1
|
Nguyen HN, Zhao L, Gray CW, Gray DM, Xia T. Nucleotides sequestered at different subsite loci within DNA-binding pockets of two OB-fold single-stranded DNA-binding proteins are unstacked to different extents. Biopolymers 2016; 99:484-96. [PMID: 23616216 DOI: 10.1002/bip.22204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 01/03/2013] [Indexed: 11/07/2022]
Abstract
The gene 5 protein (g5p) encoded by the Ff strains of Escherichia coli bacteriophages is a dimeric single-stranded DNA-binding protein (SSB) that consists of two identical OB-fold (oligonucleotide/oligosaccharide-binding) motifs. Ultrafast time-resolved fluorescence measurements were carried out to investigate the effect of g5p binding on the conformation of 2-aminopurine (2AP) labels positioned between adenines or cytosines in the 16-nucleotide antiparallel tails of DNA hairpins. The measurements revealed significant changes in the conformational heterogeneity of the 2AP labels caused by g5p binding. The extent of the changes was dependent on sub-binding-site location, but generally resulted in base unstacking. When bound by g5p, the unstacked 2AP population increased from ∼ 22% to 59-67% in C-2AP-C segments and from 39% to 77% in an A-2AP-A segment. The OB-fold RPA70A domain of the human replication protein A also caused a significant amount of base unstacking at various locations within the DNA binding site as evidenced by steady-state fluorescence titration measurements using 2AP-labeled 5-mer DNAs. These solution studies support the concept that base unstacking at most of a protein's multiple sub-binding-site loci may be a feature that allows non-sequence specific OB-fold proteins to bind to single-stranded DNAs (ssDNAs) with minimal preference for particular sequences.
Collapse
Affiliation(s)
- Hieu N Nguyen
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75080, USA
| | | | | | | | | |
Collapse
|
2
|
Nguyen HN, Zhao L, Gray CW, Gray DM, Xia T. Ultrafast fluorescence decay profiles reveal differential unstacking of 2-aminopurine from neighboring bases in single-stranded DNA-binding protein subsites. Biochemistry 2011; 50:8989-9001. [PMID: 21916413 DOI: 10.1021/bi2006543] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gene 5 protein (g5p) is a dimeric single-stranded DNA-binding protein encoded by Ff strains of Escherichia coli bacteriophages. The 2-fold rotationally symmetric binding sites of a g5p dimer each bind to four nucleotides, and the dimers bind with high cooperativity to saturate antiparallel single-stranded DNA (ssDNA) strands. Ultrafast time-resolved fluorescence spectroscopies were used to investigate the conformational heterogeneity and dynamics of fluorescent 2-aminopurine (2AP) labels sequestered by bound g5p. The 2AP labels were positioned within the noncomplementary antiparallel tail sequences of d(AC)(8) or d(AC)(9) of hairpin constructs so that each fluorescent label could probe a different subsite location within the DNA-binding site of g5p. Circular dichroism and isothermal calorimetric titrations yielded binding stoichiometries of approximately six dimers per oligomer hairpin when tails were of these lengths. Mobility shift assays demonstrated the formation of a single type of g5p-saturated complex. Femtosecond time-resolved fluorescence spectroscopy showed that the 2AP in the free (non-protein-bound) DNAs had similar heterogeneous distributions of conformations. However, there were significant changes, dominated by a large increase in the population of unstacked bases from ~22 to 59-68%, depending on their subsite locations, when the oligomers were saturated with g5p. Anisotropy data indicated that 2AP in the bound state was less flexible than in the free oligomer. A control oligomer was labeled with 2AP in the loop of the hairpin and showed no significant change in its base stacking upon g5p binding. A proposed model summarizes the data.
Collapse
Affiliation(s)
- Hieu-Ngoc Nguyen
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | | | | | | | | |
Collapse
|
3
|
Lee SK, Maye MM, Zhang YB, Gang O, van der Lelie D. Controllable g5p-protein-directed aggregation of ssDNA-gold nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:657-660. [PMID: 19072316 DOI: 10.1021/la803596q] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We assembled single-stranded DNA (ssDNA) conjugated nanoparticles using the phage M13 gene 5 protein (g5p) as the molecular glue to bind two antiparallel noncomplementary ssDNA strands. The entire process was controlled tightly by the concentration of the g5p protein and the presence of double-stranded DNA. The g5p-ssDNA aggregate was disintegrated by hybridization with complementary ssDNA (C-ssDNA) that triggers the dissociation of the complex. Polyhistidine-tagged g5p was bound to nickel nitrilotriacetic acid (Ni2+-NTA) conjugated nanoparticles and subsequently used to coassemble the ssDNA-conjugated nanoparticles into multiparticle-type aggregates. Our approach offers great promise for designing biologically functional, controllable protein/nanoparticle composites.
Collapse
Affiliation(s)
- Soo-Kwan Lee
- Center for Functional Nanomaterials, and Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | | | | | | | | |
Collapse
|
4
|
Gray DM, Wen JD, Gray CW, Repges R, Repges C, Raabe G, Fleischhauer J. Measured and calculated CD spectra of G-quartets stacked with the same or opposite polarities. Chirality 2008; 20:431-40. [PMID: 17853398 DOI: 10.1002/chir.20455] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Circular dichroism (CD) spectroscopy is widely used to characterize the structures of DNA G-quadruplexes. CD bands at 200-300 nm have been empirically related to G-quadruplexes having parallel or antiparallel sugar-phosphate backbones. We propose that a more fundamental interpretation of the origin of the CD bands is in the stacking interactions of neighboring G-quartets, which can have the same or opposing polarities of hydrogen bond acceptors and donors. From an empirical summation of CD spectra of the d(G)5 G-quadruplex and of the thrombin binding aptamer that have neighboring G-quartets with the same and opposite polarities, respectively, the spectra of aptamers selected by the Ff gene 5 protein (g5p) appear to arise from a combination of the two types of polarities of neighboring G-quartets. The aptamer CD spectra resemble the spectrum of d(G3T4G3), in which two adjacent quartets have the same and two have opposite polarities. Quantum-chemical spectral calculations were performed using a matrix method, based on guanine chromophores oriented as in d(G3T4G3). The calculations show that the two types of G-quartet stacks have CD spectra with features resembling experimental spectra of the corresponding types of G-quadruplexes.
Collapse
Affiliation(s)
- Donald M Gray
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75080, USA.
| | | | | | | | | | | | | |
Collapse
|
5
|
Mou TC, Shen M, Abdalla S, Delamora D, Bochkareva E, Bochkarev A, Gray DM. Effects of ssDNA sequences on non-sequence-specific protein binding. Chirality 2007; 18:370-82. [PMID: 16575881 DOI: 10.1002/chir.20262] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The circular dichroism (CD) spectra of single-stranded DNAs (ssDNAs) are significantly perturbed by the binding of single-stranded DNA binding proteins such as the Ff bacteriophage gene 5 protein (g5p) and the A domain of the 70 kDa subunit of human replication protein A (RPA70-A). These two proteins have similar OB-fold secondary structures, although their CD spectra at wavelengths below 250 nm differ greatly. The spectrum of g5p is dominated by a tyrosyl L(a) band at 229 nm, while that of RPA70-A is dominated by its beta secondary structure. Despite differences in their inherent spectral properties, these two proteins similarly perturb the spectra of bound nucleic acid oligomers. CD spectra of free, non-protein-bound ssDNAs are dependent on interactions of the nearest-neighboring nucleotides in the sequence. The CD spectra (per mol of nucleotide) of simple repetitive sequences 48 nucleotides in length and containing simple combinations of A and C are related by nearest-neighbor equations. For example, 3 x Deltaepsilon[d(AAC)(16)] = 3 x Deltaepsilon[d(ACC)(16)] + Deltaepsilon[d(A)(48)] - Deltaepsilon[d(C)(48)]. Moreover, nearest-neighbor equations relate the spectra of ssDNAs when they are bound by g5p, indicating that each type of perturbed nearest neighbor has a similar average structure within the binding site of the protein.
Collapse
Affiliation(s)
- Tung-Chung Mou
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Mou TC, Gille A, Suryanarayana S, Richter M, Seifert R, Sprang SR. Broad specificity of mammalian adenylyl cyclase for interaction with 2',3'-substituted purine- and pyrimidine nucleotide inhibitors. Mol Pharmacol 2006; 70:878-86. [PMID: 16766715 DOI: 10.1124/mol.106.026427] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Membrane adenylyl cyclases (mACs) play an important role in signal transduction and are therefore potential drug targets. Earlier, we identified 2',3'-O-(N-methylanthraniloyl) (MANT)-substituted purine nucleotides as a novel class of highly potent competitive mAC inhibitors (Ki values in the 10 nM range). MANT nucleotides discriminate among various mAC isoforms through differential interactions with a binding pocket localized at the interface between the C1 and C2 domains of mAC. In this study, we examine the structure/activity relationships for 2',3'-substituted nucleotides and compare the crystal structures of mAC catalytic domains (VC1:IIC2) bound to MANT-GTP, MANT-ATP, and 2',3'-(2,4,6-trinitrophenyl) (TNP)-ATP. TNP-substituted purine and pyrimidine nucleotides inhibited VC1:IIC2 with moderately high potency (Ki values in the 100 nM range). Elongation of the linker between the ribosyl group and the MANT group and substitution of N-adenine atoms with MANT reduces inhibitory potency. Crystal structures show that MANT-GTP, MANT-ATP, and TNP-ATP reside in the same binding pocket in the VC1:IIC2 protein complex, but there are substantial differences in interactions of base, fluorophore, and polyphosphate chain of the inhibitors with mAC. Fluorescence emission and resonance transfer spectra also reflect differences in the interaction between MANT-ATP and VC1:IIC2 relative to MANT-GTP. Our data are indicative of a three-site mAC pharmacophore; the 2',3'-O-ribosyl substituent and the polyphosphate chain have the largest impact on inhibitor affinity and the nucleotide base has the least. The mAC binding site exhibits broad specificity, accommodating various bases and fluorescent groups at the 2',3'-O-ribosyl position. These data should greatly facilitate the rational design of potent, isoform-selective mAC inhibitors.
Collapse
Affiliation(s)
- Tung-Chung Mou
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9050, USA
| | | | | | | | | | | |
Collapse
|
7
|
Tolstonog GV, Li G, Shoeman RL, Traub P. Interaction in vitro of type III intermediate filament proteins with higher order structures of single-stranded DNA, particularly with G-quadruplex DNA. DNA Cell Biol 2005; 24:85-110. [PMID: 15699629 DOI: 10.1089/dna.2005.24.85] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytoplasmic intermediate filament (cIF) proteins interact strongly with single-stranded (ss) DNAs and RNAs, particularly with G-rich sequences. To test the hypothesis that this interaction depends on special nucleotide sequences and, possibly, higher order structures of ssDNA, a random mixture of mouse genomic ssDNA fragments generated by a novel "whole ssDNA genome PCR" technique via RNA intermediates was subjected to three rounds of affinity binding to in vitro reconstituted vimentin IFs at physiological ionic strength with intermediate PCR amplification of the bound ssDNA segments. Nucleotide sequence and computer folding analysis of the vimentin-selected fragments revealed an enrichment in microsatellites, predominantly of the (GT)n type, telomere DNA, and C/T-rich sequences, most of which, however, were incapable of folding into stable stem-loop structures. Because G-rich sequences were underrepresented in the vimentin-bound fraction, it had to be assumed that such sequences require intramolecular folding or lateral assembly into multistrand structures to be able to stably interact with vimentin, but that this requirement was inadequately fulfilled under the conditions of the selection experiment. For that reason, the few vimentin-selected G-rich ssDNA fragments and a number of telomere models were analyzed for their capacity to form inter- and intramolecular Gquadruplexes (G4 DNAs) under optimized conditions and to interact as such with vimentin and its type III relatives, glial fibrillary acidic protein, and desmin. Band shift assays indeed demonstrated differential binding of the cIF proteins to parallel four-stranded G4 DNAs and, with lower affinity, to bimolecular G'2 and unimolecular G'4 DNA configurations, whereby the transition regions from four- to single-strandedness played an additional role in the binding reaction. In this respect, the binding activity of cIF proteins was comparable with that toward other noncanonical DNA structures, like ds/ss DNA forks, triplex DNA, four-way junction DNA and Z-DNA, which also involve configurational transitions in their interaction with the filament proteins. Association of the cIF proteins with the corresponding nonfolded G-rich ssDNAs was negligible. Considering the almost universal involvement of ssDNA regions and G-quadruplexes in nuclear processes, including DNA transcription and recombination as well as telomere maintenance and dynamics, it is plausible to presume that cIF proteins as complementary constituents of the nuclear matrix participate in the cell- and tissue-specific regulation of these processes.
Collapse
|
8
|
Wen JD, Gray DM. Selection of genomic sequences that bind tightly to Ff gene 5 protein: primer-free genomic SELEX. Nucleic Acids Res 2004; 32:e182. [PMID: 15601993 PMCID: PMC545477 DOI: 10.1093/nar/gnh179] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Single-stranded DNA or RNA libraries used in SELEX experiments usually include primer-annealing sequences for PCR amplification. In genomic SELEX, these fixed sequences may form base pairs with the central genomic fragments and interfere with the binding of target molecules to the genomic sequences. In this study, a method has been developed to circumvent these artificial effects. Primer-annealing sequences are removed from the genomic library before selection with the target protein and are then regenerated to allow amplification of the selected genomic fragments. A key step in the regeneration of primer-annealing sequences is to employ thermal cycles of hybridization-extension, using the sequences from unselected pools as templates. The genomic library was derived from the bacteriophage fd, and the gene 5 protein (g5p) from the phage was used as a target protein. After four rounds of primer-free genomic SELEX, most cloned sequences overlapped at a segment within gene 6 of the viral genome. This sequence segment was pyrimidine-rich and contained no stable secondary structures. Compared with a neighboring genomic fragment, a representative sequence from the family of selected sequences had about 23-fold higher g5p-binding affinity. Results from primer-free genomic SELEX were compared with the results from two other genomic SELEX protocols.
Collapse
Affiliation(s)
- Jin-Der Wen
- Department of Molecular and Cell Biology, Mail Stop FO 3.1, The University of Texas at Dallas, PO Box 830688, Richardson, TX 75083-0688, USA
| | | |
Collapse
|
9
|
Mou TC, Shen MC, Terwilliger TC, Gray DM. Binding and reversible denaturation of double-stranded DNA by Ff gene 5 protein. Biopolymers 2004; 70:637-48. [PMID: 14648774 DOI: 10.1002/bip.10500] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The gene 5 protein (g5p) from Ff filamentous virus is a model single-stranded DNA (ssDNA) binding protein that has an oligonucleotide/oligosaccharide binding (OB)-fold structure and binding properties in common with other ssDNA-binding proteins. In the present work, we use circular dichroism (CD) spectroscopy to analyze the effects of amino acid substitutions on the binding of g5p to double-stranded DNA (dsDNA) compared to its binding to ssDNA. CD titrations of poly[d(A). d(T)] with mutants of each of the five tyrosines of the g5p showed that the 229-nm CD band of Tyr34, a tyrosine at the interface of adjacent protein dimers, is reversed in sign upon binding to the dsDNA, poly[d(A). d(T)]. This effect is like that previously found for g5p binding to ssDNAs, suggesting there are similarities in the protein-protein interactions when g5p binds to dsDNA and ssDNA. However, there are differences, and the possible perturbation of a second tyrosine, Tyr41, in the complex with dsDNA. Three mutant proteins (Y26F, Y34F, and Y41H) reduced the melting temperature of poly[d(A). d(T)] by 67 degrees C, but the wild-type g5p only reduced it by 2 degrees C. This enhanced ability of the mutants to denature dsDNA suggests that their binding affinities to dsDNA are reduced more than are their binding affinities to ssDNA. Finally, we present evidence that when poly[d(A). d(T)] is melted in the presence of the wild-type, Y26F, or Y34F proteins, the poly[d(A)] and poly[d(T)] strands are separately sequestered such that renaturation of the duplex is facilitated in 2 mM Na(+).
Collapse
Affiliation(s)
- Tung-Chung Mou
- Department of Molecular and Cell Biology, Mail Stop FO31, University of Texas at Dallas, P.O. Box 830688, Richardson, TX 75083-0688, USA
| | | | | | | |
Collapse
|
10
|
Zou WQ, Zheng J, Gray DM, Gambetti P, Chen SG. Antibody to DNA detects scrapie but not normal prion protein. Proc Natl Acad Sci U S A 2004; 101:1380-5. [PMID: 14734804 PMCID: PMC337061 DOI: 10.1073/pnas.0307825100] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prion diseases, a group of fatal neurodegenerative disorders, are characterized by the presence of the abnormal scrapie isoform of prion protein (PrP(Sc)) in affected brains. A conformational change is believed to convert the normal cellular prion protein into PrP(Sc). Detection of PrP(Sc) for diagnosis and prophylaxis is impaired because available Abs recognizing epitopes on PrP fail to distinguish between PrP(Sc) and normal cellular prion protein. Here, we report that an anti-DNA Ab, OCD4, as well as gene 5 protein, a well established DNA-binding protein, capture PrP from brains affected by prion diseases in both humans and animals but not from unaffected controls. OCD4 appears to immunoreact with DNA (or a DNA-associated molecule) that forms a conformation-dependent complex with PrP in prion diseases. Whereas PrP immunocaptured by OCD4 is largely protease-resistant, a fraction of it remains protease-sensitive. Moreover, OCD4 detects disease-associated PrP >10 times more efficiently than a widely used Ab to PrP. Our finding that anti-DNA Abs and gene 5 protein specifically target disease-associated DNA-PrP complexes in a wide variety of species and disease phenotypes opens new avenues in the study and diagnosis of prion diseases.
Collapse
Affiliation(s)
- Wen-Quan Zou
- Institute of Pathology, Case Western Reserve University and National Prion Disease Pathology Surveillance Center, 2085 Adelbert Road, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
11
|
Mou TC, Sreerama N, Terwilliger TC, Woody RW, Gray DM. Independent tyrosyl contributions to the CD of Ff gene 5 protein and the distinctive effects of Y41H and Y41F mutants on protein-protein cooperative interactions. Protein Sci 2002; 11:601-13. [PMID: 11847282 PMCID: PMC2373458 DOI: 10.1110/ps.30002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The gene 5 protein (g5p) of the Ff virus contains five Tyr, individual mutants of which have now all been characterized by CD spectroscopy. The protein has a dominant tyrosyl 229-nm L(a) CD band that is shown to be approximately the sum of the five individual Tyr contributions. Tyr41 is particularly important in contributing to the high cooperativity with which the g5p binds to ssDNA, and Y41F and Y41H mutants are known to differ in dimer-dimer packing interactions in crystal structures. We compared the solution structures and binding properties of the Y41F and Y41H mutants using CD spectroscopy. Secondary structures of the mutants were similar by CD analyses and close to those derived from the crystal structures. However, there were significant differences in the binding properties of the two mutant proteins. The Y41H protein had an especially low binding affinity and perturbed the spectrum of poly[d(A)] in 2 mM Na(+) much less than did Y41F and the wild-type gene 5 proteins. Moreover, a change in the Tyr 229 nm band, assigned to the perturbation of Tyr34 at the dimer-dimer interface, was absent in titrations with the Y41H mutant under low salt conditions. In contrast, titrations with the Y41H mutant in 50 mM Na(+) exhibited typical CD changes of both the nucleic acid and the Tyr 229-nm band. Thus, protein-protein and g5p-ssDNA interactions appeared to be mutually influenced by ionic strength, indicative of correlated changes in the ssDNA binding and cooperativity loops of the protein or of indirect structural constraints.
Collapse
Affiliation(s)
- Tung-Chung Mou
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75083-0688, USA
| | | | | | | | | |
Collapse
|
12
|
Mou TC, Gray DM. The high binding affinity of phosphorothioate-modified oligomers for Ff gene 5 protein is moderated by the addition of C-5 propyne or 2'-O-methyl modifications. Nucleic Acids Res 2002; 30:749-58. [PMID: 11809888 PMCID: PMC100283 DOI: 10.1093/nar/30.3.749] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
One of the problems that hamper the use of antisense DNAs as effective drugs is the non-specific binding of chemically-modified oligonucleotides to cellular proteins. We previously showed that the affinity of a model ssDNA-binding protein, the Ff gene 5 protein (g5p), was >300-fold higher for phosphorothioate-modified DNA (S-DNA) than for unmodified dA(36), consistent with the propensity of S-DNA to bind indiscriminately to proteins. The current work shows that g5p binding is also sensitive to sugar and pyrimidine modifications used in antisense oligomers. Binding affinities of g5p for 10 36mer oligomers were quantitated using solution circular dichroism measurements. The oligomers contained C-5-propyne (prC), 2'-O-methyl (2'-O-Me) or 2'-OH (RNA) groups, alone or combined with the phosphorothioate modification. In agreement with reported increases in antisense activity, the addition of prC or 2'-O-Me modifications substantially reduced the affinity of oligomers for g5p by approximately 2-fold compared with the same DNA oligomer sequences containing only phosphorothioate linkages. That is, such modifications moderated the propensity of the phosphorothioate group to bind tightly to the g5p. The Ff g5p could be a useful model protein for assessing non-specific binding effects of antisense oligomer modifications.
Collapse
Affiliation(s)
- Tung-Chung Mou
- Department of Molecular and Cell Biology, Mail Stop FO31, The University of Texas at Dallas, PO Box 830688, Richardson, TX 75083-0688, USA
| | | |
Collapse
|