1
|
Truong DT, Ho K, Pham DQH, Chwastyk M, Nguyen-Minh T, Nguyen MT. Treatment of flexibility of protein backbone in simulations of protein-ligand interactions using steered molecular dynamics. Sci Rep 2024; 14:10475. [PMID: 38714683 PMCID: PMC11076533 DOI: 10.1038/s41598-024-59899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/16/2024] [Indexed: 05/10/2024] Open
Abstract
To ensure that an external force can break the interaction between a protein and a ligand, the steered molecular dynamics simulation requires a harmonic restrained potential applied to the protein backbone. A usual practice is that all or a certain number of protein's heavy atoms or Cα atoms are fixed, being restrained by a small force. This present study reveals that while fixing both either all heavy atoms and or all Cα atoms is not a good approach, while fixing a too small number of few atoms sometimes cannot prevent the protein from rotating under the influence of the bulk water layer, and the pulled molecule may smack into the wall of the active site. We found that restraining the Cα atoms under certain conditions is more relevant. Thus, we would propose an alternative solution in which only the Cα atoms of the protein at a distance larger than 1.2 nm from the ligand are restrained. A more flexible, but not too flexible, protein will be expected to lead to a more natural release of the ligand.
Collapse
Affiliation(s)
- Duc Toan Truong
- Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, 70000, Vietnam
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, 70000, Vietnam
| | - Kiet Ho
- Institute for Computational Science and Technology (ICST), Quang Trung Software City, Ho Chi Minh City, 70000, Vietnam
| | | | - Mateusz Chwastyk
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Thai Nguyen-Minh
- University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 70000, Vietnam
| | - Minh Tho Nguyen
- Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, 70000, Vietnam.
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, 70000, Vietnam.
| |
Collapse
|
2
|
Tammara V, Angrover R, Sirur D, Das A. Flagellar motor protein-targeted search for the druggable site of Helicobacter pylori. Phys Chem Chem Phys 2024; 26:2111-2126. [PMID: 38131449 DOI: 10.1039/d3cp05024f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The deleterious impact of Helicobacter pylori (H. pylori) on human health is contingent upon its ability to create and sustain colony structure, which in turn is dictated by the effective performance of flagella - a multi-protein rotary nanodevice. Hence, to design an effective therapeutic strategy against H. pylori, we here conducted a systematic search for an effective druggable site by focusing on the structure-dynamics-energetics-stability landscape of the junction points of three 1 : 1 protein complexes (FliFC-FliGN, FliGM-FliMM, and FliYC-FliNC) that contribute mainly to the rotary motion of the flagella via the transformation of information along the junctions over a wide range of pH values operative in the stomach (from neutral to acidic). We applied a gamut of physiologically relevant perturbations in the form of thermal scanning and mechanical force to sample the entire quasi - and non-equilibrium conformational spaces available for the protein complexes under neutral and acidic pH conditions. Our perturbation-induced magnification of conformational distortion approach identified pH-independent protein sequence-specific evolution of precise thermally labile segments, which dictate the specific thermal unfolding mechanism of each complex and this complex-specific pH-independent structural disruption notion remains consistent under mechanical stress as well. Complementing the above observations with the relative rank-ordering of estimated equilibrium binding free energies between two protein sequences of a specific complex quantifies the extent of structure-stability modulation due to pH alteration, rationalizes the exceptional stability of H. pylori under acidic pH conditions, and identifies the pH-independent complex-sequence-segment-residue diagram for targeted drug design.
Collapse
Affiliation(s)
- Vaishnavi Tammara
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune, Maharashtra 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ruchika Angrover
- The Departments of the University Institute of Biotechnology, Chandigarh University, NH-05, Ludhiana - Chandigarh State Highway, Punjab 140413, India
| | - Disha Sirur
- School of Physical Sciences, National Institute of Science Education & Research-Bhubaneswar, An OCC of Homi Bhabha National Institute, P.O. Jatni, Khurda, Odisha 752050, India
| | - Atanu Das
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune, Maharashtra 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Tammara V, Das A. Governing dynamics and preferential binding of the AXH domain influence the aggregation pathway of Ataxin-1. Proteins 2023; 91:380-394. [PMID: 36208132 DOI: 10.1002/prot.26436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/30/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
The present state of understanding the mechanism of Spinocerebellar Ataxia-1, a fatal neurodegenerative disease linked to the protein Ataxin-1 (ATXN1), is baffled by a set of self-contradictory, and hence, inconclusive observations. This fallacy poses a bottleneck to the effective designing of curable drugs as the field is currently missing the specific druggable site. To understand the fundamentals of pathogenesis, we tried to decipher the intricacies of the extremely complicated landscape by targeting the relevant species that supposedly dictate the structure-function paradigm. The atomic-level description and characterization of the dynamism of the systems reveal the existence of structural polymorphism in all the leading stakeholders of the overall system. The very existence of conformational heterogeneity in every species creates numerous possible combinations of favorable interactions because of the variability in segmental cross-talks and hence claims its role in the choice of routes between functional activity and dysfunctional disease-causing aggregation. Despite this emergent configurational diversity, there is a common mode of operative intermolecular forces that dictates the extent of stability of all the multimeric complexes due to the localized population of a specific type of residue. The present research proposes a dynamic switch mechanism between aggregability and functional activity, based on the logical interpretation of the estimated variables, which is practically dictated by the effective concentration of the interacting species involved in the cell.
Collapse
Affiliation(s)
- Vaishnavi Tammara
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Atanu Das
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Understanding the mechanism of amylin aggregation: From identifying crucial segments to tracing dominant sequential events to modeling potential aggregation suppressors. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140866. [PMID: 36272537 DOI: 10.1016/j.bbapap.2022.140866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022]
Abstract
One of the most abundant, prevailing, and life-threatening human diseases that are currently baffling the scientific community is type 2 diabetes (T2D). The self-association of human amylin has been implicated in the pathogenesis of T2D, though with an inconclusive understanding of the mechanism. Hence, we focused on the characterization of the conformational ensembles of all the species that are believed to define the structural polymorphism of the aggregation process - the functional monomeric, the initially self-associated oligomeric, and the structured protofibril - by employing near-equilibrium, non-equilibrium, and equilibrium atomistic simulations on the sporadic, two familial variants (S20G and G33R), and their proline-substituted forms (S20P and G33P). The dynamic near-equilibrium assays hint toward - the abundance of helical conformation in the monomeric state, the retainment of the helicity in the initial self-associated oligomeric phase pointing toward the existence of the helix-helix association mechanism, the difference in preference of specific segments to have definite secondary structural features, the phase-dependent variability in the dominance of specific segments and mutation sites, and the simultaneous presence of generic and unique features among various sequences. Furthermore, the non-equilibrium pulling assays exemplify a generic sequential unzipping mechanism of the protofibrils, however, the sequence-dependent uniqueness comes from the difference in location and magnitude of the control of a specific terminus. Importantly, the equilibrium thermodynamic assays efficiently rank order the potential of aggregability among sequences and consequently suggests the probability of designing effective aggregation suppressors against sporadic and familial amylin variants incorporating proline as the mutation.
Collapse
|
5
|
Smardz P, Sieradzan AK, Krupa P. Mechanical Stability of Ribonuclease A Heavily Depends on the Redox Environment. J Phys Chem B 2022; 126:6240-6249. [PMID: 35975925 PMCID: PMC9421896 DOI: 10.1021/acs.jpcb.2c04718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Disulfide bonds are covalent bonds that connect nonlocal fragments of proteins, and they are unique post-translational modifications of proteins. They require the oxidizing environment to be stable, which occurs for example during oxidative stress; however, in a cell the reductive environment is maintained, lowering their stability. Despite many years of research on disulfide bonds, their role in the protein life cycle is not fully understood and seems to strictly depend on a system or process in which they are involved. In this article, coarse-grained UNited RESidue (UNRES), and all-atom Assisted Model Building with Energy Refinement (AMBER) force fields were applied to run a series of steered molecular dynamics (SMD) simulations of one of the most studied, but still not fully understood, proteins─ribonuclease A (RNase A). SMD simulations were performed to study the mechanical stability of RNase A in different oxidative-reductive environments. As disulfide bonds (and any other covalent bonds) cannot break/form in any classical all-atom force field, we applied additional restraints between sulfur atoms of reduced cysteines which were able to mimic the breaking of the disulfide bonds. On the other hand, the coarse-grained UNRES force field enables us to study the breaking/formation of the disulfide bonds and control the reducing/oxidizing environment owing to the presence of the designed distance/orientation-dependent potential. This study reveals that disulfide bonds have a strong influence on the mechanical stability of RNase A only in a highly oxidative environment. However, the local stability of the secondary structure seems to play a major factor in the overall stability of the protein. Both our thermal unfolding and mechanical stretching studies show that the most stable disulfide bond is Cys65-Cys72. The breaking of disulfide bonds Cys26-Cys84 and Cys58-Cys110 is associated with large force peaks. They are structural bridges, which are mostly responsible for stabilizing the RNase A conformation, while the presence of the remaining two bonds (Cys65-Cys72 and Cys40-Cys95) is most likely connected with the enzymatic activity rather than the structural stability of RNase A in the cytoplasm. Our results prove that disulfide bonds are indeed stabilizing fragments of the proteins, but their role is strongly redox environment-dependent.
Collapse
Affiliation(s)
- Pamela Smardz
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Adam K Sieradzan
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Paweł Krupa
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
6
|
Henning-Knechtel A, Thirumalai D, Kirmizialtin S. Differences in ion-RNA binding modes due to charge density variations explain the stability of RNA in monovalent salts. SCIENCE ADVANCES 2022; 8:eabo1190. [PMID: 35857829 PMCID: PMC9299541 DOI: 10.1126/sciadv.abo1190] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The stability of RNA increases as the charge density of the alkali metal cations increases. The molecular mechanism for this phenomenon remains elusive. To fill this gap, we performed all-atom molecular dynamics pulling simulations of HIV-1 trans-activation response RNA. We first established that the free energy landscape obtained in the simulations is in excellent agreement with the single-molecule optical tweezer experiments. The origin of the stronger stability in sodium compared to potassium is found to be due to the differences in the charge density-related binding modes. The smaller hydrated sodium ion preferentially binds to the highly charged phosphates that have high surface area. In contrast, the larger potassium ions interact with the major grooves. As a result, more cations condense around phosphate groups in the case of sodium ions, leading to the reduction of electrostatic repulsion. Because the proposed mechanism is generic, we predict that the same conclusions are valid for divalent alkaline earth metal cations.
Collapse
Affiliation(s)
| | - D. Thirumalai
- Department of Chemistry, University of Texas, Austin, TX 78712, USA
- Corresponding author. (D.T.); (S.K.)
| | - Serdal Kirmizialtin
- Chemistry Program, Math and Sciences, New York University Abu Dhabi, Abu Dhabi, UAE
- Corresponding author. (D.T.); (S.K.)
| |
Collapse
|
7
|
Bhagavatula H, Sarkar A, Santra B, Das A. Scan-Find-Scan-Model: Discrete Site-Targeted Suppressor Design Strategy for Amyloid-β. ACS Chem Neurosci 2022; 13:2191-2208. [PMID: 35767676 DOI: 10.1021/acschemneuro.2c00272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease is undoubtedly the most well-studied neurodegenerative disease. Consequently, the amyloid-β (Aβ) protein ranks at the top in terms of getting attention from the scientific community for structural property-based characterization. Even after decades of extensive research, there is existing volatility in terms of understanding and hence the effective tackling procedures against the disease that arises due to the lack of knowledge of both specific target- and site-specific drugs. Here, we develop a multidimensional approach based on the characterization of the common static-dynamic-thermodynamic trait of the monomeric protein, which efficiently identifies a small target sequence that contains an inherent tendency to misfold and consequently aggregate. The robustness of the identification of the target sequence comes with an abundance of a priori knowledge about the length and sequence of the target and hence guides toward effective designing of the target-specific drug with a very low probability of bottleneck and failure. Based on the target sequence information, we further identified a specific mutant that showed the maximum potential to act as a destabilizer of the monomeric protein as well as enormous success as an aggregation suppressor. We eventually tested the drug efficacy by estimating the extent of modulation of binding affinity existing within the fibrillar form of the Aβ protein due to a single-point mutation and hence provided a proof of concept of the entire protocol.
Collapse
Affiliation(s)
- Hasathi Bhagavatula
- Department of Biotechnology, Progressive Education Society's Modern College of Arts Science and Commerce, Shivajinagar, Pune 411005, India
| | - Archishman Sarkar
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja Subodh Chandra Mallick Road, Kolkata, West Bengal 700032, India
| | - Binit Santra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh 208016, India
| | - Atanu Das
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Vavra O, Damborsky J, Bednar D. Fast approximative methods for study of ligand transport and rational design of improved enzymes for biotechnologies. Biotechnol Adv 2022; 60:108009. [PMID: 35738509 DOI: 10.1016/j.biotechadv.2022.108009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/27/2022]
Abstract
Acceleration of chemical reactions by the enzymes optimized using protein engineering represents one of the key pillars of the contribution of biotechnology towards sustainability. Tunnels and channels of enzymes with buried active sites enable the exchange of ligands, ions, and water molecules between the outer environment and active site pockets. The efficient exchange of ligands is a fundamental process of biocatalysis. Therefore, enzymes have evolved a wide range of mechanisms for repetitive conformational changes that enable periodic opening and closing. Protein-ligand interactions are traditionally studied by molecular docking, whereas molecular dynamics is the method of choice for studying conformational changes and ligand transport. However, computational demands make molecular dynamics impractical for screening purposes. Thus, several approximative methods have been recently developed to study interactions between a protein and ligand during the ligand transport process. Apart from identifying the best binding modes, these methods also provide information on the energetics of the transport and identify problematic regions limiting the ligand passage. These methods use approximations to simulate binding or unbinding events rapidly (calculation times from minutes to hours) and provide energy profiles that can be used to rank ligands or pathways. Here we provide a critical comparison of available methods, showcase their results on sample systems, discuss their practical applications in molecular biotechnologies and outline possible future developments.
Collapse
Affiliation(s)
- Ondrej Vavra
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic; Enantis, INBIT, Kamenice 34, 625 00 Brno, Czech Republic.
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic.
| |
Collapse
|
9
|
Zhang Q, Zhao N, Meng X, Yu F, Yao X, Liu H. The prediction of protein-ligand unbinding for modern drug discovery. Expert Opin Drug Discov 2021; 17:191-205. [PMID: 34731059 DOI: 10.1080/17460441.2022.2002298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Drug-target thermodynamic and kinetic information have perennially important roles in drug design. The prediction of protein-ligand unbinding, which can provide important kinetic information, in experiments continues to face great challenges. Uncovering protein-ligand unbinding through molecular dynamics simulations has become efficient and inexpensive with the progress and enhancement of computing power and sampling methods. AREAS COVERED In this review, various sampling methods for protein-ligand unbinding and their basic principles are firstly briefly introduced. Then, their applications in predicting aspects of protein-ligand unbinding, including unbinding pathways, dissociation rate constants, residence time and binding affinity, are discussed. EXPERT OPINION Although various sampling methods have been successfully applied in numerous systems, they still have shortcomings and deficiencies. Most enhanced sampling methods require researchers to possess a wealth of prior knowledge of collective variables or reaction coordinates. In addition, most systems studied at present are relatively simple, and the study of complex systems in real drug research remains greatly challenging. Through the combination of machine learning and enhanced sampling methods, prediction accuracy can be further improved, and some problems encountered in complex systems also may be solved.
Collapse
Affiliation(s)
| | - Nannan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xiaoxiao Meng
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Fansen Yu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xiaojun Yao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
10
|
Das A. Systematic Search for a Predictor for the Clinical Observables of Alzheimer's Disease. J Phys Chem B 2021; 125:12177-12186. [PMID: 34723517 DOI: 10.1021/acs.jpcb.1c06725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
One of the prevailing life-threatening incurable neurodegenerative diseases that are presently endangering human society as a whole, and hence, baffling the entire spectrum of the scientific and pharmaceutical world, is Alzheimer's disease (AD). AD is a manifestation of self-assembly of both wild-type (sporadic) and mutated (familial) forms of the amyloid-β peptide, a proteolytic product of the amyloid precursor protein, where the self-assembly results in the genesis of pathogenic fibrillar aggregates. Currently prevailing diagnostic and hence therapeutic challenges originate from the unavailability of a specific predictor for clinical observables. The continuous emergence of novel pathogenic mutants with unpredictable phenotypes adds immensely to the nonspecific nature of the problem. The current research reports a simple physical parameter, the binding affinity of a protofilament to its protofibril, which predicts the clinical observables of familial AD with astounding accuracy and more importantly, without any adjustable parameters.
Collapse
Affiliation(s)
- Atanu Das
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Golcuk M, Hacisuleyman A, Erman B, Yildiz A, Gur M. Binding Mechanism of Neutralizing Nanobodies Targeting SARS-CoV-2 Spike Glycoprotein. J Chem Inf Model 2021; 61:5152-5160. [PMID: 34581563 PMCID: PMC8491549 DOI: 10.1021/acs.jcim.1c00695] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Indexed: 12/25/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters human cells upon binding of its spike (S) glycoproteins to ACE2 receptors. Several nanobodies neutralize SARS-CoV-2 infection by binding to the receptor-binding domain (RBD) of the S protein, but how their binding antagonizes S-ACE2 interactions is not well understood. Here, we identified interactions between the RBD and nanobodies H11-H4, H11-D4, and Ty1 by performing all-atom molecular dynamics simulations. H11-H4 and H11-D4 can bind to RBD without overlapping with ACE2. H11-H4, and to a lesser extent H11-D4, binding dislocates ACE2 from its binding site due to electrostatic repulsion. In comparison, Ty1 overlaps with ACE2 on RBD and has a similar binding strength to ACE2. Mutations in the Alpha variant of SARS-CoV-2 had a minor effect in RBD binding strengths of ACE2 and nanobodies, but reduced the ability of H11-H4 and H11-D4 to dislocate ACE2 from RBD. In comparison, the Beta variant weakened the RBD binding strengths of H11-H4 and H11-D4, which were less effective to dislocate ACE2 binding. Unexpectedly, mutations in Beta strengthened Ty1 binding to RBD, suggesting that this nanobody may be more effective to neutralize the Beta variant of SARS-CoV-2.
Collapse
Affiliation(s)
- Mert Golcuk
- Department of Mechanical Engineering,
Istanbul Technical University (ITU), 34437 Istanbul,
Turkey
| | - Aysima Hacisuleyman
- Institute of Bioengineering, Swiss
Federal Institute of Technology (EPFL), 1015 Lausanne,
Switzerland
| | - Burak Erman
- Chemical and Biological Engineering Department,
Koc University, 34450 Istanbul,
Turkey
| | - Ahmet Yildiz
- Physics Department, University of
California, Berkeley, California 94720, United
States
- Department of Molecular and Cell Biology,
University of California, Berkeley, California 94720,
United States
| | - Mert Gur
- Department of Mechanical Engineering,
Istanbul Technical University (ITU), 34437 Istanbul,
Turkey
| |
Collapse
|
12
|
Abstract
This chapter has been conceived as an introductory text to aid in the understanding of the key design strategies for the development of synthetic analogs of endogenous retinoids as ligands for the retinoic acid receptors (RARs) and retinoid X receptors (RXRs). The structure and binding characteristics of the endogenous retinoids are first explained to put the main chemical design challenges in context. Existing biochemical and structural data is then used to describe the guiding principles used to develop agonists and antagonists of the RARs and RXRs. In light of the increasing proliferation of biophysical methods that employ fluorescence measurements or molecular tags, we also examine the application of retinoids as probes and the chemical principles required to develop these tools.
Collapse
Affiliation(s)
| | - Andrew Whiting
- Department of Chemistry, Durham University, Lower Mountjoy, Durham, United Kingdom
| |
Collapse
|
13
|
Abstract
Nuclear receptors (NRs) are ligand-inducible transcription factors that play an essential role in a multitude of physiological processes as well as diseases, rendering them attractive drug targets. Crystal structures revealed the binding site of NRs to be buried in the core of the protein, with no obvious route for ligands to access this cavity. The process of ligand binding is known to be an often-neglected contributor to the efficacy of drug candidates and is thought to influence the selectivity and specificity of NRs. While experimental methods generally fail to highlight the dynamic processes of ligand access or egress on the atomistic scale, computational methods have provided fundamental insight into the pathways connecting the buried binding pocket to the surrounding environment. Methods based on molecular dynamics (MD) and Monte Carlo simulations have been applied to identify pathways and quantify their capability to transport ligands. Here, we systematically review findings of more than 20 years of research in the field, including the applied methodology and controversies. Further, we establish a unified nomenclature to describe the pathways with respect to their location relative to protein secondary structure elements and summarize findings relevant to drug design. Lastly, we discuss the effect of NR interaction partners such as coactivators and corepressors, as well as mutations on the pathways.
Collapse
Affiliation(s)
- André Fischer
- Molecular Modeling, Pharmacenter of the University of Basel , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| | - Martin Smieško
- Molecular Modeling, Pharmacenter of the University of Basel , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| |
Collapse
|
14
|
Wang AH, Zhang ZC, Li GH. Advances in enhanced sampling molecular dynamics simulations for biomolecules. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1905091] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- An-hui Wang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Zhi-chao Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Guo-hui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
15
|
Qin S, Yong X. Controlling the stability of Pickering emulsions by pH-responsive nanoparticles. SOFT MATTER 2019; 15:3291-3300. [PMID: 30821791 DOI: 10.1039/c8sm02407c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrostatic dissipative particle dynamics simulations were conducted to model the interactions between emulsion droplets stabilized by pH-sensitive polyelectrolyte-grafted nanoparticles. Using a steered molecular dynamics approach, a mechanistic study of forced coalescence was performed to probe the resistance between two particle-covered droplets. The degree of ionization of the grafted polyelectrolytes was adjusted to capture the pH responsiveness. The maximal resistance forces were measured to quantitatively discriminate the efficacy of particles in stabilizing emulsions at different degrees of ionization. Through analyzing droplet dynamics, resistance force variation, and electric field, we discovered that the resistance is attributed to direct electrostatic repulsion, the image charge effect near the water-oil interface, and steric hindrance among extended polymers. When the particle density on the droplet surface is relatively low, the increasing resistance forces at higher degrees of ionization can effectively prevent droplet coalescence. Oppositely, the ionization compromises emulsion stability when the particle surface coverage is high. Substantial desorption of particles from the interface was triggered as the degree of ionization increases. This in turn reduces resistance force and facilitates coalescence. Moreover, the nanoparticles prevent coalescence at high surface coverages by forming dense layers at individual interfaces, while the particle bridges straddling two interfaces were found at low surface coverages, which can also keep the droplets apart.
Collapse
Affiliation(s)
- Shiyi Qin
- Department of Mechanical Engineering, Binghamton University, The State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, USA.
| | | |
Collapse
|
16
|
Molnar F, Norris LS, Schulten K. Simulated (Un)Binding of Arachidonic Acid in the Cyclooxygenase site of Prostaglandin H2 Synthase-1. PROGRESS IN REACTION KINETICS AND MECHANISM 2019. [DOI: 10.3184/007967400103165155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Molecular dynamics simulations with external forces are employed to study the unbinding and binding of arachidonic acid (AA) in the cyclooxygenase (COX) site of prostaglandin H2 synthase-1. Simulations with AA inside the COX binding channel reveal sequences of concerted bond rotations in the fatty acid alkyl chain which obviate the need for gross conformational changes in the protein and substrate during unbinding and binding. The all-cis structure of AA, with double bonds separated by two single bonds, facilitates easy access to the COX channel and correct positioning inside the active site for the COX chemistry to occur. Two derivatives of AA, one with a cis double bond changed to a trans configuration and the other with a double bond reduced to a single bond, are also studied. In both cases the concertedness of bond rotations in the fatty acid chain is diminished and larger forces are required to move the fatty acid inside the COX channel. Important motions of residues near the mouth of the COX channel are found and analyzed. In particular, a conformational “switch” involving Arg83, Glu524 and Arg120 is seen to mediate the movement of the substrate from the membrane to the channel.
Collapse
Affiliation(s)
- Ferenc Molnar
- Beckman Institute, University of Illinois at Urbana-Champaign, 405 North Mathews, Urbana, Illinois 61801
| | - Lawrence S. Norris
- Departments of Biomedical Engineering and Chemistry, Northwestern University, 2145 Sheridan, Evanston, IL 60208, USA
| | - Klaus Schulten
- Beckman Institute, University of Illinois at Urbana-Champaign, 405 North Mathews, Urbana, Illinois 61801
| |
Collapse
|
17
|
Sumbul F, Rico F. Single-Molecule Force Spectroscopy: Experiments, Analysis, and Simulations. Methods Mol Biol 2019; 1886:163-189. [PMID: 30374867 DOI: 10.1007/978-1-4939-8894-5_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanical properties of cells and of subcellular components are important to obtain a mechanistic molecular understanding of biological processes. The quantification of mechanical resistance of cells and biomolecules using biophysical methods matured thanks to the development of nanotechnologies such as optical and magnetic tweezers, the biomembrane force probe, and atomic force microscopy (AFM). The quantitative nature of force spectroscopy measurements has converted AFM into a valuable tool in biophysics. Force spectroscopy allows the determination of the forces required to unfold protein domains and to disrupt individual receptor/ligand bonds. Molecular simulations as a computational microscope allow investigation of similar biological processes with an atomistic detail. In this chapter, we first provide a step-by-step protocol of force spectroscopy experiments using AFM, including sample preparation, measurements, and analysis and interpretation of the resulting dynamic force spectrum in terms of available theories. Next, we present the background for molecular dynamics (MD) simulations focusing on steered molecular dynamics (SMD) and the importance of bridging computational tools with experimental techniques.
Collapse
Affiliation(s)
- Fidan Sumbul
- LAI, Aix-Marseille Université, INSERM UMR_S 1067, CNRS UMR 7333, 163 Avenue de Luminy, Marseille, 13009, France
| | - Felix Rico
- LAI, Aix-Marseille Université, INSERM UMR_S 1067, CNRS UMR 7333, 163 Avenue de Luminy, Marseille, 13009, France.
| |
Collapse
|
18
|
Detailed potential of mean force studies on host-guest systems from the SAMPL6 challenge. J Comput Aided Mol Des 2018; 32:1013-1026. [PMID: 30143917 DOI: 10.1007/s10822-018-0153-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/11/2018] [Indexed: 12/14/2022]
Abstract
Accurately predicting receptor-ligand binding free energies is one of the holy grails of computational chemistry with many applications in chemistry and biology. Many successes have been reported, but issues relating to sampling and force field accuracy remain significant issues affecting our ability to reliably calculate binding free energies. In order to explore these issues in more detail we have examined a series of small host-guest complexes from the SAMPL6 blind challenge, namely octa-acids (OAs)-guest complexes and Curcurbit[8]uril (CB8)-guest complexes. Specifically, potential of mean force studies using umbrella sampling combined with the weighted histogram method were carried out on both systems with both known and unknown binding affinities. We find that using standard force fields and straightforward simulation protocols we are able to obtain satisfactory results, but that simply scaling our results allows us to significantly improve our predictive ability for the unknown test sets: the overall RMSD of the binding free energy versus experiment is reduced from 5.59 to 2.36 kcal/mol; for the CB8 test system, the RMSD goes from 8.04 to 3.51 kcal/mol, while for the OAs test system, the RSMD goes from 2.89 to 0.95 kcal/mol. The scaling approach was inspired by studies on structurally related known benchmark sets: by simply scaling, the RMSD was reduced from 6.23 to 1.19 kcal/mol and from 2.96 to 0.62 kcal/mol for the CB8 benchmark system and the OA benchmark system, respectively. We find this scaling procedure to correct absolute binding affinities to be highly effective especially when working across a "congeneric" series with similar charge states. It is less successful when applied to mixed ligands with varied charges and chemical characteristics, but improvement is still realized in the present case. This approach suggests that there are large systematic errors in absolute binding free energy calculations that can be straightforwardly accounted for using a scaling procedure. Random errors are still an issue, but near chemical accuracy can be obtained using the present strategy in select cases.
Collapse
|
19
|
Do PC, Lee EH, Le L. Steered Molecular Dynamics Simulation in Rational Drug Design. J Chem Inf Model 2018; 58:1473-1482. [DOI: 10.1021/acs.jcim.8b00261] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Phuc-Chau Do
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Eric H. Lee
- Department of Medicine and Division of Hematology and Oncology, Loma Linda University Medical Center, Loma Linda, California 92350, United States
| | - Ly Le
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
20
|
Gupta M, Khan TS, Agarwal M, Haider MA. Understanding the Nature of Amino Acid Interactions with Pd(111) or Pd-Au Bimetallic Catalysts in the Aqueous Phase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1300-1310. [PMID: 29281290 DOI: 10.1021/acs.langmuir.7b03271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The interaction of methionine (Met) with different bimetallic-segregated surfaces comprising a uniform distribution of strips and islands of Au on the Pd(111) surface was examined using molecular dynamics (MD) simulations. Out of all the segregated and uniformly doped surfaces studied, the design of Pd-Au islands showed some reduction in the interaction energy (Eint = -43.7 kJ/mol) as compared to that of the pure Pd(111) surface (Eint = -50 kJ/mol) for a single Met molecule. However, at a higher coverage of 9 Met molecules/simulation cell, none of the Pd-Au alloy surfaces showed any improvement as compared to the Pd(111) surface. In order to develop a comprehensive understanding of the nature of the nonbonded interaction of aqueous biogenic impurities with the Pd catalyst surface, the MD study was extended to include a variety of aliphatic, S-containing, aromatic, and polar amino acids. The potential of mean force (PMF) profiles were observed to be distinct for each class of amino acids with substantial differences among amino acids with acidic and basic side chains. The side chains of all the polar and aromatic amino acids showed direct contact with the surface while aliphatic amino acids had their hydrophobic side chain aligned away from the surface. Interestingly, lysine (Lys) and tyrosine (Tyr) were the only two amino acids which interacted preferentially via the distant backbone nitrogen and backbone oxygen, respectively, despite their side chains being in direct contact with the metal surface. The strength of interaction was correlated with the size of the amino acid; the interaction energies were observed to be the maximum for large molecules such as arginine (Arg, Eint = -87.7 kJ/mol) and tryptophan (Trp, Eint = -73.4 kJ/mol), while it was a minimum for aliphatic amino acids such as alanine (Ala, Eint = -10.9 kJ/mol). The study is focused on examining the sensitivity of the choice of the preferential interaction site, conformational preferences, and interaction energies to the side-chain specificity.
Collapse
Affiliation(s)
- Madhulika Gupta
- Renewable Energy and Chemicals Lab, Department of Chemical Engineering, ‡Department of Chemistry, and §Computer Services Centre, Indian Institute of Technology Delhi , Hauz Khas, Delhi 110016, India
| | - Tuhin S Khan
- Renewable Energy and Chemicals Lab, Department of Chemical Engineering, ‡Department of Chemistry, and §Computer Services Centre, Indian Institute of Technology Delhi , Hauz Khas, Delhi 110016, India
| | - Manish Agarwal
- Renewable Energy and Chemicals Lab, Department of Chemical Engineering, ‡Department of Chemistry, and §Computer Services Centre, Indian Institute of Technology Delhi , Hauz Khas, Delhi 110016, India
| | - M Ali Haider
- Renewable Energy and Chemicals Lab, Department of Chemical Engineering, ‡Department of Chemistry, and §Computer Services Centre, Indian Institute of Technology Delhi , Hauz Khas, Delhi 110016, India
| |
Collapse
|
21
|
Nguyen MK, Jaillet L, Redon S. ART-RRT: As-Rigid-As-Possible exploration of ligand unbinding pathways. J Comput Chem 2018; 39:665-678. [DOI: 10.1002/jcc.25132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/30/2017] [Accepted: 11/20/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Minh Khoa Nguyen
- Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LJK; 38000 Grenoble France
| | - Léonard Jaillet
- Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LJK; 38000 Grenoble France
| | - Stéphane Redon
- Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LJK; 38000 Grenoble France
| |
Collapse
|
22
|
Hu X, Hu S, Wang J, Dong Y, Zhang L, Dong Y. Steered molecular dynamics for studying ligand unbinding of ecdysone receptor. J Biomol Struct Dyn 2017; 36:3819-3828. [DOI: 10.1080/07391102.2017.1401002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xueping Hu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Song Hu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Jiazhe Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yawen Dong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Li Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yanhong Dong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Ahmed M, Jalily Hasani H, Ganesan A, Houghton M, Barakat K. Modeling the human Na v1.5 sodium channel: structural and mechanistic insights of ion permeation and drug blockade. Drug Des Devel Ther 2017; 11:2301-2324. [PMID: 28831242 PMCID: PMC5552146 DOI: 10.2147/dddt.s133944] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abnormalities in the human Nav1.5 (hNav1.5) voltage-gated sodium ion channel (VGSC) are associated with a wide range of cardiac problems and diseases in humans. Current structural models of hNav1.5 are still far from complete and, consequently, their ability to study atomistic interactions of this channel is very limited. Here, we report a comprehensive atomistic model of the hNav1.5 ion channel, constructed using homology modeling technique and refined through long molecular dynamics simulations (680 ns) in the lipid membrane bilayer. Our model was comprehensively validated by using reported mutagenesis data, comparisons with previous models, and binding to a panel of known hNav1.5 blockers. The relatively long classical MD simulation was sufficient to observe a natural sodium permeation event across the channel's selectivity filters to reach the channel's central cavity, together with the identification of a unique role of the lysine residue. Electrostatic potential calculations revealed the existence of two potential binding sites for the sodium ion at the outer selectivity filters. To obtain further mechanistic insight into the permeation event from the central cavity to the intracellular region of the channel, we further employed "state-of-the-art" steered molecular dynamics (SMD) simulations. Our SMD simulations revealed two different pathways through which a sodium ion can be expelled from the channel. Further, the SMD simulations identified the key residues that are likely to control these processes. Finally, we discuss the potential binding modes of a panel of known hNav1.5 blockers to our structural model of hNav1.5. We believe that the data presented here will enhance our understanding of the structure-property relationships of the hNav1.5 ion channel and the underlying molecular mechanisms in sodium ion permeation and drug interactions. The results presented here could be useful for designing safer drugs that do not block the hNav1.5 channel.
Collapse
Affiliation(s)
| | | | | | - Michael Houghton
- Li Ka Shing Institute of Virology
- Li Ka Shing Applied Virology Institute
- Department of Medical Microbiology and Immunology, Katz Centre for Health Research, University of Alberta, Edmonton, AB, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences
- Li Ka Shing Institute of Virology
- Li Ka Shing Applied Virology Institute
| |
Collapse
|
24
|
Gupta M, Khan TS, Gupta S, Alam MI, Agarwal M, Haider MA. Non-bonding and bonding interactions of biogenic impurities with the metal catalyst and the design of bimetallic alloys. J Catal 2017. [DOI: 10.1016/j.jcat.2017.06.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Rydzewski J, Nowak W. Ligand diffusion in proteins via enhanced sampling in molecular dynamics. Phys Life Rev 2017; 22-23:58-74. [PMID: 28410930 DOI: 10.1016/j.plrev.2017.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 10/28/2016] [Accepted: 03/28/2017] [Indexed: 01/17/2023]
Abstract
Computational simulations in biophysics describe the dynamics and functions of biological macromolecules at the atomic level. Among motions particularly important for life are the transport processes in heterogeneous media. The process of ligand diffusion inside proteins is an example of a complex rare event that can be modeled using molecular dynamics simulations. The study of physical interactions between a ligand and its biological target is of paramount importance for the design of novel drugs and enzymes. Unfortunately, the process of ligand diffusion is difficult to study experimentally. The need for identifying the ligand egress pathways and understanding how ligands migrate through protein tunnels has spurred the development of several methodological approaches to this problem. The complex topology of protein channels and the transient nature of the ligand passage pose difficulties in the modeling of the ligand entry/escape pathways by canonical molecular dynamics simulations. In this review, we report a methodology involving a reconstruction of the ligand diffusion reaction coordinates and the free-energy profiles along these reaction coordinates using enhanced sampling of conformational space. We illustrate the above methods on several ligand-protein systems, including cytochromes and G-protein-coupled receptors. The methods are general and may be adopted to other transport processes in living matter.
Collapse
Affiliation(s)
- J Rydzewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland.
| | - W Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland.
| |
Collapse
|
26
|
Samyn DR, Van der Veken J, Van Zeebroeck G, Persson BL, Karlsson BCG. Key Residues and Phosphate Release Routes in the Saccharomyces cerevisiae Pho84 Transceptor: THE ROLE OF TYR179 IN FUNCTIONAL REGULATION. J Biol Chem 2016; 291:26388-26398. [PMID: 27875295 PMCID: PMC5159500 DOI: 10.1074/jbc.m116.738112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/28/2016] [Indexed: 12/13/2022] Open
Abstract
Pho84, a major facilitator superfamily (MFS) protein, is the main high-affinity Pi transceptor in Saccharomyces cerevisiae Although transport mechanisms have been suggested for other MFS members, the key residues and molecular events driving transport by Pi:H+ symporters are unclear. The current Pho84 transport model is based on the inward-facing occluded crystal structure of the Pho84 homologue PiPT in the fungus Piriformospora indica However, this model is limited by the lack of experimental data on the regulatory residues for each stage of the transport cycle. In this study, an open, inward-facing conformation of Pho84 was used to study the release of Pi A comparison of this conformation with the model for Pi release in PiPT revealed that Tyr179 in Pho84 (Tyr150 in PiPT) is not part of the Pi binding site. This difference may be due to a lack of detailed information on the Pi release step in PiPT. Molecular dynamics simulations of Pho84 in which a residue adjacent to Tyr179, Asp178, is protonated revealed a conformational change in Pho84 from an open, inward-facing state to an occluded state. Tyr179 then became part of the binding site as was observed in the PiPT crystal structure. The importance of Tyr179 in regulating Pi release was supported by site-directed mutagenesis and transport assays. Using trehalase activity measurements, we demonstrated that the release of Pi is a critical step for transceptor signaling. Our results add to previous studies on PiPT, creating a more complete picture of the proton-coupled Pi transport cycle of a transceptor.
Collapse
Affiliation(s)
- Dieter R Samyn
- the Linnæus University Centre for Biomaterials Chemistry, Linnæus University, SE-391 82 Kalmar, Sweden
| | - Jeroen Van der Veken
- the Linnæus University Centre for Biomaterials Chemistry, Linnæus University, SE-391 82 Kalmar, Sweden
| | - Griet Van Zeebroeck
- the Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, BE-3001 Leuven-Heverlee, Flanders, Belgium, and.,the Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, BE-3001 Leuven-Heverlee, Flanders, Belgium
| | - Bengt L Persson
- the Linnæus University Centre for Biomaterials Chemistry, Linnæus University, SE-391 82 Kalmar, Sweden
| | - Björn C G Karlsson
- the Linnæus University Centre for Biomaterials Chemistry, Linnæus University, SE-391 82 Kalmar, Sweden, .,From the Computational Chemistry & Biochemistry Group
| |
Collapse
|
27
|
Whiteley CG, Lee DJ. Computer simulations of the interaction of human immunodeficiency virus (HIV) aspartic protease with spherical gold nanoparticles: implications in acquired immunodeficiency syndrome (AIDS). NANOTECHNOLOGY 2016; 27:365101. [PMID: 27483476 DOI: 10.1088/0957-4484/27/36/365101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The interaction of gold nanoparticles (AuNP) with human immune-deficiency virus aspartic protease (HIVPR) is modelled using a regime of molecular dynamics simulations. The simulations of the 'docking', first as a rigid-body complex, and eventually through flexible-fit analysis, creates 36 different complexes from four initial orientations of the nanoparticle strategically positioned around the surface of the enzyme. The structural deviations of the enzymes from the initial x-ray crystal structure during each docking simulation are assessed by comparative analysis of secondary structural elements, root mean square deviations, B-factors, interactive bonding energies, dihedral angles, radius of gyration (R g), circular dichroism (CD), volume occupied by C α , electrostatic potentials, solvation energies and hydrophobicities. Normalisation of the data narrows the selection from the initial 36 to one 'final' probable structure. It is concluded that, after computer simulations on each of the 36 initial complexes incorporating the 12 different biophysical techniques, the top five complexes are the same no matter which technique is explored. The significance of the present work is an expansion of an earlier study on the molecular dynamic simulation for the interaction of HIVPR with silver nanoparticles. This work is supported by experimental evidence since the initial 'orientation' of the AgNP with the enzyme is the same as the 'final' AuNP-HIVPR complex generated in the present study. The findings will provide insight into the forces of the binding of the HIVPR to AuNP. It is anticipated that the protocol developed in this study will act as a standard process for the interaction of any nanoparticle with any biomedical target.
Collapse
|
28
|
Zhang H, Yu H, Zhao X, Liu X, Feng X, Huang X. Investigations of Takeout proteins’ ligand binding and release mechanism using molecular dynamics simulation. J Biomol Struct Dyn 2016; 35:1464-1473. [DOI: 10.1080/07391102.2016.1185646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Huijing Zhang
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People’s Republic of China
| | - Hui Yu
- College of Chemistry and Biology, Beihua University, Jilin 132013, People’s Republic of China
| | - Xi Zhao
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People’s Republic of China
| | - Xiaoguang Liu
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People’s Republic of China
| | - Xianli Feng
- Modern Experimental Technology Center (Management), Henan Agricultural University, Zhengzhou, Henan 450002, People’s Republic of China
| | - Xuri Huang
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People’s Republic of China
| |
Collapse
|
29
|
Karmakar T, Roy S, Balaram H, Prakash MK, Balasubramanian S. Product Release Pathways in Human and Plasmodium falciparum Phosphoribosyltransferase. J Chem Inf Model 2016; 56:1528-38. [PMID: 27404508 DOI: 10.1021/acs.jcim.6b00203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Atomistic molecular dynamics (MD) simulations coupled with the metadynamics technique were carried out to delineate the product (PPi.2Mg and IMP) release mechanisms from the active site of both human (Hs) and Plasmodium falciparum (Pf) hypoxanthine-guanine-(xanthine) phosphoribosyltransferase (HG(X)PRT). An early movement of PPi.2Mg from its binding site has been observed. The swinging motion of the Asp side chain (D134/D145) in the binding pocket facilitates the detachment of IMP, which triggers the opening of flexible loop II, the gateway to the bulk solvent. In PfHGXPRT, PPi.2Mg and IMP are seen to be released via the same path in all of the biased MD simulations. In HsHGPRT too, the product molecules follow similar routes from the active site; however, an alternate but minor escape route for PPi.2Mg has been observed in the human enzyme. Tyr 104 and Phe 186 in HsHGPRT and Tyr 116 and Phe 197 in PfHGXPRT are the key residues that mediate the release of IMP, whereas the motion of PPi.2Mg away from the reaction center is guided by the negatively charged Asp and Glu and a few positively charged residues (Lys and Arg) that line the product release channels. Mutations of a few key residues present in loop II of Trypanosoma cruzi (Tc) HGPRT have been shown to reduce the catalytic efficiency of the enzyme. Herein, in silico mutation of corresponding residues in loop II of HsHGPRT and PfHGXPRT resulted in partial opening of the flexible loop (loop II), thus exposing the active site to bulk water, which offers a rationale for the reduced catalytic activity of these two mutant enzymes. Investigations of the product release from these HsHGPRT and PfHGXPRT mutants delineate the role of these important residues in the enzymatic turnover.
Collapse
Affiliation(s)
- Tarak Karmakar
- Chemistry and Physics of Materials Unit, ‡Molecular Biology and Genetics Unit, and §Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore 560 064, India
| | - Sourav Roy
- Chemistry and Physics of Materials Unit, ‡Molecular Biology and Genetics Unit, and §Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore 560 064, India
| | - Hemalatha Balaram
- Chemistry and Physics of Materials Unit, ‡Molecular Biology and Genetics Unit, and §Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore 560 064, India
| | - Meher K Prakash
- Chemistry and Physics of Materials Unit, ‡Molecular Biology and Genetics Unit, and §Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore 560 064, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, ‡Molecular Biology and Genetics Unit, and §Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore 560 064, India
| |
Collapse
|
30
|
Meshach Paul D, Rajasekaran R. In silico approach to explore the disruption in the molecular mechanism of human hyaluronidase 1 by mutant E268K that directs Natowicz syndrome. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:157-169. [PMID: 27424109 DOI: 10.1007/s00249-016-1151-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/02/2016] [Accepted: 07/01/2016] [Indexed: 01/27/2023]
Abstract
Natowicz syndrome (mucopolysaccharidoses type 9) is a lysosomal storage disorder caused by deficient or defective human hyaluronidase 1. The disorder is not well studied at the molecular level. Therefore, a new in silico approach was proposed to study the molecular basis on which one clinically observed mutation, Glu268Lys, results in a defective enzyme. The native and mutant structures were subjected to comparative analyses using a conformational sampling approach for geometrical variables viz, RMSF, RMSD, and Ramachandran plot. In addition, the strength of a Cys207-Cys221 disulfide bond and electrostatic interaction between Arg265 and Asp206 were studied, as they are known to be involved in the catalytic activity of the enzyme. Native and mutant E268K showed statistically significant variations with p < 0.05 in RMSD, Ramachandran plot, strengths of disulfide bond, and electrostatic interactions. Further, single model analysis showed variations between native and mutant structures in terms of intra-protein interactions, hydrogen bond dilution, secondary structure, and dihedral angles. Docking analysis predicted the mutant to have a less favorable substrate binding energy compared to the native protein. Additionally, steered MD analysis indicated that the substrate should have more affinity to the native than mutant enzymes. The observed changes theoretically explain the less favorable binding energy of substrate towards mutant E268K, thereby providing a structural basis for its reduced catalytic activity. Hence, our study provides a basis for understanding the disruption in the molecular mechanism of human hyaluronidase 1 by mutation E268K, which may prove useful for the development of synthetic chaperones as a treatment option for Natowicz syndrome.
Collapse
Affiliation(s)
- D Meshach Paul
- Computational Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - R Rajasekaran
- Computational Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
31
|
Rydzewski J, Nowak W. Memetic algorithms for ligand expulsion from protein cavities. J Chem Phys 2016; 143:124101. [PMID: 26428990 DOI: 10.1063/1.4931181] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ligand diffusion through a protein interior is a fundamental process governing biological signaling and enzymatic catalysis. A complex topology of channels in proteins leads often to difficulties in modeling ligand escape pathways by classical molecular dynamics simulations. In this paper, two novel memetic methods for searching the exit paths and cavity space exploration are proposed: Memory Enhanced Random Acceleration (MERA) Molecular Dynamics (MD) and Immune Algorithm (IA). In MERA, a pheromone concept is introduced to optimize an expulsion force. In IA, hybrid learning protocols are exploited to predict ligand exit paths. They are tested on three protein channels with increasing complexity: M2 muscarinic G-protein-coupled receptor, enzyme nitrile hydratase, and heme-protein cytochrome P450cam. In these cases, the memetic methods outperform simulated annealing and random acceleration molecular dynamics. The proposed algorithms are general and appropriate in all problems where an accelerated transport of an object through a network of channels is studied.
Collapse
Affiliation(s)
- J Rydzewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - W Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| |
Collapse
|
32
|
Berinyuy E, Soliman MES. Identification of Novel Potential gp120 of HIV-1 Antagonist Using Per-Residue Energy Contribution-Based Pharmacophore modelling. Interdiscip Sci 2016; 9:406-418. [PMID: 27165479 DOI: 10.1007/s12539-016-0174-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 01/01/2023]
Abstract
Inhibition of HIV-1 target cell entry, by targeting gp120, has been identified as a promising approach for the identification and development of prophylactic and salvage HIV infection inhibitors. A small molecule compound 18A is an important chemotype in the development of novel and diverse viral cell entry inhibitors, as it inhibits a wide variety of HIV strains by disrupting allosteric structuring on gp120. This study combines residue energy contribution (REC) pharmacophore mapping of 18A and in silico molecular docking in a virtual screening campaign to identify novel and diverse antagonists of gp120. The binding free energy of a validated docked complex of gp120-18A and the quantitative contribution of interacting residues were obtained with a more accurate molecular mechanics/generalised born surface area (MM/GBSA) method followed by mapping the energetically favourable residue contributions onto atom centres in 18A to obtain a pharmacophore model. The generated pharmacophore hypothesis was used to search the ZINC database for 3D structures that match the pharmacophore. Further, molecular docking, molecular dynamics simulations and binding free energy analysis were performed on retrieved hits in order to rank hits based on their affinity and interactions in the CD4 binding cavity of a gp120. Interestingly, the top scoring compound designated with ZINC database ID as ZINC64700951 (docking score = -8.8 kcal/mol, ∆G = -43.77 kcal/mol) showed higher affinity compared to compound 18A docking score = -7.3 kcal/mol, ∆G = -31.97 kcal/mol) and interaction of ZN64700951 with validated allosteric hot spot residues, Asp368 and Met426, and binding hot spot residues, Asn425, Glu370, Gly473, Trp427 and Met475 in gp120, suggest that ZN64700951 is a promising antagonist of gp120. Thus, ZN64700951 could serve as an additional prototype for further optimisation as an HIV target cell viral entry inhibitor.
Collapse
Affiliation(s)
- Emiliene Berinyuy
- Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| | - Mahmoud E S Soliman
- Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa.
| |
Collapse
|
33
|
Rydzewski J, Nowak W. Machine Learning Based Dimensionality Reduction Facilitates Ligand Diffusion Paths Assessment: A Case of Cytochrome P450cam. J Chem Theory Comput 2016; 12:2110-20. [DOI: 10.1021/acs.jctc.6b00212] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J. Rydzewski
- Institute of Physics, Faculty
of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - W. Nowak
- Institute of Physics, Faculty
of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| |
Collapse
|
34
|
Whiteley C, Shing CY, Kuo CC, Lee DJ. Docking of HIV protease to silver nanoparticles. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2015.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Ortega-Guerrero A, Espinosa-Duran JM, Velasco-Medina J. TRPV1 channel as a target for cancer therapy using CNT-based drug delivery systems. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:423-33. [PMID: 26872481 DOI: 10.1007/s00249-016-1111-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/28/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022]
Abstract
Carbon nanotubes are being considered for the design of drug delivery systems (DDSs) due to their capacity to internalize molecules and control their release. However, for cellular uptake of drugs, this approach requires an active translocation pathway or a channel to transport the drug into the cell. To address this issue, it is suggested to use TRPV1 ion channels as a potential target for drug release by nano-DDSs since these channels are overexpressed in cancer cells and allow the permeation of large cationic molecules. Considering these facts, this work presents three studies using molecular dynamics simulations of a human TRPV1 (hTRPV1) channel built here. The purpose of these simulations is to study the interaction between a single-wall carbon nanotube (SWCNT) and hTRPV1, and the diffusion of doxorubicin (DOX) across hTRPV1 and across a POPC lipid membrane. The first study shows an attractive potential between the SWCNT surface and hTRPV1, tilting the adsorbed SWCNT. The second study shows low diffusion probability of DOX across the open hTRPV1 due to a high free energy barrier. Although, the potential energy between DOX and hTRPV1 reveals an attractive interaction while DOX is inside hTRPV1. These results suggest that if the channel is dilated, then DOX diffusion could occur. The third study shows a lower free energy barrier for DOX across the lipid membrane than for DOX across hTRPV1. Taking into account the results obtained, it is feasible to design novel nano-DDSs based on SWCNTs to accomplish controlled drug release into cells using as translocation pathway, the hTRPV1 ion channel.
Collapse
Affiliation(s)
- Andres Ortega-Guerrero
- School of Electrical and Electronics Engineering, Bionanoelectronics Research Group, Universidad del Valle, Cali, Colombia
| | - John M Espinosa-Duran
- Department of Chemistry, Center for Theoretical and Computational Nanoscience, Indiana University, Bloomington, IN, USA
| | - Jaime Velasco-Medina
- School of Electrical and Electronics Engineering, Bionanoelectronics Research Group, Universidad del Valle, Cali, Colombia.
| |
Collapse
|
36
|
Knapp B, Demharter S, Deane CM, Minary P. Exploring peptide/MHC detachment processes using hierarchical natural move Monte Carlo. Bioinformatics 2016; 32:181-6. [PMID: 26395770 PMCID: PMC4708099 DOI: 10.1093/bioinformatics/btv502] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/10/2015] [Accepted: 08/21/2015] [Indexed: 01/15/2023] Open
Abstract
MOTIVATION The binding between a peptide and a major histocompatibility complex (MHC) is one of the most important processes for the induction of an adaptive immune response. Many algorithms have been developed to predict peptide/MHC (pMHC) binding. However, no approach has yet been able to give structural insight into how peptides detach from the MHC. RESULTS In this study, we used a combination of coarse graining, hierarchical natural move Monte Carlo and stochastic conformational optimization to explore the detachment processes of 32 different peptides from HLA-A*02:01. We performed 100 independent repeats of each stochastic simulation and found that the presence of experimentally known anchor amino acids affects the detachment trajectories of our peptides. Comparison with experimental binding affinity data indicates the reliability of our approach (area under the receiver operating characteristic curve 0.85). We also compared to a 1000 ns molecular dynamics simulation of a non-binding peptide (AAAKTPVIV) and HLA-A*02:01. Even in this simulation, the longest published for pMHC, the peptide does not fully detach. Our approach is orders of magnitude faster and as such allows us to explore pMHC detachment processes in a way not possible with all-atom molecular dynamics simulations. AVAILABILITY AND IMPLEMENTATION The source code is freely available for download at http://www.cs.ox.ac.uk/mosaics/. CONTACT bernhard.knapp@stats.ox.ac.uk SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Bernhard Knapp
- Department of Statistics, University of Oxford, 1 South Parks Road, Oxford, OX1 3TG, UK and
| | - Samuel Demharter
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
| | - Charlotte M Deane
- Department of Statistics, University of Oxford, 1 South Parks Road, Oxford, OX1 3TG, UK and
| | - Peter Minary
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
| |
Collapse
|
37
|
Batista MRB, Martínez L. Conformational Diversity of the Helix 12 of the Ligand Binding Domain of PPARγ and Functional Implications. J Phys Chem B 2015; 119:15418-29. [DOI: 10.1021/acs.jpcb.5b09824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mariana R. B. Batista
- Department of Physical Chemistry,
Institute of Chemistry, University of Campinas, CP 6154-13083-970, Campinas, SP Brazil
| | - Leandro Martínez
- Department of Physical Chemistry,
Institute of Chemistry, University of Campinas, CP 6154-13083-970, Campinas, SP Brazil
| |
Collapse
|
38
|
Nandy B, Saurabh S, Sahoo AK, Dixit NM, Maiti PK. The SPL7013 dendrimer destabilizes the HIV-1 gp120-CD4 complex. NANOSCALE 2015; 7:18628-18641. [PMID: 26495445 DOI: 10.1039/c5nr04632g] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The poly (l-lysine)-based SPL7013 dendrimer with naphthalene disulphonate surface groups blocks the entry of HIV-1 into target cells and is in clinical trials for development as a topical microbicide. Its mechanism of action against R5 HIV-1, the HIV-1 variant implicated in transmission across individuals, remains poorly understood. Using docking and fully atomistic MD simulations, we find that SPL7013 binds tightly to R5 gp120 in the gp120-CD4 complex but weakly to gp120 alone. Further, the binding, although to multiple regions of gp120, does not occlude the CD4 binding site on gp120, suggesting that SPL7013 does not prevent the binding of R5 gp120 to CD4. Using MD simulations to compute binding energies of several docked structures, we find that SPL7013 binding to gp120 significantly weakens the gp120-CD4 complex. Finally, we use steered molecular dynamics (SMD) to study the kinetics of the dissociation of the gp120-CD4 complex in the absence of the dendrimer and with the dendrimer bound in each of the several stable configurations to gp120. We find that SPL7013 significantly lowers the force required to rupture the gp120-CD4 complex and accelerates its dissociation. Taken together, our findings suggest that SPL7013 compromises the stability of the R5 gp120-CD4 complex, potentially preventing the accrual of the requisite number of gp120-CD4 complexes across the virus-cell interface, thereby blocking virus entry.
Collapse
Affiliation(s)
- Bidisha Nandy
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India.
| | | | | | | | | |
Collapse
|
39
|
Tsuji M. A ligand-entry surface of the nuclear receptor superfamily consists of the helix H3 of the ligand-binding domain. J Mol Graph Model 2015; 62:262-275. [PMID: 26544573 DOI: 10.1016/j.jmgm.2015.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/24/2015] [Accepted: 10/06/2015] [Indexed: 01/02/2023]
Abstract
We successfully simulated receptor-ligand complex holo-form formation using the human retinoid X receptor-α ligand-binding domain (LBD) and its natural ligand, 9-cis retinoic acid. The success of this simulation was strongly dependent on the findings for an initial structure between the apo-LBD and the ligand as well as the discovery of the driving forces underlying the ligand-trapping and subsequent ligand-induction processes. Here, we would like to propose the "helix H3 three-point initial-binding hypothesis," which was instrumental in simulating the nuclear receptor (NR) superfamily. Using this hypothesis, we also succeeded in simulating holo-form formation of the human retinoic acid receptor-γ LBD and its natural ligand, all-trans retinoic acid. It is hoped that this hypothesis will facilitate novel understanding of both the ligand-trapping mechanism and the simultaneous C-terminal folding process in NR LBDs, as well as provide a new approach to drug design using a structure-based perspective.
Collapse
Affiliation(s)
- Motonori Tsuji
- Institute of Molecular Function, 2-105-14 Takasu, Misato-shi, Saitama 341-0037, Japan.
| |
Collapse
|
40
|
Romanowska J, Kokh DB, Fuller JC, Wade RC. Computational Approaches for Studying Drug Binding Kinetics. THERMODYNAMICS AND KINETICS OF DRUG BINDING 2015. [DOI: 10.1002/9783527673025.ch11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Alvarez LD, Veleiro AS, Burton G. Exploring the molecular basis of action of ring D aromatic steroidal antiestrogens. Proteins 2015; 83:1297-306. [DOI: 10.1002/prot.24820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/03/2015] [Accepted: 04/24/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Lautaro D. Alvarez
- Departamento de Química Orgánica and UMYMFOR (CONICET-UBA); Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires; Buenos Aires Argentina
| | - Adriana S. Veleiro
- Departamento de Química Orgánica and UMYMFOR (CONICET-UBA); Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires; Buenos Aires Argentina
| | - Gerardo Burton
- Departamento de Química Orgánica and UMYMFOR (CONICET-UBA); Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
42
|
Meneksedag-Erol D, Tang T, Uludağ H. Probing the Effect of miRNA on siRNA–PEI Polyplexes. J Phys Chem B 2015; 119:5475-86. [DOI: 10.1021/acs.jpcb.5b00415] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Deniz Meneksedag-Erol
- Department of Biomedical Engineering, Faculties of Medicine & Dentistry and Engineering, University of Alberta, Alberta, Canada
- Department of Chemical & Materials Engineering, Faculty of Engineering, University of Alberta, Alberta, Canada
| | - Tian Tang
- Department of Biomedical Engineering, Faculties of Medicine & Dentistry and Engineering, University of Alberta, Alberta, Canada
- Department
of Mechanical Engineering, Faculty of Engineering, University of Alberta, Alberta, Canada
| | - Hasan Uludağ
- Department of Biomedical Engineering, Faculties of Medicine & Dentistry and Engineering, University of Alberta, Alberta, Canada
- Department of Chemical & Materials Engineering, Faculty of Engineering, University of Alberta, Alberta, Canada
- Faculty
of Pharmacy and Pharmaceutical Sciences, University of Alberta, Alberta, Canada
| |
Collapse
|
43
|
Fratev F. Activation helix orientation of the estrogen receptor is mediated by receptor dimerization: evidence from molecular dynamics simulations. Phys Chem Chem Phys 2015; 17:13403-20. [DOI: 10.1039/c5cp00327j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ERα dimer formation reshapes the helix 12 conformational landscape and is a leading factor for the activation helix conformation.
Collapse
Affiliation(s)
- Filip Fratev
- Institute of Biophysics and Biomedical Engineering
- Bulgarian Academy of Sciences
- 1113 Sofia
- Bulgaria
- Micar21 Ltd
| |
Collapse
|
44
|
Rastinejad F, Ollendorff V, Polikarpov I. Nuclear receptor full-length architectures: confronting myth and illusion with high resolution. Trends Biochem Sci 2014; 40:16-24. [PMID: 25435400 DOI: 10.1016/j.tibs.2014.10.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 12/31/2022]
Abstract
The crystal structures of three nuclear receptor (NR) complexes have emerged to reveal their multidomain architectures on DNA. These pictures provide unprecedented views of interfacial couplings between the DNA-binding domains (DBDs) and ligand-binding domains (LBDs). The detailed pictures contrast with previous interpretations of low-resolution electron microscopy (EM) and small angle X-ray scattering (SAXS) data, which had suggested a common architecture with noninteracting DBDs and LBDs. Revisiting both historical and recent interpretations of NR architecture, we invoke new principles underlying higher-order quaternary organization and the allosteric transmission of signals between domains. We also discuss how NR architectures are being probed in living cells to understand dimerization and DNA-binding events in real time.
Collapse
Affiliation(s)
- Fraydoon Rastinejad
- Sanford-Burnham Medical Research Institute, Metabolic Disease Program, 6400 Sanger Road, Lake Nona, FL 32827, USA.
| | - Vincent Ollendorff
- INRA, UMR866 Dynamique Musculaire et Métabolisme, F-34060 Montpellier Université Montpellier 1, F-34000 Montpellier - Université Montpellier 2, F-34000 Montpellier, France
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense, 400, São Carlos, SP, 13560-970, Brazil
| |
Collapse
|
45
|
Determinants of protein–ligand complex formation in the thyroid hormone receptor α: A molecular dynamics simulation study. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.03.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Batista MRB, Martínez L. Dynamics of nuclear receptor Helix-12 switch of transcription activation by modeling time-resolved fluorescence anisotropy decays. Biophys J 2014; 105:1670-80. [PMID: 24094408 DOI: 10.1016/j.bpj.2013.07.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 12/28/2022] Open
Abstract
Nuclear hormone receptors (NRs) are major targets for pharmaceutical development. Many experiments demonstrate that their C-terminal Helix (H12) is more flexible in the ligand-binding domains (LBDs) without ligand, this increased mobility being correlated with transcription repression and human diseases. Crystal structures have been obtained in which the H12 is extended, suggesting the possibility of large amplitude H12 motions in solution. However, these structures were interpreted as possible crystallographic artifacts, and thus the microscopic nature of H12 movements is not well known. To bridge the gap between experiments and molecular models and provide a definitive picture of H12 motions in solution, extensive molecular dynamics simulations of the peroxisome proliferator-activated receptor-γ LBD, in which the H12 was bound to a fluorescent probe, were performed. A direct comparison of the modeled anisotropy decays to time-resolved fluorescence anisotropy experiments was obtained. It is shown that the decay rates are dependent on the interactions of the probe with the surface of the protein, and display little correlation with the flexibility of the H12. Nevertheless, for the probe to interact with the surface of the LBD, the H12 must be folded over the body of the LBD. Therefore, the molecular mobility of the H12 should preserve the globularity of the LBD, so that ligand binding and dissociation occur by diffusion through the surface of a compact receptor. These results advance the comprehension of both ligand-bound and ligand-free receptor structures in solution, and also guide the interpretation of time-resolved anisotropy decays from a molecular perspective, particularly by the use of simulations.
Collapse
Affiliation(s)
- Mariana R B Batista
- Institute of Chemistry, State University of Campinas, Campinas, SP, Brazil; Institute of Physics of São Carlos, University of São Paulo, São Carlos, SP, Brazil
| | | |
Collapse
|
47
|
Brzyska A, Woliński K. Enforced conformational changes in the structural units of glycosaminoglycan (non-sulfated heparin-based oligosaccharides). RSC Adv 2014. [DOI: 10.1039/c4ra05530f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The conformational transitions in the structural units of glycosaminoglycans (GAGs) were the subject of many theoretical and experimental studies.
Collapse
Affiliation(s)
- A. Brzyska
- Jerzy Haber Institute of Catalysis and Surface Chemistry
- Polish Academy of Sciences
- 30-239 Krakow, Poland
| | - K. Woliński
- Department of Theoretical Chemistry
- Faculty of Chemistry
- Maria Curie-Skłodowska University pl
- 20-031 Lublin, Poland
| |
Collapse
|
48
|
Velez-Vega C, Gilson MK. Overcoming dissipation in the calculation of standard binding free energies by ligand extraction. J Comput Chem 2013; 34:2360-71. [PMID: 24038118 PMCID: PMC3932244 DOI: 10.1002/jcc.23398] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 05/10/2013] [Accepted: 07/04/2013] [Indexed: 12/14/2022]
Abstract
This article addresses calculations of the standard free energy of binding from molecular simulations in which a bound ligand is extracted from its binding site by steered molecular dynamics (MD) simulations or equilibrium umbrella sampling (US). Host-guest systems are used as test beds to examine the requirements for obtaining the reversible work of ligand extraction. We find that, for both steered MD and US, marked irreversibilities can occur when the guest molecule crosses an energy barrier and suddenly jumps to a new position, causing dissipation of energy stored in the stretched molecule(s). For flexible molecules, this occurs even when a stiff pulling spring is used, and it is difficult to suppress in calculations where the spring is attached to the molecules by single, fixed attachment points. We, therefore, introduce and test a method, fluctuation-guided pulling, which adaptively adjusts the spring's attachment points based on the guest's atomic fluctuations relative to the host. This adaptive approach is found to substantially improve the reversibility of both steered MD and US calculations for the present systems. The results are then used to estimate standard binding free energies within a comprehensive framework, termed attach-pull-release, which recognizes that the standard free energy of binding must include not only the pulling work itself, but also the work of attaching and then releasing the spring, where the release work includes an accounting of the standard concentration to which the ligand is discharged.
Collapse
Affiliation(s)
- Camilo Velez-Vega
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr. MC 0736, La Jolla, CA 92093-0736
| | - Michael K. Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr. MC 0736, La Jolla, CA 92093-0736
| |
Collapse
|
49
|
Nandy B, Bindu DH, Dixit NM, Maiti PK. Simulations reveal that the HIV-1 gp120-CD4 complex dissociates via complex pathways and is a potential target of the polyamidoamine (PAMAM) dendrimer. J Chem Phys 2013; 139:024905. [DOI: 10.1063/1.4812801] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
50
|
Kalyaanamoorthy S, Chen YPP. Modelling and enhanced molecular dynamics to steer structure-based drug discovery. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 114:123-36. [PMID: 23827463 DOI: 10.1016/j.pbiomolbio.2013.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/31/2013] [Accepted: 06/22/2013] [Indexed: 10/26/2022]
Abstract
The ever-increasing gap between the availabilities of the genome sequences and the crystal structures of proteins remains one of the significant challenges to the modern drug discovery efforts. The knowledge of structure-dynamics-functionalities of proteins is important in order to understand several key aspects of structure-based drug discovery, such as drug-protein interactions, drug binding and unbinding mechanisms and protein-protein interactions. This review presents a brief overview on the different state of the art computational approaches that are applied for protein structure modelling and molecular dynamics simulations of biological systems. We give an essence of how different enhanced sampling molecular dynamics approaches, together with regular molecular dynamics methods, assist in steering the structure based drug discovery processes.
Collapse
Affiliation(s)
- Subha Kalyaanamoorthy
- Department of Computer Science and Computer Engineering, Faculty of Science, Technology and Engineering, La Trobe University, Melbourne, VIC 3086, Australia
| | - Yi-Ping Phoebe Chen
- Department of Computer Science and Computer Engineering, Faculty of Science, Technology and Engineering, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|