1
|
De Luca LA, Almeida RL, David RB, de Paula PM, Andrade CAF, Menani JV. Participation of α2 -adrenoceptors in sodium appetite inhibition during sickness behaviour following administration of lipopolysaccharide. J Physiol 2015; 594:1607-16. [PMID: 26036817 DOI: 10.1113/jp270377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/26/2015] [Indexed: 11/08/2022] Open
Abstract
Sickness behaviour, a syndrome characterized by a general reduction in animal activity, is part of the active-phase response to fight infection. Lipopolysaccharide (LPS), an effective endotoxin to model sickness behaviour, reduces thirst and sodium excretion, and increases neurohypophysial secretion. Here we review the effects of LPS on thirst and sodium appetite. Altered renal function and hydromineral fluid intake in response to LPS occur in the context of behavioural reorganization, which manifests itself as part of the syndrome. Recent data show that, in addition to its classical effect on thirst, non-septic doses of LPS injected intraperitoneally produce a preferential inhibition of intracellular thirst versus extracellular thirst. Moreover, LPS also reduced hypertonic NaCl intake in sodium-depleted rats that entered a sodium appetite test. Antagonism of α2 -adrenoceptors abolished the effect of LPS on sodium appetite. LPS and cytokine transduction potentially recruit brain noradrenaline and α2 -adrenoceptors to control sodium appetite and sickness behaviour.
Collapse
Affiliation(s)
- Laurival A De Luca
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Roberto L Almeida
- Department of Physiology, ABC Medical School, Santo André, São Paulo, Brazil
| | - Richard B David
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Patricia M de Paula
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Carina A F Andrade
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - José V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| |
Collapse
|
2
|
de Souza Mecawi A, Ruginsk SG, Elias LLK, Varanda WA, Antunes‐Rodrigues J. Neuroendocrine Regulation of Hydromineral Homeostasis. Compr Physiol 2015; 5:1465-516. [DOI: 10.1002/cphy.c140031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
3
|
nNOS expression in the brain of rats after burn and the effect of the ACE inhibitor captopril. Burns 2013; 39:897-904. [DOI: 10.1016/j.burns.2012.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 10/02/2012] [Accepted: 10/08/2012] [Indexed: 11/18/2022]
|
4
|
Almeida RL, David RB, Constancio J, Fracasso JF, Menani JV, De Luca LA. Inhibition of sodium appetite by lipopolysaccharide: involvement of alpha2-adrenoceptors. Am J Physiol Regul Integr Comp Physiol 2011; 301:R185-92. [PMID: 21474430 DOI: 10.1152/ajpregu.00555.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipopolysaccharide (LPS), an endotoxin from the wall of Escherichia coli, produces a general behavioral inhibition and affects several aspects of fluid-electrolyte balance. LPS inhibits thirst; however, it is not clear if it also inhibits sodium appetite. The present results show that LPS (0.3-2.5 mg/kg body wt) injected intraperitoneally produces a dose-dependent reduction of sodium appetite expressed as 0.3 M NaCl intake induced by sodium depletion (furosemide plus removal of ambient sodium for 24 h). The high doses of LPS (1.2-2.5 mg/kg) also produced transient hypothermia at the beginning of the sodium appetite test; however, no dose produced hyperthermia. LPS also increased the stomach liquid content (an index of gastric emptying) after a load of 0.3 M NaCl given intragastrically by gavage to sodium-depleted rats. The α(2)-adrenoceptor antagonist yohimbine (5 mg/kg ip) abolished the effect of LPS on 0.3 M NaCl intake, without changing the effect of LPS on gastric emptying. Injection of RX-821002 (160 nmol), another α(2)-adrenoceptor antagonist, in the lateral cerebral ventricle (LV) also reversed the inhibition of sodium appetite produced by LPS. Yohimbine intraperitoneally or RX-821002 in the LV alone had no effect on sodium intake. Although yohimbine plus LPS produced a slight hypotension, RX-821002 plus LPS produced no change in arterial pressure, suggesting that the blockade of the effects of LPS on sodium intake by the α(2)-adrenoceptor antagonists is independent from changes in arterial pressure. The results suggest an inhibitory role for LPS in sodium appetite that is mediated by central α(2)-adrenoceptors.
Collapse
Affiliation(s)
- R L Almeida
- Dept. of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Rua Humaitá, 1680, Araraquara, São Paulo, 14801-903, Brazil
| | | | | | | | | | | |
Collapse
|
5
|
Reis WL, Saad WA, Camargo LA, Elias LL, Antunes-Rodrigues J. Central nitrergic system regulation of neuroendocrine secretion, fluid intake and blood pressure induced by angiotensin-II. Behav Brain Funct 2010; 6:64. [PMID: 20974001 PMCID: PMC2987978 DOI: 10.1186/1744-9081-6-64] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 10/25/2010] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Nitric oxide (NO) synthesis has been described in several circumventricular and hypothalamic structures in the central nervous system that are implicated in mediating central angiotensin-II (ANG-II) actions during water deprivation and hypovolemia. Neuroendocrine and cardiovascular responses, drinking behavior, and urinary excretions were examined following central angiotensinergic stimulation in awake freely-moving rats pretreated with intracerebroventricular injections of Nω-nitro-L-arginine methyl ester (L-NAME, 40 μg), an inhibitor of NO synthase, and L-arginine (20 ug), a precursor of NO. RESULTS Injections of L-NAME or ANG-II produced an increase in plasma vasopressin (VP), oxytocin (OT) and atrial natriuretic peptide (ANP) levels, an increase in water and sodium intake, mean arterial blood pressure and sodium excretion, and a reduction of urinary volume. L-NAME pretreatment enhanced the ANG-II response, while L-arginine attenuated VP and OT release, thirst, appetite for sodium, antidiuresis, and natriuresis, as well as pressor responses induced by ANG-II. DISCUSSION AND CONCLUSION Thus, the central nitrergic system participates in the angiotensinergic responses evoked by water deprivation and hypovolemia to refrain neurohypophysial secretion, hydromineral balance, and blood pressure homeostasis.
Collapse
Affiliation(s)
- Wagner L Reis
- Department of Physiology, School of Dentistry, Paulista State University of Araraquara, UNESP Araraquara São Paulo, Brazil
| | | | | | | | | |
Collapse
|
6
|
Johnson KR, Olson KR. The response of non-traditional natriuretic peptide production sites to salt and water manipulations in the rainbow trout. J Exp Biol 2009; 212:2991-7. [DOI: 10.1242/jeb.031666] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Natriuretic peptides (NPs) and their receptors (NPRs) comprise an evolutionarily conserved signaling system with profound physiological effects on vertebrate renal and cardiovascular systems. Some NPs (ANP, BNP and VNP)are primarily of cardiac origin whereas CNP is common in the brain. In mammals, non-traditional sites of NPs synthesis, BNP in brain and CNP in atrium, appear to have complementary actions. In the present study, trout were chronically adapted to freshwater (FW) (a volume-loading, salt-depleting environment), saltwater (SW) (a volume-depleting, salt-loading environment),FW and fed a high-salt diet (FW–HSD) (a volume- and salt-loading regime)or acutely volume depleted or expanded by hemorrhage or infusion with dialyzed plasma to perturb volume homeostasis. The responses of brain and atrial BNP and CNP mRNA, pro-peptide, NPR-A and NPR-B were evaluated using quantitative PCR and western analysis. Brain pro-BNP and NPR-A was increased in FW–HSD trout and decreased in SW trout. Brain pro-CNP was largely unaffected whereas NPR-B mRNA was increased in FW–HSD trout. Atrial CNP,although produced at lower levels than other cardiac NPs, was markedly elevated in chronically (FW–HSD) and acutely volume expanded trout(dialyzed-plasma infusion) whereas decreased in hemorrhaged trout. These findings indicate that non-traditional NP synthesis sites in the trout probably complement the broad hypovolemic and hypotensive actions of traditional (cardiac) NP synthesis sites in response to volume expansion but not to plasma osmolarity. This supports the hypothesis that the piscine and mammalian NP systems are fundamentally similar and appear to protect the heart from volume overload.
Collapse
Affiliation(s)
- Keven R. Johnson
- University of Notre Dame-Department of Biological Sciences, Notre Dame, IN 46556, USA
- Indiana University School of Medicine, South Bend Center, South Bend, IN 46617, USA
| | - Kenneth R. Olson
- University of Notre Dame-Department of Biological Sciences, Notre Dame, IN 46556, USA
- Indiana University School of Medicine, South Bend Center, South Bend, IN 46617, USA
| |
Collapse
|
7
|
de Andrade CA, de Andrade GM, De Paula PM, De Luca LA, Menani JV. Involvement of central α1-adrenoceptors on renal responses to central moxonidine and α-methylnoradrenaline. Eur J Pharmacol 2009; 607:60-7. [DOI: 10.1016/j.ejphar.2009.01.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Natriuretic peptides in vascular physiology and pathology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 268:59-93. [PMID: 18703404 DOI: 10.1016/s1937-6448(08)00803-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Four major natriuretic peptides have been isolated: atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), C-type natriuretic peptide (CNP), and Dendroaspis-type natriuretic peptide (DNP). Natriuretic peptides play an important role in the regulation of cardiovascular homeostasis maintaining blood pressure and extracellular fluid volume. The classical endocrine effects of natriuretic peptides to modulate fluid and electrolyte balance and vascular smooth muscle tone are complemented by autocrine and paracrine actions that include regulation of coronary blood flow and, therefore, myocardial perfusion; modulation of proliferative responses during myocardial and vascular remodeling; and cytoprotective anti-ischemic effects. The actions of natriuretic peptides are mediated by the specific binding of these peptides to three cell surface receptors: type A natriuretic peptide receptor (NPR-A), type B natriuretic peptide receptor (NPR-B), and type C natriuretic peptide receptor (NPR-C). NPR-A and NPR-B are guanylyl cyclase receptors that increase intracellular cGMP concentration and activate cGMP-dependent protein kinases. NPR-C has been presented as a clearance receptor and its activation also results in inhibition of adenylyl cyclase activity. The wide range of effects of natriuretic peptides might be the base for the development of new therapeutic strategies of great benefit in patients with cardiovascular problems including coronary artery disease or heart failure. This review summarizes current literature concerning natriuretic peptides, their receptors and their effects on fluid/electrolyte balance, and vascular and cardiac physiology and pathology, including primary hypertension and myocardial infarction. In addition, we will attempt to provide an update on important issues regarding natriuretic peptides in congestive heart failure.
Collapse
|
9
|
Reis WL, Giusti-Paiva A, Ventura RR, Margatho LO, Gomes DA, Elias LLK, Antunes-Rodrigues J. Central nitric oxide blocks vasopressin, oxytocin and atrial natriuretic peptide release and antidiuretic and natriuretic responses induced by central angiotensin II in conscious rats. Exp Physiol 2007; 92:903-11. [PMID: 17513344 DOI: 10.1113/expphysiol.2007.037911] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The presence of nitric oxide synthase (NOS), the enzyme that catalyses the formation of nitric oxide (NO), in the circumventricular organs and magnocellular neurones suggests an important role of NO in the modulation of vasopressin (AVP) and oxytocin (OT) release. Intracerebroventricular (I.C.V.) injection of angiotensin II (Ang II) stimulates the release of AVP, OT and atrial natriuretic peptide (ANP), with the resultant antidiuretic and natriuretic effects. This study investigated the interaction between nitrergic and angiotensinergic pathways on the release of AVP, OT and ANP and on urinary volume and sodium excretion in water-loaded rats. Unanaesthetized, freely moving, male Wistar rats received two water loads followed by an injection into the lateral ventricle of an inhibitor of NOS (L-NAME), a NO donor [3-morpholinylsydnoneimine chloride (SIN-1) or S-nitroso-N-acetyl penicillamine (SNAP)] or vehicle (isotonic saline) and, 20 min after, they received a second I.C.V. injection of Ang II or vehicle. Injections of L-NAME or Ang II produced an increase in plasma levels of AVP, OT and ANP, a reduction in urinary volume and an increase in sodium excretion. Pretreatment with L-NAME enhanced the Ang II-induced increase in AVP, OT and ANP release, as well as the antidiuresis and natriuresis. Injection of SIN-1 or SNAP did not modify hormonal plasma levels and urinary parameters. In contrast SNAP blocked the AVP, OT and ANP release, as well as antidiuretic and natriuretic responses induced by ANG-II. Thus, the central nitrergic system can act to inhibit AVP, OT and ANP secretion and the antidiuretic and natriuretic effects in response to Ang II.
Collapse
Affiliation(s)
- Wagner Luis Reis
- Laboratory of Neuroendocrinology, Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
10
|
Glass MJ, Chan J, Frys KA, Oselkin M, Tarsitano MJ, Iadecola C, Pickel VM. Changes in the subcellular distribution of NADPH oxidase subunit p47phox in dendrites of rat dorsomedial nucleus tractus solitarius neurons in response to chronic administration of hypertensive agents. Exp Neurol 2007; 205:383-95. [PMID: 17418121 PMCID: PMC2708175 DOI: 10.1016/j.expneurol.2007.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 02/10/2007] [Accepted: 02/15/2007] [Indexed: 02/07/2023]
Abstract
NADPH oxidase-generated superoxide can modulate crucial intracellular signaling cascades in neurons of the nucleus tractus solitarius (NTS), a brain region that plays an important role in cardiovascular processes. Modulation of NTS signaling by superoxide may be linked to the subcellular location of the mobile NADPH oxidase p47(phox) subunit, which is known to be present in dendrites of NTS neurons. It is not known, however, if hypertension can produce changes in the trafficking of p47(phox) in defined NTS subregions, particularly the preferentially barosensitive dorsomedial NTS (dmNTS), or preferentially gastrointestinal medial NTS (mNTS). We used immunogold electron microscopy to determine if p47(phox) localization was differentially affected in dendritic profiles of neurons from these NTS subregions of the rat in response to distinct models of hypertension, namely chronic 7-day subcutaneous administration of angiotensin II (AngII), or phenylephrine. In small (<1 microm) dendritic processes, both AngII and phenylephrine produced a decrease in intracellular p47(phox) labeling selectively in dmNTS neurons. In intermediate-size (1-2 microm) dendritic profiles in the dmNTS region only, there was an increase in p47(phox) labeling in response to each hypertensive agent, although these changes occurred in different subcellular compartments. There was an increase in non-vesicular labeling in response to AngII, but an increase in surface labeling with phenylephrine. Moreover, each of the changes in p47(phox) targeting mentioned above occurred in dendritic profiles with, or without immunoperoxidase labeling for the AngII AT-1A receptor subtype (AT-1A). These results indicate that chronic administration of agents that induce hypertension can also produce changes in the subcellular localization in p47(phox) in dmNTS neurons. Thus, systemic hypertension may produce alterations in the trafficking of proteins associated with superoxide production in central autonomic neurons, thus revealing a potentially important neurogenic component of free radical production and systemic blood pressure elevation.
Collapse
Affiliation(s)
- Michael J Glass
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 411 E. 69th St., KB410, New York, NY 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Ramos H, de Bold AJ. Gene expression, processing, and secretion of natriuretic peptides: physiologic and diagnostic implications. Heart Fail Clin 2007; 2:255-68. [PMID: 17386895 DOI: 10.1016/j.hfc.2006.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hugo Ramos
- Hospital de Urgencias, National University of Cordoba, Córdoba, Argentina
| | | |
Collapse
|
12
|
Abstract
The cardiac natriuretic peptides (NPs) atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) are polypeptide hormones synthesized, stored, and secreted by cardiac muscle cells (cardiocytes). The NPs modulate extracellular fluid volume and blood pressure and have potent growth-regulating properties, which make them of great interest for cardiac remodeling in acute myocardial infarction and congestive heart failure. We have observed that the production of NP can be coordinately or discoordinately regulated. In the former type, muscle stretch-elicited secretion triggers signals mediated by Gi/o protein, whereas agonists such as endothelin 1 independently signal through Gq. Discoordinated regulation is observed following stimulations by some cytokines, which selectively up-regulate BNP. This regulation takes place at the translational and transcriptional levels and is dependent on a p38 signaling pathway. Further details of processes regulating NP secretion need to be defined to develop a comprehensive view of the endocrine function of the heart. Nevertheless, translational research in the area of NPs has demonstrated the usefulness of these hormones as a marker of disease and as potential therapeutic agents. The latter application of NP is particularly attractive given that ANF and BNP possess pharmacologic actions that require polypharmacy in the treatment of acute myocardial infarction and congestive heart failure.
Collapse
Affiliation(s)
- Adolfo J de Bold
- Cardiovascular Endocrinology Laboratory, University of Ottawa Heart Institute, ON.
| | | |
Collapse
|
13
|
Antunes-Rodrigues J, de Castro M, Elias LLK, Valença MM, McCann SM. Neuroendocrine control of body fluid metabolism. Physiol Rev 2004; 84:169-208. [PMID: 14715914 DOI: 10.1152/physrev.00017.2003] [Citation(s) in RCA: 318] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mammals control the volume and osmolality of their body fluids from stimuli that arise from both the intracellular and extracellular fluid compartments. These stimuli are sensed by two kinds of receptors: osmoreceptor-Na+ receptors and volume or pressure receptors. This information is conveyed to specific areas of the central nervous system responsible for an integrated response, which depends on the integrity of the anteroventral region of the third ventricle, e.g., organum vasculosum of the lamina terminalis, median preoptic nucleus, and subfornical organ. The hypothalamo-neurohypophysial system plays a fundamental role in the maintenance of body fluid homeostasis by secreting vasopressin and oxytocin in response to osmotic and nonosmotic stimuli. Since the discovery of the atrial natriuretic peptide (ANP), a large number of publications have demonstrated that this peptide provides a potent defense mechanism against volume overload in mammals, including humans. ANP is mostly localized in the heart, but ANP and its receptor are also found in hypothalamic and brain stem areas involved in body fluid volume and blood pressure regulation. Blood volume expansion acts not only directly on the heart, by stretch of atrial myocytes to increase the release of ANP, but also on the brain ANPergic neurons through afferent inputs from baroreceptors. Angiotensin II also plays an important role in the regulation of body fluids, being a potent inducer of thirst and, in general, antagonizes the actions of ANP. This review emphasizes the role played by brain ANP and its interaction with neurohypophysial hormones in the control of body fluid homeostasis.
Collapse
Affiliation(s)
- José Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
14
|
Woodard GE, Zhao J, Rosado JA, Brown J. Differences between natriuretic peptide receptors in the olfactory bulb and hypothalamus from spontaneously hypertensive and normotensive rat brain. Neurosci Res 2004; 47:421-9. [PMID: 14630346 DOI: 10.1016/j.neures.2003.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Natriuretic peptide receptor-A (NPR-A) functional characteristics in the hypothalamus and olfactory bulb (OB) have been investigated in spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). Autoradiographic studies demonstrate a decreased number of atrial natriuretic peptide (ANP) binding sites in the olfactory bulb and hypothalamus in SHR compared to WKY rats. We found that NPR-A showed a lower maximal binding capacity (B(max)) and higher affinity in SHR than in WKY rats both in the olfactory bulb and hypothalamus. However, despite the lower B(max) in SHR, both ANP(1-28) and ANP(5-25) stimulated similar or greater cGMP production than in WKY rats. These differences were found even before the development of hypertension. NPR-A in the olfactory bulb and hypothalamus from 3-week-old SHR showed a lower B(max) and K(d) and a higher cGMP production rate than in WKY rats, suggesting that these characteristics are intrinsic of NPR-A in SHR, instead of being a result of hypertension itself. The present study provides evidences for altered NPR-A receptor properties and function in the olfactory bulb and hypothalamus from SHR, which might be involved in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| | | | | | | |
Collapse
|
15
|
Abstract
Angiotensin II and atrial natriuretic peptide (ANP) play important and opposite roles in the control of water and salt intake, with angiotensin II promoting the intake of both and ANP inhibiting the intake of both. Following blood volume expansion, baroreceptor input to the brainstem induces the release of ANP within the hypothalamus that releases oxytocin (OT) that acts on its receptors in the heart to cause the release of ANP. ANP activates guanylyl cyclase that converts guanosine triphosphate into cyclic guanosine monophosphate (cGMP). cGMP activates protein kinase G that reduces heart rate and force of contraction, decreasing cardiac output. ANP acts similarly to induce vasodilation. The intrinsic OT system in the heart and vascular system augments the effects of circulating OT to cause a rapid reduction in effective circulating blood volume. Furthermore, natriuresis is rapidly induced by the action of ANP on its tubular guanylyl cyclase receptors, resulting in the production of cGMP that closes Na+ channels. The OT released by volume expansion also acts on its tubular receptors to activate nitric oxide synthase. The nitric oxide released activates guanylyl cyclase leading to the production of cGMP that also closes Na+ channels, thereby augmenting the natriuretic effect of ANP. The natriuresis induced by cGMP finally causes blood volume to return to normal. At the same time, the ANP released acts centrally to decrease water and salt intake.
Collapse
Affiliation(s)
- S M McCann
- Pennington Biomedical Research Center (LSU), Baton Rouge, LA 70808-4124, USA.
| | | | | |
Collapse
|
16
|
Steiner AA, Antunes-Rodrigues J, Branco LGS. Role of preoptic second messenger systems (cAMP and cGMP) in the febrile response. Brain Res 2002; 944:135-45. [PMID: 12106673 DOI: 10.1016/s0006-8993(02)02738-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study aimed to test the hypothesis that a decrease in preoptic cAMP mediates fever. To this end, body core temperature (T(c)) of unanesthetized, freely moving rats was monitored by biotelemetry before and after pharmacological modulation of the cAMP pathway, and cAMP levels in the anteroventral third ventricular region (AV3V), where the preoptic region (POA) is located, were determined. We observed that intra-POA administration of the cAMP agonist dibutyryl-cAMP (Db-cAMP, 40 microg) reduced T(c). PGE(2) (the proximal mediator of fever, 200 ng) raised T(c) with a concomitant decrease in AV3V cAMP levels from 22.7+/-1.8 to 17.0+/-1.0 fmol/microg protein. Moreover, PGE(2)-induced fever was impaired by the phosphodiesterase inhibitor aminophylline. In order to verify the interaction between the cAMP- and cGMP-dependent pathways in the POA, we then co-injected Db-cAMP and 8-Br-cGMP into the POA. As a result, 8-Br-cGMP augmented the drop in T(c) evoked by Db-cAMP. Lastly, we observed that intra-POA co-microinjection of the protein kinase A inhibitor (Rp-cAMPS, 1 microg) with the protein kinase G inhibitor (Rp-cGMPS, 1 microg), mimicking the effects of reduced production of cAMP and cGMP, respectively, produced a fever-like response. In summary, the present data support that a decrease in the levels of cAMP and cGMP in the POA is associated with the genesis of fever.
Collapse
Affiliation(s)
- Alexandre A Steiner
- Department of Morphology, Estomatology and Physiology, Dental School of Ribeirao Preto, SP, Brazil.
| | | | | |
Collapse
|
17
|
Steiner AA, Antunes-Rodrigues J, McCann SM, Branco LGS. Antipyretic role of the NO-cGMP pathway in the anteroventral preoptic region of the rat brain. Am J Physiol Regul Integr Comp Physiol 2002; 282:R584-93. [PMID: 11792670 DOI: 10.1152/ajpregu.00391.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that nitric oxide (NO) acts in the anteroventral preoptic region (AVPO) modulating fever. To this end, body core temperature (T(c)) of rats was monitored by biotelemetry before and after pharmacological modulation of the NO pathway. Nitrite/nitrate and cGMP in the anteroventral third ventricular region (AV3V), where the AVPO is located, were also determined. Intra-AVPO microinjection of the NO synthase (NOS) inhibitor N(G)-monomethyl-L-arginine (L-NMMA, 12.5 microg) did not affect basal T(c), but it enhanced the early stage of lipopolysaccharide (LPS) fever, indicating that NO plays an antipyretic role in the AVPO. In agreement, intra-AVPO microinjection of the NO donor sodium nitroprusside (5 microg) reduced T(c). The antipyretic effect of NO seems to be mediated by cGMP because 1) NO has been shown to activate soluble guanylate cyclase, 2) intra-AVPO microinjection of 8-bromo-cGMP (8-BrcGMP) reduced T(c), and 3) the changes in AV3V levels of nitrite/nitrate and cGMP were similar in the course of fever. Additionally, we observed that nitrite/nitrate and cGMP levels decreased in the AV3V after, but not before, the onset of LPS fever, showing that the activity of the NO-cGMP pathway is reduced in the AV3V after intraperitoneal LPS, a mechanism that could contribute to the genesis and maintenance of fever. It was also observed that the efficacy of 8-BrcGMP in reducing T(c) in the AVPO is increased after LPS, emphasizing that the NO-cGMP pathway is antipyretic. This response could explain why intra-AVPO L-NMMA enhanced the early stage of LPS fever, even though the activity of the NO pathway before the onset of fever was unchanged. In summary, these data support an antipyretic role of the NO-cGMP pathway in the AVPO.
Collapse
Affiliation(s)
- Alexandre A Steiner
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14040 - 904 Ribeirão Preto, São Paulo, Brazil
| | | | | | | |
Collapse
|