Development, Daejeon 34186, Republic of Korea
| |
Collapse
|
2
|
Rocha-Santos A, Chaves EJ, Grillo IB, de Freitas AS, Araújo DAM, Rocha GB. Thermochemical and Quantum Descriptor Calculations for Gaining Insight into Ricin Toxin A (RTA) Inhibitors. ACS OMEGA 2021; 6:8764-8777. [PMID: 33842748 PMCID: PMC8027999 DOI: 10.1021/acsomega.0c02588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/30/2020] [Indexed: 05/03/2023]
Abstract
In this work, we performed a study to assess the interactions between the ricin toxin A (RTA) subunit of ricin and some of its inhibitors using modern semiempirical quantum chemistry and ONIOM quantum mechanics/molecular mechanics (QM/MM) methods. Two approaches were followed (calculation of binding enthalpies, ΔH bind, and reactivity quantum chemical descriptors) and compared with the respective half-maximal inhibitory concentration (IC50) experimental data, to gain insight into RTA inhibitors and verify which quantum chemical method would better describe RTA-ligand interactions. The geometries for all RTA-ligand complexes were obtained after running classical molecular dynamics simulations in aqueous media. We found that single-point energy calculations of ΔH bind with the PM6-DH+, PM6-D3H4, and PM7 semiempirical methods and ONIOM QM/MM presented a good correlation with the IC50 data. We also observed, however, that the correlation decreased significantly when we calculated ΔH bind after full-atom geometry optimization with all semiempirical methods. Based on the results from reactivity descriptors calculations for the cases studied, we noted that both types of interactions, molecular overlap and electrostatic interactions, play significant roles in the overall affinity of these ligands for the RTA binding pocket.
Collapse
Affiliation(s)
- Acassio Rocha-Santos
- Department
of Chemistry, Federal University of Paraíba, Cidade Universitária, João Pessoa, PB 58051-900, Brazil
| | - Elton José
Ferreira Chaves
- Department
of Biotechnology, Federal University of
Paraíba, Cidade Universitária, João Pessoa, PB 58051-900, Brazil
| | - Igor Barden Grillo
- Department
of Chemistry, Federal University of Paraíba, Cidade Universitária, João Pessoa, PB 58051-900, Brazil
| | - Amanara Souza de Freitas
- Department
of Chemical Engineering, Federal University
of Paraíba, Cidade Universitária, João Pessoa, PB 58051-900, Brazil
| | | | - Gerd Bruno Rocha
- Department
of Chemistry, Federal University of Paraíba, Cidade Universitária, João Pessoa, PB 58051-900, Brazil
- . Phone/Fax: +55-83-3216-7437
| |
Collapse
|
3
|
Sarkes DA, Hurley MM, Stratis-Cullum DN. Unraveling the Roots of Selectivity of Peptide Affinity Reagents for Structurally Similar Ribosomal Inactivating Protein Derivatives. Molecules 2016; 21:E1504. [PMID: 27834872 PMCID: PMC6272918 DOI: 10.3390/molecules21111504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 11/17/2022] Open
Abstract
Peptide capture agents have become increasingly useful tools for a variety of sensing applications due to their ease of discovery, stability, and robustness. Despite the ability to rapidly discover candidates through biopanning bacterial display libraries and easily mature them to Protein Catalyzed Capture (PCC) agents with even higher affinity and selectivity, an ongoing challenge and critical selection criteria is that the peptide candidates and final reagent be selective enough to replace antibodies, the gold-standard across immunoassay platforms. Here, we have discovered peptide affinity reagents against abrax, a derivative of abrin with reduced toxicity. Using on-cell Fluorescence Activated Cell Sorting (FACS) assays, we show that the peptides are highly selective for abrax over RiVax, a similar derivative of ricin originally designed as a vaccine, with significant structural homology to abrax. We rank the newly discovered peptides for strongest affinity and analyze three observed consensus sequences with varying affinity and specificity. The strongest (Tier 1) consensus was FWDTWF, which is highly aromatic and hydrophobic. To better understand the observed selectivity, we use the XPairIt peptide-protein docking protocol to analyze binding location predictions of the individual Tier 1 peptides and consensus on abrax and RiVax. The binding location profiles on the two proteins are quite distinct, which we determine is due to differences in pocket size, pocket environment (including hydrophobicity and electronegativity), and steric hindrance. This study provides a model system to show that peptide capture candidates can be quite selective for a structurally similar protein system, even without further maturation, and offers an in silico method of analysis for understanding binding and down-selecting candidates.
Collapse
Affiliation(s)
- Deborah A Sarkes
- Biotechnology Branch, Sensors and Electron Devices Directorate, US Army Research Laboratory, Adelphi, MD 20783, USA.
| | - Margaret M Hurley
- Biotechnology Branch, Sensors and Electron Devices Directorate, US Army Research Laboratory, Adelphi, MD 20783, USA.
| | - Dimitra N Stratis-Cullum
- Biotechnology Branch, Sensors and Electron Devices Directorate, US Army Research Laboratory, Adelphi, MD 20783, USA.
| |
Collapse
|
4
|
Basu D, Tumer NE. Do the A subunits contribute to the differences in the toxicity of Shiga toxin 1 and Shiga toxin 2? Toxins (Basel) 2015; 7:1467-85. [PMID: 25938272 PMCID: PMC4448158 DOI: 10.3390/toxins7051467] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/23/2015] [Accepted: 04/27/2015] [Indexed: 12/25/2022] Open
Abstract
Shiga toxin producing Escherichia coli O157:H7 (STEC) is one of the leading causes of food-poisoning around the world. Some STEC strains produce Shiga toxin 1 (Stx1) and/or Shiga toxin 2 (Stx2) or variants of either toxin, which are critical for the development of hemorrhagic colitis (HC) or hemolytic uremic syndrome (HUS). Currently, there are no therapeutic treatments for HC or HUS. E. coli O157:H7 strains carrying Stx2 are more virulent and are more frequently associated with HUS, which is the most common cause of renal failure in children in the US. The basis for the increased potency of Stx2 is not fully understood. Shiga toxins belong to the AB5 family of protein toxins with an A subunit, which depurinates a universally conserved adenine residue in the α-sarcin/ricin loop (SRL) of the 28S rRNA and five copies of the B subunit responsible for binding to cellular receptors. Recent studies showed differences in the structure, receptor binding, dependence on ribosomal proteins and pathogenicity of Stx1 and Stx2 and supported a role for the B subunit in differential toxicity. However, the current data do not rule out a potential role for the A1 subunits in the differential toxicity of Stx1 and Stx2. This review highlights the recent progress in understanding the differences in the A1 subunits of Stx1 and Stx2 and their role in defining toxicity.
Collapse
Affiliation(s)
- Debaleena Basu
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901-8520, USA.
| | - Nilgun E Tumer
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901-8520, USA.
| |
Collapse
|
5
|
Li XP, Kahn PC, Kahn JN, Grela P, Tumer NE. Arginine residues on the opposite side of the active site stimulate the catalysis of ribosome depurination by ricin A chain by interacting with the P-protein stalk. J Biol Chem 2013; 288:30270-30284. [PMID: 24003229 DOI: 10.1074/jbc.m113.510966] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Ricin inhibits protein synthesis by depurinating the α-sarcin/ricin loop (SRL). Ricin holotoxin does not inhibit translation unless the disulfide bond between the A (RTA) and B (RTB) subunits is reduced. Ricin holotoxin did not bind ribosomes or depurinate them but could depurinate free RNA. When RTA is separated from RTB, arginine residues located at the interface are exposed to the solvent. Because this positively charged region, but not the active site, is blocked by RTB, we mutated arginine residues at or near the interface of RTB to determine if they are critical for ribosome binding. These variants were structurally similar to wild type RTA but could not bind ribosomes. Their K(m) values and catalytic rates (k(cat)) for an SRL mimic RNA were similar to those of wild type, indicating that their activity was not altered. However, they showed an up to 5-fold increase in K(m) and up to 38-fold decrease in kcat toward ribosomes. These results suggest that the stalk binding stimulates the catalysis of ribosome depurination by RTA. The mutated arginines have side chains behind the active site cleft, indicating that the ribosome binding surface of RTA is on the opposite side of the surface that interacts with the SRL. We propose that stalk binding stimulates the catalysis of ribosome depurination by orienting the active site of RTA toward the SRL and thereby allows docking of the target adenine into the active site. This model may apply to the translation factors that interact with the stalk.
Collapse
Affiliation(s)
- Xiao-Ping Li
- From the Departments of Plant Biology and Pathology and
| | - Peter C Kahn
- Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901-8520
| | | | | | - Nilgun E Tumer
- From the Departments of Plant Biology and Pathology and.
| |
Collapse
|
6
|
Janosi L, Compton JR, Legler PM, Steele KE, Davis JM, Matyas GR, Millard CB. Disruption of the putative vascular leak peptide sequence in the stabilized ricin vaccine candidate RTA1-33/44-198. Toxins (Basel) 2013; 5:224-48. [PMID: 23364220 PMCID: PMC3640533 DOI: 10.3390/toxins5020224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 11/16/2022] Open
Abstract
Vitetta and colleagues identified and characterized a putative vascular leak peptide (VLP) consensus sequence in recombinant ricin toxin A-chain (RTA) that contributed to dose-limiting human toxicity when RTA was administered intravenously in large quantities during chemotherapy. We disrupted this potentially toxic site within the more stable RTA1-33/44-198 vaccine immunogen and determined the impact of these mutations on protein stability, structure and protective immunogenicity using an experimental intranasal ricin challenge model in BALB/c mice to determine if the mutations were compatible. Single amino acid substitutions at the positions corresponding with RTA D75 (to A, or N) and V76 (to I, or M) had minor effects on the apparent protein melting temperature of RTA1-33/44-198 but all four variants retained greater apparent stability than the parent RTA. Moreover, each VLP(−) variant tested provided protection comparable with that of RTA1-33/44-198 against supralethal intranasal ricin challenge as judged by animal survival and several biomarkers. To understand better how VLP substitutions and mutations near the VLP site impact epitope structure, we introduced a previously described thermal stabilizing disulfide bond (R48C/T77C) along with the D75N or V76I substitutions in RTA1-33/44-198. The D75N mutation was compatible with the adjacent stabilizing R48C/T77C disulfide bond and the Tm was unaffected, whereas the V76I mutation was less compatible with the adjacent disulfide bond involving C77. A crystal structure of the RTA1-33/44-198 R48C/T77C/D75N variant showed that the structural integrity of the immunogen was largely conserved and that a stable immunogen could be produced from E. coli. We conclude that it is feasible to disrupt the VLP site in RTA1-33/44-198 with little or no impact on apparent protein stability or protective efficacy in mice and such variants can be stabilized further by introduction of a disulfide bond.
Collapse
Affiliation(s)
- Laszlo Janosi
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; E-Mails: (L.J.); (K.E.S.); (G.R.M.)
| | | | - Patricia M. Legler
- Naval Research Laboratories, 4555 Overlook Ave., Washington, DC 20375, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-202-404-6037; Fax: +1-202-404-8688
| | - Keith E. Steele
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; E-Mails: (L.J.); (K.E.S.); (G.R.M.)
| | - Jon M. Davis
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; E-Mail:
| | - Gary R. Matyas
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; E-Mails: (L.J.); (K.E.S.); (G.R.M.)
| | - Charles B. Millard
- U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702-5012, USA; E-Mail:
| |
Collapse
|
7
|
|
8
|
Alvarado YJ, Álvarez-Mon M, Baricelli J, Caldera-Luzardo J, Cubillán N, Ferrer-Amado G, Hassanhi M, Marrero-Ponce Y, Mancilla V, Rocafull MA, San Antonio-Sánchez ME, Ojeda-Andara J, Thomas LE. Solubility of Thiophene-, Furan- and Pyrrole-2-Carboxaldehyde Phenylhydrazone Derivatives in 2.82 mol⋅L−1 Aqueous DMSO at 298.15 K, Inhibition of Lymphoproliferation and Tubulin Polymerization: A Study Based on the Scaled Particle Theory. J SOLUTION CHEM 2010. [DOI: 10.1007/s10953-010-9568-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Structure/function studies on two type 1 ribosome inactivating proteins: Bouganin and lychnin. J Struct Biol 2009; 168:278-87. [PMID: 19616098 DOI: 10.1016/j.jsb.2009.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 06/24/2009] [Accepted: 07/12/2009] [Indexed: 11/20/2022]
Abstract
The three-dimensional structures of two type 1 RIPs, bouganin and lychnin, has been solved. Their adenine polynucleotide glycosylase activity was also determined together with other known RIPs: dianthin 30, PAP-R, momordin I, ricin A chain and saporin-S6. Saporin-S6 releases the highest number of adenine molecules from rat ribosomes, and poly(A), while its efficiency is similar to dianthin 30, bouganin and PAP-R on herring sperm DNA. Measures of the protein synthesis inhibitory activity confirmed that saporin-S6 is the most active. The overall structure of bouganin and lychnin is similar to the other considered RIPs and the typical RIP fold is conserved. The superimpositioning of their C(alpha) atoms highlights some differences in the N-terminal and C-terminal domains. A detailed structural analysis indicates that the efficiency of saporin-S6 on various polynucleotides can be ascribed to a negative electrostatic surface potential at the active site and several exposed positively charged residues in the region around that site. These two conditions, not present at the same time in other examined RIPs, could guarantee an efficient interaction with the substrate and an efficient catalysis.
Collapse
|
10
|
Defense Against Biological Weapons (Biodefense). NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES, NIH 2009. [PMCID: PMC7122899 DOI: 10.1007/978-1-60327-297-1_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Biological warfare (germ warfare) is defined as the use of any disease-causing organism or toxin(s) found in nature as weapons of war with the intent to destroy an adversary. Though rare, the use of biological weapons has occurred throughout the centuries.
Collapse
|
11
|
Lee MS, Olson MA. Calculation of absolute ligand binding free energy to a ribosome-targeting protein as a function of solvent model. J Phys Chem B 2008; 112:13411-7. [PMID: 18821791 DOI: 10.1021/jp802460p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A comparative analysis is provided of the effect of different solvent models on the calculation of a potential of mean force (PMF) for determining the absolute binding affinity of the small molecule inhibitor pteroic acid bound to ricin toxin A-chain (RTA). Solvent models include the distance-dependent dielectric constant, several different generalized Born (GB) approximations, and a hybrid explicit/GB-based implicit solvent model. We found that the simpler approximation of dielectric screening and a GB model, with Born radii fitted to a switching-window dielectric-boundary surface Poisson solvent model, severely overpredicted the binding affinity as compared to the experimental value, estimated to range from -4.4 to -6.0 kcal/mol. In contrast, GB models that are parametrized to fit the Lee-Richards molecular surface performed much better, predicting binding free energy within 1-3 kcal/mol of experimental estimates. However, the predicted free-energy profiles of these GB models displayed alternative binding modes not observed in the crystal structure. Finally, the most rigorous and computationally costly approach in this work, which used a hybrid explicit/implicit solvent model, correctly determined a binding funnel in the PMF near the crystallographic bound state and predicted an absolute binding affinity that was 2 kcal/mol more favorable than the estimated experimental binding affinity.
Collapse
Affiliation(s)
- Michael S Lee
- Computational Sciences and Engineering Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, USA.
| | | |
Collapse
|
12
|
Zemla AT, Zhou CLE. Structural Re-Alignment in an Immunogenic Surface Region of Ricin a Chain. Bioinform Biol Insights 2008; 2:5-13. [PMID: 19812763 PMCID: PMC2735970 DOI: 10.4137/bbi.s437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We compared structure alignments generated by several protein structure comparison programs to determine whether existing methods would satisfactorily align residues at a highly conserved position within an immunogenic loop in ribosome inactivating proteins (RIPs). Using default settings, structure alignments generated by several programs (CE, DaliLite, FATCAT, LGA, MAMMOTH, MATRAS, SHEBA, SSM) failed to align the respective conserved residues, although LGA reported correct residue-residue (R-R) correspondences when the beta-carbon (Cb) position was used as the point of reference in the alignment calculations. Further tests using variable points of reference indicated that points distal from the beta carbon along a vector connecting the alpha and beta carbons yielded rigid structural alignments in which residues known to be highly conserved in RIPs were reported as corresponding residues in structural comparisons between ricin A chain, abrin-A, and other RIPs. Results suggest that approaches to structure alignment employing alternate point representations corresponding to side chain position may yield structure alignments that are more consistent with observed conservation of functional surface residues than do standard alignment programs, which apply uniform criteria for alignment (i.e. alpha carbon (Ca) as point of reference) along the entirety of the peptide chain. We present the results of tests that suggest the utility of allowing user-specified points of reference in generating alternate structural alignments, and we present a web server for automatically generating such alignments: http://as2ts.llnl.gov/AS2TS/LGA/lga_pdblist_plots.html.
Collapse
Affiliation(s)
- Adam T. Zemla
- Computational Biology for Countermeasures Group, Lawrence Livermore National Laboratory, Livermore, CA, U.S.A. 94550
| | - Carol L. Ecale Zhou
- Computational Biology for Countermeasures Group, Lawrence Livermore National Laboratory, Livermore, CA, U.S.A. 94550
| |
Collapse
|
13
|
Tjong H, Zhou HX. GBr6NL: a generalized Born method for accurately reproducing solvation energy of the nonlinear Poisson-Boltzmann equation. J Chem Phys 2007; 126:195102. [PMID: 17523838 DOI: 10.1063/1.2735322] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The nonlinear Poisson-Boltzmann (NLPB) equation can provide accurate modeling of electrostatic effects for nucleic acids and highly charged proteins. Generalized Born methods have been developed to mimic the linearized Poisson-Boltzmann (LPB) equation at substantially reduced cost. The computer time for solving the NLPB equation is approximately fivefold longer than for the LPB equation, thus presenting an even greater obstacle. Here we present the first generalized Born method, GBr(6)NL, for mimicking the NLPB equation. GBr(6)NL is adapted from GBr(6), a generalized Born method recently developed to reproduce the solvation energy of the LPB equation [Tjong and Zhou, J. Phys. Chem. B 111, 3055 (2007)]. Salt effects predicted by GBr(6)NL on 55 proteins overall deviate from NLPB counterparts by 0.5 kcal/mol from ionic strengths from 10 to 1000 mM, which is approximately 10% of the average magnitudes of the salt effects. GBr(6)NL predictions for the salts effects on the electrostatic interaction energies of two protein:RNA complexes are very promising.
Collapse
Affiliation(s)
- Harianto Tjong
- Department of Physics and Institute of Molecular Biophysics, and School of Computational Science, Florida State University, Tallahassee, Florida 32306, USA
| | | |
Collapse
|
14
|
Abstract
The negatively charged phosphates of nucleic acids are often paired with positively charged residues upon binding proteins. It was thus counter-intuitive when previous Poisson-Boltzmann (PB) calculations gave positive energies from electrostatic interactions, meaning that they destabilize protein-nucleic acid binding. Our own PB calculations on protein-protein binding have shown that the sign and the magnitude of the electrostatic component are sensitive to the specification of the dielectric boundary in PB calculations. A popular choice for the boundary between the solute low dielectric and the solvent high dielectric is the molecular surface; an alternative is the van der Waals (vdW) surface. In line with results for protein-protein binding, in this article, we found that PB calculations with the molecular surface gave positive electrostatic interaction energies for two protein-RNA complexes, but the signs are reversed when the vdW surface was used. Therefore, whether destabilizing or stabilizing effects are predicted depends on the choice of the dielectric boundary. The two calculation protocols, however, yielded similar salt effects on the binding affinity. Effects of charge mutations differentiated the two calculation protocols; PB calculations with the vdW surface had smaller deviations overall from experimental data.
Collapse
Affiliation(s)
- Sanbo Qin
- Institute of Molecular Biophysics, School of Computational Science, Florida State University, Tallahassee, FL 32306, USA
| | | |
Collapse
|
15
|
Sturm MB, Roday S, Schramm VL. Circular DNA and DNA/RNA hybrid molecules as scaffolds for ricin inhibitor design. J Am Chem Soc 2007; 129:5544-50. [PMID: 17417841 PMCID: PMC2518448 DOI: 10.1021/ja068054h] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ricin Toxin A-chain (RTA) catalyzes the hydrolytic depurination of A4324, the first adenosine of the GAGA tetra-loop portion of 28S eukaryotic ribosomal RNA. Truncated stem-loop versions of the 28S rRNA are RTA substrates. Here, we investigate circular DNA and DNA/RNA hybrid GAGA sequence oligonucleotides as minimal substrates and inhibitor scaffolds for RTA catalysis. Closing the 5'- and 3'-ends of a d(GAGA) tetraloop creates a substrate with 92-fold more activity with RTA (kcat/Km) than that for the d(GAGA) linear form. Circular substrates have catalytic rates (kcat) comparable to and exceeding those of RNA and DNA stem-loop substrates, respectively. RTA inhibition into the nanomolar range has been achieved by introducing an N-benzyl-hydroxypyrrolidine (N-Bn) transition state analogue at the RTA depurination site in a circular GAGA motif. The RNA/DNA hybrid oligonucleotide cyclic GdAGA provides a new scaffold for RTA inhibitor design, and cyclic G(N-Bn)GA is the smallest tight-binding RTA inhibitor (Ki = 70 nM). The design of such molecules that lack the base-paired stem-loop architecture opens new chemical synthetic approaches to RTA inhibition.
Collapse
Affiliation(s)
| | | | - Vern L. Schramm
- *Corresponding author: Telephone (718) 430-2813 Fax (718) 430-8565
| |
Collapse
|
16
|
Carra JH, Wannemacher RW, Tammariello RF, Lindsey CY, Dinterman RE, Schokman RD, Smith LA. Improved formulation of a recombinant ricin A-chain vaccine increases its stability and effective antigenicity. Vaccine 2007; 25:4149-58. [PMID: 17408819 DOI: 10.1016/j.vaccine.2007.03.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 02/28/2007] [Accepted: 03/05/2007] [Indexed: 12/22/2022]
Abstract
Ricin is a potent toxin associated with bioterrorism for which no vaccine or specific countermeasures are currently available. A stable, non-toxic and immunogenic recombinant ricin A-chain vaccine (RTA 1-33/44-198) has been developed by protein engineering. We identified optimal formulation conditions for this vaccine under which it remained stable and potent in storage for up to 18 months, and resisted multiple rounds of freeze-thawing without stabilizing co-solvents. Reformulation from phosphate buffer to succinate buffer increased adherence of the protein to aluminum hydroxide adjuvant from 15 to 91%, with a concomitant increase of nearly threefold in effective antigenicity in a mouse model. Using Fourier-transform infrared spectroscopy, we examined the secondary structure of the protein while it was adhered to aluminum hydroxide. Adjuvant adsorption produced only a small apparent change in secondary structure, while significantly stabilizing the protein to thermal denaturation. The vaccine therefore may be safely stored in the presence of adjuvant. Our results suggest that optimization of adherence of a protein antigen to aluminum adjuvant can be a useful route to increasing both stability and effectiveness, and support a role for a "depot effect" of adjuvant.
Collapse
Affiliation(s)
- John H Carra
- Integrated Toxicology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702-5011, United States
| | | | | | | | | | | | | |
Collapse
|
17
|
McHugh CA, Tammariello RF, Millard CB, Carra JH. Improved stability of a protein vaccine through elimination of a partially unfolded state. Protein Sci 2004; 13:2736-43. [PMID: 15340172 PMCID: PMC2286567 DOI: 10.1110/ps.04897904] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 06/29/2004] [Accepted: 07/02/2004] [Indexed: 10/26/2022]
Abstract
Ricin is a potent toxin presenting a threat as a biological weapon. The holotoxin consists of two disulfide-linked polypeptides: an enzymatically active A chain (RTA) and a galactose/N-acetylgalactosamine-binding B chain. Efforts to develop an inactivated version of the A chain as a vaccine have been hampered by limitations of stability and solubility. Previously, recombinant truncated versions of the 267-amino-acid A chain consisting of residues 1-33/44-198 or 1-198 were designed by protein engineering to overcome these limits and were shown to be effective and nontoxic as vaccines in mice. Herein we used CD, dynamic light scattering, fluorescence, and Fourier-transform infrared spectroscopy to examine the biophysical properties of these proteins. Although others have found that recombinant RTA (rRTA) adopts a partially unfolded, molten globule-like state at 45 degrees C, rRTA 1-33/44-198 and 1-198 are significantly more thermostable, remaining completely folded at temperatures up to 53 degrees C and 51 degrees C, respectively. Deleting both an exposed loop region (amino acids 34-43) and the C-terminal domain (199-267) contributed to increased thermostability. We found that chemically induced denaturation of rRTA, but not the truncated variants, proceeds through at least a three-state mechanism. The intermediate state in rRTA unfolding has a hydrophobic core accessible to ANS and an unfolded C-terminal domain. Removing the C-terminal domain changed the mechanism of rRTA unfolding, eliminating a tendency to adopt a partially unfolded state. Our results support the conclusion that these derivatives are superior candidates for development as vaccines against ricin and suggest an approach of reduction to minimum essential domains for design of more thermostable recombinant antigens.
Collapse
Affiliation(s)
- Colleen A McHugh
- United States Army Medical Research Institute of Infectious Diseases, Department of Cell Biology and Biochemistry, 1425 Porter Street, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
18
|
Marsden CJ, Fülöp V, Day PJ, Lord JM. The effect of mutations surrounding and within the active site on the catalytic activity of ricin A chain. ACTA ACUST UNITED AC 2003; 271:153-62. [PMID: 14686928 DOI: 10.1046/j.1432-1033.2003.03914.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Models for the binding of the sarcin-ricin loop (SRL) of 28S ribosomal RNA to ricin A chain (RTA) suggest that several surface exposed arginine residues surrounding the active site cleft make important interactions with the RNA substrate. The data presented in this study suggest differing roles for these arginyl residues. Substitution of Arg48 or Arg213 with Ala lowered the activity of RTA 10-fold. Furthermore, substitution of Arg213 with Asp lowered the activity of RTA 100-fold. The crystal structure of this RTA variant showed it to have an unaltered tertiary structure, suggesting that the positively charged state of Arg213 is crucial for activity. Substitution of Arg258 with Ala had no effect on activity, although substitution with Asp lowered activity 10-fold. Substitution of Arg134 prevented expression of folded protein, suggesting a structural role for this residue. Several models have been proposed for the binding of the SRL to the active site of RTA in which the principal difference lies in the conformation of the second 'G' in the target GAGA motif in the 28S rRNA substrate. In one model, the sidechain of Asn122 is proposed to make interactions with this G, whereas another model proposes interactions with Asp75 and Asn78. Site-directed mutagenesis of these residues of RTA favours the first of these models, as substitution of Asn78 with Ser yielded an RTA variant whose activity was essentially wild-type, whereas substitution of Asn122 reduced activity 37.5-fold. Substitution of Asp75 failed to yield significant folded protein, suggesting a structural role for this residue.
Collapse
|
19
|
Abstract
This review highlights the current lack of therapeutic and prophylactic treatments for use against inhaled biological toxins, especially those considered as potential biological warfare (BW) or terrorist threats. Although vaccine development remains a priority, the use of rapidly deployable adjunctive therapeutic or prophylactic drugs could be life-saving in severe cases of intoxication or where vaccination has not been possible or immunity not established. The current lack of such drugs is due to many factors. Thus, methods involving molecular modelling are limited by the extent to which the cellular receptor sites and mode of action and structure of a toxin need to be known. There is also our general lack of knowledge of what effect individual toxins will have when inhaled into the lungs - whether and to what extent the action will be cell specific and cytotoxic or rather an acute inflammatory response requiring the use of immunomodulators. Possible sources of specific high-affinity toxin antagonists being investigated include monoclonal antibodies, selected oligonucleotides (aptamers) and derivatized dendritic polymers (dendrimers). The initial selection of suitable agents of these kinds can be made using cytotoxicity assays involving cultured normal human lung cells and a range of suitable indicators. The possibility that a mixture of selected antibody, aptamer or dendrimer-based materials for one or more toxins could be delivered simultaneously as injections or as inhaled aerosol sprays should be investigated.
Collapse
Affiliation(s)
- Brian M Paddle
- DSTO, Platforms Sciences Laboratory, 506 Lorimer Street, Fishermans Bend, Victoria 3207, Australia.
| |
Collapse
|
20
|
Schwarzl SM, Tschopp TB, Smith JC, Fischer S. Can the calculation of ligand binding free energies be improved with continuum solvent electrostatics and an ideal-gas entropy correction? J Comput Chem 2002; 23:1143-9. [PMID: 12116383 DOI: 10.1002/jcc.10112] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The prediction of a ligand binding constant requires generating three-dimensional structures of the complex concerned and reliably scoring these structures. Here, the scoring problem is investigated by examining benzamidine-like inhibitors of trypsin, a system for which errors in the structures are small. Precise and consistent binding free energies for the inhibitors are determined experimentally for this test system. To examine possible improvement of scoring methods, we test the suitability of continuum electrostatics to account for solvation effects and use an ideal-gas entropy correction to account for the changes in the degrees of freedom of the ligand. The small observed root-mean-square deviation of 0.55 kcal/mol of the calculated relative to the experimental values indicates that the essentials of the binding process have been captured. Even though all six ligands make the same salt bridge and H-bonds to the protein, the electrostatic contribution varies among the ligands by as much as 2 kcal/mol. Moreover, although the ligands are rigid and similar in size, the entropic terms also significantly affect the relative binding affinities (by up to 2.7 kcal/mol). The present approach to solvation and entropy may allow the ranking of the ligands to be considerably improved at a cost that makes the method applicable to the optimization of lead compounds or to the screening of small collections of ligands.
Collapse
Affiliation(s)
- Sonja M Schwarzl
- IWR-Biocomputing, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
21
|
Olson MA, Armendinger TL. Free-energy contributions to complex formation between botulinum neurotoxin type B and synaptobrevin fragment. Protein Eng Des Sel 2002; 15:739-43. [PMID: 12456872 DOI: 10.1093/protein/15.9.739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Free-energy terms that contribute to complex formation between the catalytic domain of botulinum neurotoxin type B (BoNT/B-L(C)) and a 36-residue synaptobrevin fragment were estimated by using a combination of microscopic simulations and continuum methods. The complex for a non-hydrolyzed substrate was calculated by optimizing an energy function applied to the X-ray co-crystal structure of BoNT/B-L(C) bound with reaction products from a cleaved synaptobrevin peptide, refined to high crystallographic thermal factors. The estimated absolute binding affinity of the simulation structure is in good qualitative agreement with the experimental free energy of Michaelis complex formation, given the approximations of the model calculations. The simulation structure revealed significant complex stabilization from the hydrophobic effect, while the electrostatic cost of releasing water molecules from the interface determined to be highly unfavorable. By partitioning the total electrostatic and hydrophobic terms into residue free-energy contributions, a binding-affinity 'signature' for synaptobrevin was developed from the optimized conformation. The results demonstrate the effect of substrate length on complex formation and identify a peripheral high-affinity binding site near the N-terminal region that might initiate cooperative activation responsible for the large minimal substrate length requirement. The so-called SNARE motif is observed to contribute negligible free energy of binding.
Collapse
Affiliation(s)
- Mark A Olson
- Department of Cell Biology and Biochemistry, USAMRIID,1425 Porter Street, Frederick, MD 21702, USA.
| | | |
Collapse
|
22
|
Abstract
The problem of calculating binding affinities of protein-RNA complexes is addressed by analyzing a computational strategy of modeling electrostatic free energies based on a nonlinear Poisson-Boltzmann (NLPB) model and linear response approximation (LRA). The underlying idea is to treat binding as a two-step process. Solutions to the NLPB equation calculate free energies arising from electronic polarizability and the LRA is constructed from molecular dynamics simulations to model reorganization free energies due to conformational transitions. By implementing a consistency condition of requiring the NLPB model to reproduce the solute-solvent free-energy transitions determined by the LRA, a "macromolecule dielectric constant" (epsilon(m)) for treating reorganization is obtained. The applicability of this hybrid approach was evaluated by calculating the absolute free energy of binding and free-energy changes for amino acid substitutions in the complex between the U1A spliceosomal protein and its cognate RNA hairpin. Depending on the residue substitution, epsilon(m) varied from 3 to 18, and reflected dipolar reorientation not included in the polarization modeled by epsilon(m) = 2. Although the changes in binding affinities from substitutions modeled strictly at the implicit level by the NLPB equation with epsilon(m) = 4 reproduced the experimental values with good overall agreement, substitutions problematic to this simple treatment showed significant improvement when solved by the NLPB-LRA approach.
Collapse
Affiliation(s)
- M A Olson
- Molecular Modeling Laboratory, Department of Cell Biology and Biochemistry, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, USA.
| |
Collapse
|
23
|
Olson MA. Electrostatic effects on the free-energy balance in folding a ribosome-inactivating protein. Biophys Chem 2001; 91:219-29. [PMID: 11551434 DOI: 10.1016/s0301-4622(01)00172-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Electrostatics of globular proteins provides structural integrity as well as specificity of biological function. This dual role is particularly striking for ricin A-chain (RTA), an N-glycosidase which hydrolyzes a single adenine base from a conserved region of rRNA. The reported X-ray crystallographic structure of the RTA mutant E177A demonstrated a remarkable rescue of charge balance in the active site, achieved by the rotation of a second glutamic acid (Glu-208) into the vacated space. To understand this conformational reorganization, molecular-dynamics simulations were applied to estimate relative free energies that govern the thermodynamic stability of E177A together with mutants E177Q and E177D. The simulations anticipate that while E177A is a non-conservative substitution, the protein is more stable than the other two mutants. However, the structural plasticity of the RTA active site is not obtained penalty-free, rather E177A among the mutants shows the largest unfavorable net change in the electrostatic contribution to folding. Of the E177A folded state, reorganization of Glu-208 lowers the electrostatic cost of the free-energy change, yet interestingly, protein interactions oppose the rotational shift, while solvent effects favor the transition.
Collapse
Affiliation(s)
- M A Olson
- Department of Cell Biology and Biochemistry, USAMRIID, 1425 Porter Street, Frederick, MD 21702, USA.
| |
Collapse
|
24
|
Thorne GD, Shimizu S, Paul RJ. Hypoxic vasodilation in porcine coronary artery is preferentially inhibited by organ culture. Am J Physiol Cell Physiol 2001; 281:C24-32. [PMID: 11401824 DOI: 10.1152/ajpcell.2001.281.1.c24] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypoxia (95% N2-5% CO2) elicits an endothelium-independent relaxation (45-80%) in freshly dissected porcine coronary arteries. Paired artery rings cultured at 37 degrees C in sterile DMEM (pH approximately 7.4) for 24 h contracted normally to KCl or 1 microM U-46619. However, relaxation in response to hypoxia was sharply attenuated compared with control (fresh arteries or those stored at 4 degrees C for 24 h). Hypoxic vasorelaxation in organ cultured vessels was reduced at both high and low stimulation, indicating that both Ca2+-independent and Ca2+-dependent components are altered. In contrast, relaxation to G-kinase (sodium nitroprusside) or A-kinase (forskolin and isoproterenol) activation was not significantly affected by organ culture. Additionally, there was no difference in relaxation after washout of the stimulus, indicating that the inhibition is specific to acute hypoxia-induced relaxation. Simultaneous force and intracellular calcium concentration ([Ca2+]i) measurements indicate the reduction in [Ca2+]i concomitant with hypoxia at low stimulus levels in these tissue is abolished by culture. Our results indicate that organ culture at 37 degrees C specifically attenuates hypoxic relaxation in vascular smooth muscle by altering dynamics of [Ca2+]i handling and decreasing a Ca2+-independent component of relaxation. Thus organ culture can be a novel tool for investigating the mechanisms of hypoxia-induced vasodilation.
Collapse
Affiliation(s)
- G D Thorne
- Department of Molecular and Cellular Physiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267 - 0576, USA
| | | | | |
Collapse
|
25
|
Abstract
Computer simulation methods are increasingly being used to study possible conformations and dynamics of structural motifs in RNA. Recent results of molecular dynamics simulations and continum solvent studies of RNA structures and RNA-ligand complexes show promising agreement with experimental data. Combined with the ongoing progress in the experimental characterization of RNA structure and thermodynamics, these computational approaches can help to better understand the mechanism of RNA structure formation and the binding of ligands.
Collapse
Affiliation(s)
- M Zacharias
- AG Theoretische Biophysik, Institut für Molekulare Biotechnologie, Jena, D-07745, Germany.
| |
Collapse
|
26
|
Abstract
The determination of free energies that govern protein-protein recognition is essential for a detailed molecular understanding of biological specificity. Continuum models of macromolecular interactions, in which the solvent is treated by an implicit representation and the proteins are treated semi-microscopically, are computationally tractable for estimating free energies, yet many questions remain concerning their accuracy. This article reports a continuum analysis of the free-energy changes underlying the binding of 31 interfacial alanine substitutions of two complexes of the antihen egg white lysozyme (HEL) antibody D1.3 bound with HEL or the antibody E5.2. Two implicit schemes for modeling the effects of protein and solvent relaxation were examined, in which the protein environment was treated as either homogeneous with a "protein dielectric constant" of epsilon(p) = 4 or inhomogeneous, with epsilon(p) = 4 for neutral residues and epsilon(p) = 25 for ionized residues. The results showed that the nonuniform dielectric model reproduced the experimental differences better, with an average absolute error of +/-1.1 kcal/mol, compared with +/-1.4 kcal/mol for the uniform model. More importantly, the error for charged residues in the nonuniform model is +/-0.8 kcal/mol and is nearly half of that corresponding to the uniform model. Several substitutions were clearly problematic in determining qualitative trends and probably required explicit structural reorganization at the protein-protein interface.
Collapse
Affiliation(s)
- M A Olson
- Molecular Modeling Laboratory and Department of Cell Biology and Biochemistry, USAMRIID, Frederick, Maryland 21702, USA.
| | | |
Collapse
|
27
|
Li HG, Xu SZ, Wu S, Yan L, Li JH, Wong RN, Shi QL, Dong YC. Role of Arg163 in the N-glycosidase activity of neo-trichosanthin. PROTEIN ENGINEERING 1999; 12:999-1004. [PMID: 10585506 DOI: 10.1093/protein/12.11.999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Three mutant crystals of neo-trichosanthin (n-TCS), R163K, R163H and R163Q, were obtained by the hanging drop vapor diffusion method. Structure determination indicated that there are no significant differences between the mutants and n-TCS except in the active pocket. All of them were also soaked in sodium citrate buffer (pH 4. 5) containing 20% KCl and 10 mg/ml AMP. Structure determination suggests that in the active pocket of the crystals of R163K and R163H, parallel to the aromatic ring of Tyr70, each mutant possesses an adenine. The relationship between structure and function is discussed. Biochemical analysis reveals that the mutants R163K and R163H have N-glycosidase activity, while R163Q does not. This suggests that R163 is a crucial residue for the enzyme activity of n-TCS, and its role is providing proton.
Collapse
Affiliation(s)
- H G Li
- Department of Protein Engineering, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|