1
|
Rios A, Soma S, Yoshida J, Nonomura S, Kawabata M, Sakai Y, Isomura Y. Differential Changes in the Lateralized Activity of Identified Projection Neurons of Motor Cortex in Hemiparkinsonian Rats. eNeuro 2019; 6:ENEURO.0110-19.2019. [PMID: 31235466 PMCID: PMC6620387 DOI: 10.1523/eneuro.0110-19.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 12/24/2022] Open
Abstract
In the parkinsonian state, the motor cortex and basal ganglia (BG) undergo dynamic remodeling of movement representation. One such change is the loss of the normal contralateral lateralized activity pattern. The increase in the number of movement-related neurons responding to ipsilateral or bilateral limb movements may cause motor problems, including impaired balance, reduced bimanual coordination, and abnormal mirror movements. However, it remains unknown how individual types of motor cortical neurons organize this reconstruction. To explore the effect of dopamine depletion on lateralized activity in the parkinsonian state, we used a partial hemiparkinsonian model [6-hydroxydopamine (6-OHDA) lesion] in Long-Evans rats performing unilateral movements in a right-left pedal task, while recording from primary (M1) and secondary motor cortex (M2). The lesion decreased contralateral preferred activity in both M1 and M2. In addition, this change differed among identified intratelencephalic (IT) and pyramidal tract (PT) cortical projection neurons, depending on the cortical area. We detected a decrease in lateralized activity only in PT neurons in M1, whereas in M2, this change was observed in IT neurons, with no change in the PT population. Our results suggest a differential effect of dopamine depletion in the lateralized activity of the motor cortex, and suggest possible compensatory changes in the contralateral hemisphere.
Collapse
Affiliation(s)
- Alain Rios
- Brain Science Institute, Tamagawa University, Tokyo 194-8610, Japan
- Graduate School of Brain Sciences, Tamagawa University, Tokyo 194-8610, Japan
- Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Shogo Soma
- Department of Anatomy and Neurobiology. University of California, Irvine, Irvine, CA 92697
| | - Junichi Yoshida
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Satoshi Nonomura
- Brain Science Institute, Tamagawa University, Tokyo 194-8610, Japan
- Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Masanori Kawabata
- Brain Science Institute, Tamagawa University, Tokyo 194-8610, Japan
- Graduate School of Brain Sciences, Tamagawa University, Tokyo 194-8610, Japan
- Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Yutaka Sakai
- Brain Science Institute, Tamagawa University, Tokyo 194-8610, Japan
- Graduate School of Brain Sciences, Tamagawa University, Tokyo 194-8610, Japan
| | - Yoshikazu Isomura
- Brain Science Institute, Tamagawa University, Tokyo 194-8610, Japan
- Graduate School of Brain Sciences, Tamagawa University, Tokyo 194-8610, Japan
- Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| |
Collapse
|
2
|
Connolly JD, Hashemi-Nezhad M, Lyon DC. Parallel feedback pathways in visual cortex of cats revealed through a modified rabies virus. J Comp Neurol 2012; 520:988-1004. [PMID: 21826663 DOI: 10.1002/cne.22748] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The visual cortex of cats is highly evolved. Analogously to the brains of primates, large numbers of visual areas are arranged hierarchically and can be parsed into separate dorsal and ventral streams for object recognition and visuospatial representation. Within early primate visual areas, V1 and V2, and to a lesser extent V3, the two streams are relatively segregated and relayed in parallel to higher order cortex, although there is some evidence suggesting an alignment of V2 and V3 to one stream over the other. For cats, there is no evidence of anatomical segregation in areas 18 and 19, the analogs to V2 and V3. However, previous work was only qualitative in nature. Here we re-examined the feedback connectivity patterns of areas 18/19 in quantitative detail. To accomplish this, we used a genetically modified rabies virus that acts as a retrograde tracer and fills neurons with fluorescent protein. After injections into area 19, many more neurons were labeled in putative ventral stream area 21a than in putative dorsal stream region posterolateral suprasylvian complex of areas (PLS), and the dendrites of neurons in 21a were significantly more complex. Conversely, area 18 injections labeled more neurons in PLS, and these were more complex than neurons in 21a. We infer from our results that area 19 in cat is more aligned to the ventral stream and area 18 to the dorsal stream. Based on the success of our approach, we suggest that this method could be applied to resolve similar issues related to primate V3.
Collapse
Affiliation(s)
- Jason D Connolly
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California 92697, USA
| | | | | |
Collapse
|
3
|
Villeneuve M, Vanni M, Casanova C. Modular organization in area 21a of the cat revealed by optical imaging: comparison with the primary visual cortex. Neuroscience 2009; 164:1320-33. [DOI: 10.1016/j.neuroscience.2009.08.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 08/18/2009] [Accepted: 08/16/2009] [Indexed: 11/26/2022]
|