1
|
Lamorie-Foote K, Kramer DR, Sundaram S, Cavaleri J, Gilbert ZD, Tang AM, Bashford L, Liu CY, Kellis S, Lee B. Primary somatosensory cortex organization for engineering artificial somatosensation. Neurosci Res 2024; 204:1-13. [PMID: 38278220 DOI: 10.1016/j.neures.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Somatosensory deficits from stroke, spinal cord injury, or other neurologic damage can lead to a significant degree of functional impairment. The primary (SI) and secondary (SII) somatosensory cortices encode information in a medial to lateral organization. SI is generally organized topographically, with more discrete cortical representations of specific body regions. SII regions corresponding to anatomical areas are less discrete and may represent a more functional rather than topographic organization. Human somatosensory research continues to map cortical areas of sensory processing with efforts primarily focused on hand and upper extremity information in SI. However, research into SII and other body regions is lacking. In this review, we synthesize the current state of knowledge regarding the cortical organization of human somatosensation and discuss potential applications for brain computer interface. In addition to accurate individualized mapping of cortical somatosensation, further research is required to uncover the neurophysiological mechanisms of how somatosensory information is encoded in the cortex.
Collapse
Affiliation(s)
- Krista Lamorie-Foote
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Daniel R Kramer
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurological Surgery, University of Colorado School of Medicine, Denver, CO, United States
| | - Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States.
| | - Jonathon Cavaleri
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Zachary D Gilbert
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Austin M Tang
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurological Surgery, University of Texas at Houston, Houston, TX, United States
| | - Luke Bashford
- Department of Biology and Biological Engineering, T&C Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, United States; Department of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Spencer Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
2
|
Sun F, Zhang G, Yu T, Zhang X, Wang X, Yan X, Qiao L, Ma K, Zhang X. Functional characteristics of the human primary somatosensory cortex: An electrostimulation study. Epilepsy Behav 2021; 118:107920. [PMID: 33770611 DOI: 10.1016/j.yebeh.2021.107920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
The common knowledge of the functional organization of the human primary somatosensory cortex (S1) had been primarily established by Penfield who electrically stimulated the exposed surface [referred as Brodmann area (BA)1] of S1 under neurosurgical conditions. Nevertheless, the functional information regarding the deep surface (BA 2 and 3) of S1 is poorly understood. We retrospectively analyzed all the clinical manifestations induced by extra-operative cortical electrical stimulation (ES) in 33 patients with medically intractable epilepsy who underwent stereo-electroencephalography (SEEG) monitoring for presurgical assessment. Demographic and clinical data were gathered and evaluated to delineate the determinants of the occurrence of positive responses, types of responses, and size of body regions involved. The stimulation of 244 sites in S1 yielded 198 positive sites (81.1%), most of which were located in the sulcal cortex. In multivariable analyses, no clinical or demographic factors predicted the occurrence of responses or their threshold levels. The size of body region involved in the responses had ordinal association with the stimulated BA sites (p < 0.001). Various types of responses elicited from the S1 were documented and classified, and the predictors of those responses were also assessed. Our analysis revealed the functional characteristics of the entire S1 and proved the multiplicity of functions of S1.
Collapse
Affiliation(s)
- Fengqiao Sun
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Guojun Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China.
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Xiaohua Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Xueyuan Wang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Xiaoming Yan
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Liang Qiao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Kai Ma
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Xi Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| |
Collapse
|
3
|
Sun F, Zhang G, Ren L, Yu T, Ren Z, Gao R, Zhang X. Functional organization of the human primary somatosensory cortex: A stereo-electroencephalography study. Clin Neurophysiol 2021; 132:487-497. [PMID: 33465535 DOI: 10.1016/j.clinph.2020.11.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/31/2020] [Accepted: 11/24/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The classical homunculus of the human primary somatosensory cortex (S1) established by Penfield has mainly portrayed the functional organization of convexial cortex, namely Brodmann area (BA) 1. However, little is known about the functions in fissural cortex including BA2 and BA3. We aim at drawing a refined and detailed somatosensory homunculus of the entire S1. METHODS We recruited 20 patients with drug-resistant focal epilepsy who underwent stereo-electroencephalography for preoperative assessments. Direct electrical stimulation was performed for functional mapping. Montreal Neurological Institute coordinates of the stimulation sites lying in S1 were acquired. RESULTS Stimulation of 177 sites in S1 yielded 149 positive sites (84%), most of which were located in the sulcal cortex. The spatial distribution of different body-part representations across the S1 surface revealed that the gross medial-to-lateral sequence of body representations within the entire S1 was consistent with the classical "homunculus". And we identified several unreported body-part representations from the sulcal cortex, such as forehead, deep elbow and wrist joints, and some dorsal body regions. CONCLUSIONS Our results reveal general somatotopical characteristics of the entire S1 cortex and differences with the previous works of Penfield. SIGNIFICANCE The classical S1 homunculus was extended by providing further refinement and additional detail.
Collapse
Affiliation(s)
- Fengqiao Sun
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Guojun Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China.
| | - Liankun Ren
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Zhiwei Ren
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Runshi Gao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Xiaohua Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| |
Collapse
|
4
|
Milosevic M, Marquez-Chin C, Masani K, Hirata M, Nomura T, Popovic MR, Nakazawa K. Why brain-controlled neuroprosthetics matter: mechanisms underlying electrical stimulation of muscles and nerves in rehabilitation. Biomed Eng Online 2020; 19:81. [PMID: 33148270 PMCID: PMC7641791 DOI: 10.1186/s12938-020-00824-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022] Open
Abstract
Delivering short trains of electric pulses to the muscles and nerves can elicit action potentials resulting in muscle contractions. When the stimulations are sequenced to generate functional movements, such as grasping or walking, the application is referred to as functional electrical stimulation (FES). Implications of the motor and sensory recruitment of muscles using FES go beyond simple contraction of muscles. Evidence suggests that FES can induce short- and long-term neurophysiological changes in the central nervous system by varying the stimulation parameters and delivery methods. By taking advantage of this, FES has been used to restore voluntary movement in individuals with neurological injuries with a technique called FES therapy (FEST). However, long-lasting cortical re-organization (neuroplasticity) depends on the ability to synchronize the descending (voluntary) commands and the successful execution of the intended task using a FES. Brain-computer interface (BCI) technologies offer a way to synchronize cortical commands and movements generated by FES, which can be advantageous for inducing neuroplasticity. Therefore, the aim of this review paper is to discuss the neurophysiological mechanisms of electrical stimulation of muscles and nerves and how BCI-controlled FES can be used in rehabilitation to improve motor function.
Collapse
Affiliation(s)
- Matija Milosevic
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan.
| | - Cesar Marquez-Chin
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada
- CRANIA, University Health Network & University of Toronto, 550 University Avenue, Toronto, ON, M5G 2A2, Canada
| | - Kei Masani
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada
- CRANIA, University Health Network & University of Toronto, 550 University Avenue, Toronto, ON, M5G 2A2, Canada
| | - Masayuki Hirata
- Department of Neurological Diagnosis and Restoration, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taishin Nomura
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada
- CRANIA, University Health Network & University of Toronto, 550 University Avenue, Toronto, ON, M5G 2A2, Canada
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| |
Collapse
|
5
|
Carson RG, Buick AR. Neuromuscular electrical stimulation-promoted plasticity of the human brain. J Physiol 2019; 599:2375-2399. [PMID: 31495924 DOI: 10.1113/jp278298] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022] Open
Abstract
The application of neuromuscular electrical stimulation (NMES) to paretic limbs has demonstrated utility for motor rehabilitation following brain injury. When NMES is delivered to a mixed peripheral nerve, typically both efferent and afferent fibres are recruited. Muscle contractions brought about by the excitation of motor neurons are often used to compensate for disability by assisting actions such as the formation of hand aperture, or by preventing others including foot drop. In this context, exogenous stimulation provides a direct substitute for endogenous neural drive. The goal of the present narrative review is to describe the means through which NMES may also promote sustained adaptations within central motor pathways, leading ultimately to increases in (intrinsic) functional capacity. There is an obvious practical motivation, in that detailed knowledge concerning the mechanisms of adaptation has the potential to inform neurorehabilitation practice. In addition, responses to NMES provide a means of studying CNS plasticity at a systems level in humans. We summarize the fundamental aspects of NMES, focusing on the forms that are employed most commonly in clinical and experimental practice. Specific attention is devoted to adjuvant techniques that further promote adaptive responses to NMES thereby offering the prospect of increased therapeutic potential. The emergent theme is that an association with centrally initiated neural activity, whether this is generated in the context of NMES triggered by efferent drive or via indirect methods such as mental imagery, may in some circumstances promote the physiological changes that can be induced through peripheral electrical stimulation.
Collapse
Affiliation(s)
- Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin 2, Ireland.,School of Psychology, Queen's University Belfast, Belfast, BT7 1NN, UK.,School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Alison R Buick
- School of Psychology, Queen's University Belfast, Belfast, BT7 1NN, UK
| |
Collapse
|
6
|
Cataldo A, Ferrè ER, di Pellegrino G, Haggard P. Why the whole is more than the sum of its parts: Salience-driven overestimation in aggregated tactile sensations. Q J Exp Psychol (Hove) 2019; 72:2509-2526. [PMID: 30971159 DOI: 10.1177/1747021819847131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Experimental psychology often studies perception analytically, reducing its focus to minimal sensory units, such as thresholds or just noticeable differences in a single stimulus. Here, in contrast, we examine a synthetic aspect: how multiple inputs to a sensory system are aggregated into an overall percept. Participants in three experiments judged the total stimulus intensity for simultaneous electrical shocks to two digits. We tested whether the integration of component somatosensory stimuli into a total percept occurs automatically, or rather depends on the ability to consciously perceive discrepancy among components (Experiment 1), whether the discrepancy among these components influences sensitivity or/and perceptual bias in judging totals (Experiment 2), and whether the salience of each individual component stimulus affects perception of total intensity (Experiment 3). Perceptual aggregation of two simultaneous component events occurred both when participants could perceptually discriminate the two intensities, and also when they could not. Further, the actual discrepancy between the stimuli modulated both participants' sensitivity and perceptual bias: increasing discrepancies produced a systematic and progressive overestimation of total intensity. The degree of this bias depended primarily on the salience of the stronger stimulus in the pair. Overall, our results suggest that important nonlinear mechanisms contribute to sensory aggregation. The mind aggregates component inputs into a coherent and synthetic perceptual experience in a salience-weighted fashion that is not based on simple summation of inputs.
Collapse
Affiliation(s)
- Antonio Cataldo
- 1 Institute of Cognitive Neuroscience, University College London, London, UK.,2 Centre for Studies and Research in Cognitive Neuroscience, Alma Mater Studiorum -University of Bologna, Cesena, Italy.,3 Institute of Philosophy, School of Advanced Study, University of London, London, UK
| | | | - Giuseppe di Pellegrino
- 2 Centre for Studies and Research in Cognitive Neuroscience, Alma Mater Studiorum -University of Bologna, Cesena, Italy
| | - Patrick Haggard
- 1 Institute of Cognitive Neuroscience, University College London, London, UK.,3 Institute of Philosophy, School of Advanced Study, University of London, London, UK
| |
Collapse
|
7
|
Roux FE, Djidjeli I, Durand JB. Functional architecture of the somatosensory homunculus detected by electrostimulation. J Physiol 2018; 596:941-956. [PMID: 29285773 DOI: 10.1113/jp275243] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/18/2017] [Indexed: 01/22/2023] Open
Abstract
KEY POINTS We performed a prospective electrostimulation study, based on 50 operated intact patients, to acquire accurate MNI coordinates of the functional areas of the somatosensory homunculus. In the contralateral BA1, the hand representation displayed not only medial-to-lateral, little-finger-to-thumb, but also rostral-to-caudal discrete somatotopy, with the tip of each finger located more caudally than the proximal phalanx. The analysis of the MNI body coordinates showed rare inter-individual variations in the medial-to-lateral somatotopic organization in these patients with rather different intensity thresholds needed to elicit sensations in different body parts. We found some similarities but also substantial differences with the previous, seminal works of Penfield and his colleagues. We propose a new drawing of the human somatosensory homunculus according to MNI space. ABSTRACT In this prospective electrostimulation study, based on 50 operated patients with no sensory deficit and no brain lesion in the postcentral gyrus, we acquired coordinates in the standard MNI space of the functional areas of the somatosensory homunculus. The 3D brain volume of each patient was normalized to that space to obtain the MNI coordinates of the stimulation site locations. For 647 sites stimulated on Brodmann Area 1 (and 1025 in gyri nearby), 258 positive points for somatosensory response (40%) were found in the postcentral gyrus. In the contralateral BA1, the hand representation displayed not only medial-to-lateral and little-finger-to-thumb somatotopy, but also rostral-to-caudal discrete somatotopy, with the tip of each finger located more caudally than the proximal phalanx. We detected a medial-to-lateral, tip-to-base tongue organization but no rostral-to-caudal functional organization. The analysis of the MNI body coordinates showed rare inter-individual variations in the medial-to-lateral somatotopic organization in these patients with intact somatosensory cortex. Positive stimulations were detected through the 'on/off' outbreak effect and discriminative touch sensations were the sensations reported almost exclusively by all patients during stimulation. Mean hand (2.39 mA) and tongue (2.60 mA) positive intensity thresholds were lower (P < 0.05) than the intensities required to elicit sensations in the other parts of the body. Unlike the previous, seminal works of Penfield and colleagues, we detected no sensations such as sense of movement or desire to move, no somatosensory responses outside the postcentral gyrus, and no bilateral responses for face/tongue stimulations. We propose a rationalization of the standard drawing of the somatosensory homunculus according to MNI space.
Collapse
Affiliation(s)
- Franck-Emmanuel Roux
- CNRS (CERCO) UMR Unité 5549, Université Paul Sabatier, Toulouse, 31059, France.,Pôle NeuroSciences (Neurochirurgie), Centres Hospitalo-Universitaires, Toulouse, 31059, France
| | - Imène Djidjeli
- CNRS (CERCO) UMR Unité 5549, Université Paul Sabatier, Toulouse, 31059, France.,Pôle NeuroSciences (Neurochirurgie), Centres Hospitalo-Universitaires, Toulouse, 31059, France
| | | |
Collapse
|
8
|
Abstract
Somatosensory areas containing topographic maps of the body surface are a major feature of parietal cortex. In primates, parietal cortex contains four somatosensory areas, each with its own map, with the primary cutaneous map in area 3b. Rodents have at least three parietal somatosensory areas. Maps are not isomorphic to the body surface, but magnify behaviorally important skin regions, which include the hands and face in primates, and the whiskers in rodents. Within each map, intracortical circuits process tactile information, mediate spatial integration, and support active sensation. Maps may also contain fine-scale representations of touch submodalities, or direction of tactile motion. Functional representations are more overlapping than suggested by textbook depictions of map topography. The whisker map in rodent somatosensory cortex is a canonic system for studying cortical microcircuits, sensory coding, and map plasticity. Somatosensory maps are plastic throughout life in response to altered use or injury. This chapter reviews basic principles and recent findings in primate, human, and rodent somatosensory maps.
Collapse
Affiliation(s)
- Samuel Harding-Forrester
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States
| | - Daniel E Feldman
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States.
| |
Collapse
|
9
|
Yoshino A, Okamoto Y, Doi M, Okada G, Takamura M, Ichikawa N, Yamawaki S. Functional Alterations of Postcentral Gyrus Modulated by Angry Facial Expressions during Intraoral Tactile Stimuli in Patients with Burning Mouth Syndrome: A Functional Magnetic Resonance Imaging Study. Front Psychiatry 2017; 8:224. [PMID: 29163243 PMCID: PMC5681843 DOI: 10.3389/fpsyt.2017.00224] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/23/2017] [Indexed: 01/02/2023] Open
Abstract
Previous findings suggest that negative emotions could influence abnormal sensory perception in burning mouth syndrome (BMS). However, few studies have investigated the underlying neural mechanisms associated with BMS. We examined activation of brain regions in response to intraoral tactile stimuli when modulated by angry facial expressions. We performed functional magnetic resonance imaging on a group of 27 BMS patients and 21 age-matched healthy controls. Tactile stimuli were presented during different emotional contexts, which were induced via the continuous presentation of angry or neutral pictures of human faces. BMS patients exhibited higher tactile ratings and greater activation in the postcentral gyrus during the presentation of tactile stimuli involving angry faces relative to controls. Significant positive correlations between changes in brain activation elicited by angry facial images in the postcentral gyrus and changes in tactile rating scores by angry facial images were found for both groups. For BMS patients, there was a significant positive correlation between changes in tactile-related activation of the postcentral gyrus elicited by angry facial expressions and pain intensity in daily life. Findings suggest that neural responses in the postcentral gyrus are more strongly affected by angry facial expressions in BMS patients, which may reflect one possible mechanism underlying impaired somatosensory system function in this disorder.
Collapse
Affiliation(s)
- Atsuo Yoshino
- Department of Psychiatry and Neurosciences, Division of Frontier Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Division of Frontier Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Mitsuru Doi
- Department of Dental Anesthesiology, Hiroshima University, Hiroshima, Japan
| | - Go Okada
- Department of Psychiatry and Neurosciences, Division of Frontier Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Masahiro Takamura
- Department of Psychiatry and Neurosciences, Division of Frontier Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Naho Ichikawa
- Department of Psychiatry and Neurosciences, Division of Frontier Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeto Yamawaki
- Department of Psychiatry and Neurosciences, Division of Frontier Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
10
|
Prueckl R, Kapeller C, Kamada K, Takeuchi F, Ogawa H, Scharinger J, Guger C. Distinction of individual finger responses in somatosensory cortex using ECoG high-gamma activation mapping. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:5760-3. [PMID: 26737601 DOI: 10.1109/embc.2015.7319701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study demonstrates the feasibility of high-gamma activity mapping for localization of somatosensory finger areas in the human brain. Identification of functional brain regions is important in surgical planning, such as for resections of epileptic foci or brain tumors. The mapping procedure is done using electrocorticography (ECoG), an invasive technique in which electrical brain signals are acquired from the cortical surface. Two epilepsy patients with implanted electrode grids participated in the study. Data were collected during a vibrotactile finger stimulation paradigm and showed significant cortical activation (p <; 0.001) in the high-gamma range over the contralateral somatosensory cortex. The results are consistent with previous studies that used fMRI in test subjects without implanted electrodes. Therefore, the results suggest that localizing the cortical representations of the fingers in clinical practice using ECoG is feasible, even without the patient's active participation.
Collapse
|
11
|
Seo NJ, Lakshminarayanan K, Bonilha L, Lauer AW, Schmit BD. Effect of imperceptible vibratory noise applied to wrist skin on fingertip touch evoked potentials - an EEG study. Physiol Rep 2015; 3:3/11/e12624. [PMID: 26603457 PMCID: PMC4673650 DOI: 10.14814/phy2.12624] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 11/24/2022] Open
Abstract
Random vibration applied to skin can change the sense of touch. Specifically, low amplitude white-noise vibration can improve fingertip touch perception. In fact, fingertip touch sensation can improve even when imperceptible random vibration is applied to other remote upper extremity areas such as wrist, dorsum of the hand, or forearm. As such, vibration can be used to manipulate sensory feedback and improve dexterity, particularly during neurological rehabilitation. Nonetheless, the neurological bases for remote vibration enhanced sensory feedback are yet poorly understood. This study examined how imperceptible random vibration applied to the wrist changes cortical activity for fingertip sensation. We measured somatosensory evoked potentials to assess peak-to-peak response to light touch of the index fingertip with applied wrist vibration versus without. We observed increased peak-to-peak somatosensory evoked potentials with wrist vibration, especially with increased amplitude of the later component for the somatosensory, motor, and premotor cortex with wrist vibration. These findings corroborate an enhanced cortical-level sensory response motivated by vibration. It is possible that the cortical modulation observed here is the result of the establishment of transient networks for improved perception.
Collapse
Affiliation(s)
- Na Jin Seo
- Division of Occupational Therapy, Department of Health Professions, Department of Health Sciences and Research, Medical University of South Carolina, Charleston, South Carolina
| | - Kishor Lakshminarayanan
- Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Leonardo Bonilha
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina
| | - Abigail W Lauer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
12
|
Brouwer GJ, Arnedo V, Offen S, Heeger DJ, Grant AC. Normalization in human somatosensory cortex. J Neurophysiol 2015; 114:2588-99. [PMID: 26311189 DOI: 10.1152/jn.00939.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 08/24/2015] [Indexed: 01/23/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) was used to measure activity in human somatosensory cortex and to test for cross-digit suppression. Subjects received stimulation (vibration of varying amplitudes) to the right thumb (target) with or without concurrent stimulation of the right middle finger (mask). Subjects were less sensitive to target stimulation (psychophysical detection thresholds were higher) when target and mask digits were stimulated concurrently compared with when the target was stimulated in isolation. fMRI voxels in a region of the left postcentral gyrus each responded when either digit was stimulated. A regression model (called a forward model) was used to separate the fMRI measurements from these voxels into two hypothetical channels, each of which responded selectively to only one of the two digits. For the channel tuned to the target digit, responses in the left postcentral gyrus increased with target stimulus amplitude but were suppressed by concurrent stimulation to the mask digit, evident as a shift in the gain of the response functions. For the channel tuned to the mask digit, a constant baseline response was evoked for all target amplitudes when the mask was absent and responses decreased with increasing target amplitude when the mask was concurrently presented. A computational model based on divisive normalization provided a good fit to the measurements for both mask-absent and target + mask stimulation. We conclude that the normalization model can explain cross-digit suppression in human somatosensory cortex, supporting the hypothesis that normalization is a canonical neural computation.
Collapse
Affiliation(s)
- Gijs Joost Brouwer
- Department of Psychology and Center for Neural Science, New York University, New York, New York; and
| | - Vanessa Arnedo
- Department of Neurology, State University of New York, Downstate Medical Center, Brooklyn, New York
| | - Shani Offen
- Department of Psychology and Center for Neural Science, New York University, New York, New York; and
| | - David J Heeger
- Department of Psychology and Center for Neural Science, New York University, New York, New York; and
| | - Arthur C Grant
- Department of Neurology, State University of New York, Downstate Medical Center, Brooklyn, New York
| |
Collapse
|
13
|
Hlushchuk Y, Simões-Franklin C, Nangini C, Hari R. Stimulus-rate sensitivity discerns area 3b of the human primary somatosensory cortex. PLoS One 2015; 10:e0128462. [PMID: 26020639 PMCID: PMC4447440 DOI: 10.1371/journal.pone.0128462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 04/27/2015] [Indexed: 11/30/2022] Open
Abstract
Previous studies have shown that the hemodynamic response of the primary somatosensory cortex (SI) to electrical median nerve stimulation doubles in strength when the stimulus rate (SR) increases from 1 to 5 Hz. Here we investigated whether such sensitivity to SR is homogenous within the functionally different subareas of the SI cortex, and whether SR sensitivity would help discern area 3b among the other SI subareas. We acquired 3-tesla functional magnetic resonance imaging (fMRI) data from nine healthy adults who received pneumotactile stimuli in 25-s blocks to three right-hand fingers, either at 1, 4, or 10 Hz. The main contrast (all stimulations pooled vs. baseline), applied to the whole brain, first limited the search to the whole SI cortex. The conjunction of SR-sensitive contrasts [4 Hz − 1 Hz] > 0 and [10 Hz − 1 Hz] > 0 ([4Hz − 1Hz] + [10Hz − 1Hz] > 0), applied to the SI cluster, then revealed an anterior-ventral subcluster that reacted more strongly to both 10-Hz and 4-Hz stimuli than to the 1-Hz stimuli. No other SR-sensitive clusters were found at the group-level in the whole-brain analysis. The site of the SR-sensitive SI subcluster corresponds to the canonical position of area 3b; such differentiation was also possible at the individual level in 5 out of 9 subjects. Thus the SR sensitivity of the BOLD response appears to discern area 3b among other subareas of the human SI cortex.
Collapse
Affiliation(s)
- Yevhen Hlushchuk
- Brain Research Unit, Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 00076 AALTO, Espoo, Finland
- Advanced Magnetic Imaging Centre, Aalto NeuroImaging, Aalto University School of Science, 00076 AALTO, Espoo, Finland
- * E-mail:
| | - Cristina Simões-Franklin
- Brain Research Unit, Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 00076 AALTO, Espoo, Finland
| | - Cathy Nangini
- Brain Research Unit, Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 00076 AALTO, Espoo, Finland
- Advanced Magnetic Imaging Centre, Aalto NeuroImaging, Aalto University School of Science, 00076 AALTO, Espoo, Finland
| | - Riitta Hari
- Brain Research Unit, Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 00076 AALTO, Espoo, Finland
- Advanced Magnetic Imaging Centre, Aalto NeuroImaging, Aalto University School of Science, 00076 AALTO, Espoo, Finland
| |
Collapse
|
14
|
Wardman DL, Gandevia SC, Colebatch JG. Cerebral, subcortical, and cerebellar activation evoked by selective stimulation of muscle and cutaneous afferents: an fMRI study. Physiol Rep 2014; 2:e00270. [PMID: 24771687 PMCID: PMC4001872 DOI: 10.1002/phy2.270] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 11/08/2022] Open
Abstract
Abstract We compared the brain areas that showed significant flow changes induced by selective stimulation of muscle and cutaneous afferents using fMRI BOLD imaging. Afferents arising from the right hand were studied in eight volunteers with electrical stimulation of the digital nerve of the index finger and over the motor point of the FDI muscle. Both methods evoked areas of significant activation cortically, subcortically, and in the cerebellum. Selective muscle afferent stimulation caused significant activation in motor-related areas. It also caused significantly greater activation within the contralateral precentral gyrus, insula, and within the ipsilateral cerebellum as well as greater areas of reduced blood flow when compared to the cutaneous stimuli. We demonstrated separate precentral and postcentral foci of excitation with muscle afferent stimulation. We conclude, contrary to the findings with evoked potentials, that muscle afferents evoke more widespread cortical, subcortical, and cerebellar activation than do cutaneous afferents. This emphasizes the importance, for studies of movement, of matching the kinematic aspects in order to avoid the results being confounded by alterations in muscle afferent activation. The findings are consistent with clinical observations of the movement consequences of sensory loss and may also be the basis for the contribution of disturbed sensorimotor processing to disorders of movement.
Collapse
Affiliation(s)
- Daniel L. Wardman
- Faculty of Medicine, University of Sydney, Sydney, 2052, New South Wales, Australia
- Neuroscience Research Australia, Barker Street, RandwickSydney, 2031, New South Wales, Australia
| | - Simon C. Gandevia
- Neuroscience Research Australia, Barker Street, RandwickSydney, 2031, New South Wales, Australia
- Prince of Wales Hospital Clinical School, University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - James G. Colebatch
- Neuroscience Research Australia, Barker Street, RandwickSydney, 2031, New South Wales, Australia
- Prince of Wales Hospital Clinical School, University of New South Wales, Sydney, 2052, New South Wales, Australia
| |
Collapse
|
15
|
Ann Stringer E, Qiao PG, Friedman RM, Holroyd L, Newton AT, Gore JC, Min Chen L. Distinct fine-scale fMRI activation patterns of contra- and ipsilateral somatosensory areas 3b and 1 in humans. Hum Brain Mapp 2014; 35:4841-57. [PMID: 24692215 DOI: 10.1002/hbm.22517] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 02/12/2014] [Accepted: 03/17/2014] [Indexed: 11/06/2022] Open
Abstract
Inter-areal and ipsilateral cortical responses to tactile stimulation have not been well described in human S1 cortex. By taking advantage of the high signal-to-noise ratio at 7 T, we quantified blood oxygenation level dependent (BOLD) response patterns and time courses to tactile stimuli on individual distal finger pads at a fine spatial scale, and examined whether there are inter-areal (area 3b versus area 1) and interhemispheric response differences to unilateral tactile stimulation in healthy human subjects. We found that 2-Hz tactile stimulation of individual fingertips evoked detectable BOLD signal changes in both contralateral and ipsilateral area 3b and area 1. Contralateral digit activations were organized in an orderly somatotopic manner, and BOLD responses in area 3b were more digit selective than those in area 1. However, the area of cortex that was responsive to stimulation of a single digit (stimulus-response field) was similar across areas. In the ipsilateral hemisphere, response magnitudes in both areas 3b and 1 were significantly weaker than those of the contralateral hemisphere. Digit activations exhibited no clear somatotopic organizational pattern in either area 3b or area 1, yet digit selectivity was retained in area 1 but not in area 3b. The observation of distinct digit-selective responses of contralateral area 3b versus area 1 supports a higher order function of contralateral area 1 in spatial integration. In contrast, ipsilateral cortices may play a less discriminative role in the perception of unilateral tactile sensation in humans.
Collapse
|
16
|
Iliopoulos F, Nierhaus T, Villringer A. Electrical noise modulates perception of electrical pulses in humans: sensation enhancement via stochastic resonance. J Neurophysiol 2013; 111:1238-48. [PMID: 24353303 DOI: 10.1152/jn.00392.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although noise is usually considered to be harmful for signal detection and information transmission, stochastic resonance (SR) describes the counterintuitive phenomenon of noise enhancing the detection and transmission of weak input signals. In mammalian sensory systems, SR-related phenomena may arise both in the peripheral and the central nervous system. Here, we investigate behavioral SR effects of subliminal electrical noise stimulation on the perception of somatosensory stimuli in humans. We compare the likelihood to detect near-threshold pulses of different intensities applied on the left index finger during presence vs. absence of subliminal noise on the same or an adjacent finger. We show that (low-pass) noise can enhance signal detection when applied on the same finger. This enhancement is strong for near-threshold pulses below the 50% detection threshold and becomes stronger when near-threshold pulses are applied as brief trains. The effect reverses at pulse intensities above threshold, especially when noise is replaced by subliminal sinusoidal stimulation, arguing for a peripheral direct current addition. Unfiltered noise applied on longer pulses enhances detection of all pulse intensities. Noise applied to an adjacent finger has two opposing effects: an inhibiting effect (presumably due to lateral inhibition) and an enhancing effect (most likely due to SR in the central nervous system). In summary, we demonstrate that subliminal noise can significantly modulate detection performance of near-threshold stimuli. Our results indicate SR effects in the peripheral and central nervous system.
Collapse
Affiliation(s)
- Fivos Iliopoulos
- The Mind-Brain Institute at Berlin School of Mind and Brain, Charité - Universitätsmedizin Berlin and Humboldt-University, Berlin, Germany
| | | | | |
Collapse
|
17
|
Carson RG, Kennedy NC. Modulation of human corticospinal excitability by paired associative stimulation. Front Hum Neurosci 2013; 7:823. [PMID: 24348369 PMCID: PMC3847812 DOI: 10.3389/fnhum.2013.00823] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 11/14/2013] [Indexed: 12/04/2022] Open
Abstract
Paired Associative Stimulation (PAS) has come to prominence as a potential therapeutic intervention for the treatment of brain injury/disease, and as an experimental method with which to investigate Hebbian principles of neural plasticity in humans. Prototypically, a single electrical stimulus is directed to a peripheral nerve in advance of transcranial magnetic stimulation (TMS) delivered to the contralateral primary motor cortex (M1). Repeated pairing of the stimuli (i.e., association) over an extended period may increase or decrease the excitability of corticospinal projections from M1, in manner that depends on the interstimulus interval (ISI). It has been suggested that these effects represent a form of associative long-term potentiation (LTP) and depression (LTD) that bears resemblance to spike-timing dependent plasticity (STDP) as it has been elaborated in animal models. With a large body of empirical evidence having emerged since the cardinal features of PAS were first described, and in light of the variations from the original protocols that have been implemented, it is opportune to consider whether the phenomenology of PAS remains consistent with the characteristic features that were initially disclosed. This assessment necessarily has bearing upon interpretation of the effects of PAS in relation to the specific cellular pathways that are putatively engaged, including those that adhere to the rules of STDP. The balance of evidence suggests that the mechanisms that contribute to the LTP- and LTD-type responses to PAS differ depending on the precise nature of the induction protocol that is used. In addition to emphasizing the requirement for additional explanatory models, in the present analysis we highlight the key features of the PAS phenomenology that require interpretation.
Collapse
Affiliation(s)
- Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin Dublin, Ireland ; School of Psychology, Queen's University Belfast Belfast, UK
| | - Niamh C Kennedy
- School of Psychology, Queen's University Belfast Belfast, UK ; School of Rehabilitation Sciences University of East Anglia Norwich, UK
| |
Collapse
|
18
|
Besle J, Sánchez-Panchuelo RM, Bowtell R, Francis S, Schluppeck D. Event-related fMRI at 7T reveals overlapping cortical representations for adjacent fingertips in S1 of individual subjects. Hum Brain Mapp 2013; 35:2027-43. [PMID: 24014446 PMCID: PMC4216413 DOI: 10.1002/hbm.22310] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/25/2013] [Accepted: 04/02/2013] [Indexed: 11/21/2022] Open
Abstract
Recent fMRI studies of the human primary somatosensory cortex have been able to differentiate the cortical representations of different fingertips at a single‐subject level. These studies did not, however, investigate the expected overlap in cortical activation due to the stimulation of different fingers. Here, we used an event‐related design in six subjects at 7 Tesla to explore the overlap in cortical responses elicited in S1 by vibrotactile stimulation of the five fingertips. We found that all parts of S1 show some degree of spatial overlap between the cortical representations of adjacent or even nonadjacent fingertips. In S1, the posterior bank of the central sulcus showed less overlap than regions in the post‐central gyrus, which responded to up to five fingertips. The functional properties of these two areas are consistent with the known layout of cytoarchitectonically defined subareas, and we speculate that they correspond to subarea 3b (S1 proper) and subarea 1, respectively. In contrast with previous fMRI studies, however, we did not observe discrete activation clusters that could unequivocally be attributed to different subareas of S1. Venous maps based on T2*‐weighted structural images suggest that the observed overlap is not driven by extra‐vascular contributions from large veins. Hum Brain Mapp 35:2027–2043, 2014. © 2013 The Authors Human Brain Mapping published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Julien Besle
- Visual Neuroscience Group, School of Psychology, University of Nottingham, NG7 2RD, Nottingham, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Effects of water immersion on short- and long-latency afferent inhibition, short-interval intracortical inhibition, and intracortical facilitation. Clin Neurophysiol 2013; 124:1846-52. [DOI: 10.1016/j.clinph.2013.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 01/08/2023]
|
20
|
Sanei K, Keir PJ. Independence and control of the fingers depend on direction and contraction mode. Hum Mov Sci 2013; 32:457-71. [PMID: 23643494 DOI: 10.1016/j.humov.2013.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 11/30/2012] [Accepted: 01/27/2013] [Indexed: 10/26/2022]
Abstract
Both biomechanical and neural factors are suggested to contribute to the limited independence of finger movement and involuntary force production. The purpose of this study was to evaluate finger independence by examining the activity of the four compartments of extensor digitorum (ED) and flexor digitorum superficialis (FDS) and involuntary force production in the non-task fingers using the "enslaving effect" (EE). Twelve male participants performed a series of 5s sub-maximal exertions at 5%, 25%, 50% and 75% of maximum using isometric isotonic and ramp flexion and extension exertions. Ramp exertions were performed from 0% to 85% of each finger's maximum force with ascending and descending phases taking 4.5s. EE was lower in flexion exertions likely due to the higher activity of the antagonist ED compartments counterbalancing the involuntary activation of the non-task FDS compartments. Minimal FDS activity was seen during extension exertions. At forces up to and including 50%, both EE and muscle activity of the non-task compartments were significantly higher in descending exertions than isotonic or ascending exertions. Up to mid-level forces, both finger proximity and contraction mode affect involuntary force production and muscle activation while only finger proximity contributed to finger independence at higher forces.
Collapse
Affiliation(s)
- Kia Sanei
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
21
|
Gröschel S, Sohns JM, Schmidt-Samoa C, Baudewig J, Becker L, Dechent P, Kastrup A. Effects of age on negative BOLD signal changes in the primary somatosensory cortex. Neuroimage 2013; 71:10-8. [PMID: 23296182 DOI: 10.1016/j.neuroimage.2012.12.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/19/2012] [Accepted: 12/19/2012] [Indexed: 12/18/2022] Open
Abstract
In addition to a contralateral activation of the primary and secondary somatosensory cortices, peripheral sensory stimulation has been shown to elicit responses in the ipsilateral primary somatosensory cortex (SI). In particular, evidence is accumulating that processes of interhemispheric inhibition as depicted by negative blood oxygenation level dependent (BOLD) signal changes are part of somatosensory processes. The aim of the study was to analyze age-related differences in patterns of cerebral activation in the somatosensory system in general and processes of interhemispheric inhibition in particular. For this, a functional magnetic resonance imaging (fMRI) study was performed including 14 younger (mean age 23.3±0.9years) and 13 healthy older participants (mean age 73.2±8.3years). All subjects were scanned during peripheral electrical median nerve stimulation (40Hz) to obtain BOLD responses in the somatosensory system. Moreover, the individual current perception threshold (CPT) as a quantitative measure of sensory function was determined in a separate psychophysical testing. Significant increases in BOLD signal across the entire group could be measured within the contralateral SI, in the bilateral secondary somatosensory cortex (SII), the contralateral supplementary motor area and the insula. Negative BOLD signal changes were delineated in ipsilateral SI/MI as well as in the ipsilateral thalamus and basal ganglia. After comparing the two groups, only the cortical deactivation in ipsilateral SI in the early stimulation phase as well as the activation in contralateral SI and SII in the late stimulation block remained as statistically significant differences between the two groups. The psychophysical experiments yielded a significant age-dependent effect of CPT change with less difference in the older group which is in line with the significantly smaller alterations in maximal BOLD signal change in the contra- and ipsilateral SI found between the two groups. Healthy aging seems to be associated with a decrease in intracerebral inhibition as reflected by smaller negative BOLD signal changes during fMRI tasks. This finding could constitute an important link between age-related neurophysiological changes and behavioral alterations in humans.
Collapse
Affiliation(s)
- Sonja Gröschel
- Department of Neurology, University of Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Kuehn E, Mueller K, Turner R, Schütz-Bosbach S. The functional architecture of S1 during touch observation described with 7 T fMRI. Brain Struct Funct 2013; 219:119-40. [PMID: 23283478 PMCID: PMC3889700 DOI: 10.1007/s00429-012-0489-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/20/2012] [Indexed: 12/19/2022]
Abstract
Recent studies indicate that the primary somatosensory cortex (S1) is active not only when touch is physically perceived but also when it is merely observed to be experienced by another person. This social responsivity of S1 has important implications for our understanding of S1 functioning. However, S1 activity during touch observation has not been characterized in great detail to date. We focused on two features of the S1 functional architecture during touch observation, namely the topographical arrangement of index and middle finger receptive fields (RFs), and their dynamic shrinkage during concurrent activation. Both features have important implications for human behavior. We conducted two fMRI studies at 7 T, one where touch was physically perceived, and one where touch was observed. In the two experiments, participants either had their index finger and/or middle finger stimulated using paintbrushes, or just observed similar touch events on video. Our data show that observing and physically experiencing touch elicits overlapping activity changes in S1. In addition, observing touch to the index finger or the middle finger alone evoked topographically arranged activation foci in S1. Importantly, when co-activated, the index and middle finger RFs not only shrank during physical touch perception, but also during touch observation. Our data, therefore, indicate a similarity between the functional architecture of S1 during touch observation and physical touch perception with respect to single-digit topography and RF shrinkage. These results may allow the tentative conclusion that even primary somatosensory experiences, such as physical touch perception, can be shared amongst individuals.
Collapse
Affiliation(s)
- Esther Kuehn
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103, Leipzig, Germany,
| | | | | | | |
Collapse
|
23
|
Tamè L, Braun C, Lingnau A, Schwarzbach J, Demarchi G, Li Hegner Y, Farnè A, Pavani F. The Contribution of Primary and Secondary Somatosensory Cortices to the Representation of Body Parts and Body Sides: An fMRI Adaptation Study. J Cogn Neurosci 2012; 24:2306-20. [DOI: 10.1162/jocn_a_00272] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Although the somatosensory homunculus is a classically used description of the way somatosensory inputs are processed in the brain, the actual contributions of primary (SI) and secondary (SII) somatosensory cortices to the spatial coding of touch remain poorly understood. We studied adaptation of the fMRI BOLD response in the somatosensory cortex by delivering pairs of vibrotactile stimuli to the finger tips of the index and middle fingers. The first stimulus (adaptor) was delivered either to the index or to the middle finger of the right or left hand, and the second stimulus (test) was always administered to the left index finger. The overall BOLD response evoked by the stimulation was primarily contralateral in SI and was more bilateral in SII. However, our fMRI adaptation approach also revealed that both somatosensory cortices were sensitive to ipsilateral as well as to contralateral inputs. SI and SII adapted more after subsequent stimulation of homologous as compared with nonhomologous fingers, showing a distinction between different fingers. Most importantly, for both somatosensory cortices, this finger-specific adaptation occurred irrespective of whether the tactile stimulus was delivered to the same or to different hands. This result implies integration of contralateral and ipsilateral somatosensory inputs in SI as well as in SII. Our findings suggest that SI is more than a simple relay for sensory information and that both SI and SII contribute to the spatial coding of touch by discriminating between body parts (fingers) and by integrating the somatosensory input from the two sides of the body (hands).
Collapse
Affiliation(s)
- Luigi Tamè
- 1University of Trento
- 2University of Reading
| | | | | | | | | | | | - Alessandro Farnè
- 4INSERM U1028, CNRS UMR5292, Bron, France
- 5Université Claude Bernard Lyon I, Lyon, F-69000, France
| | | |
Collapse
|
24
|
Tomassini A, Gori M, Burr D, Sandini G, Morrone MC. Active movement restores veridical event-timing after tactile adaptation. J Neurophysiol 2012; 108:2092-100. [PMID: 22832572 DOI: 10.1152/jn.00238.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Growing evidence suggests that time in the subsecond range is tightly linked to sensory processing. Event-time can be distorted by sensory adaptation, and many temporal illusions can accompany action execution. In this study, we show that adaptation to tactile motion causes a strong contraction of the apparent duration of tactile stimuli. However, when subjects make a voluntary motor act before judging the duration, it annuls the adaptation-induced temporal distortion, reestablishing veridical event-time. The movement needs to be performed actively by the subject: passive movement of similar magnitude and dynamics has no effect on adaptation, showing that it is the motor commands themselves, rather than reafferent signals from body movement, which reset the adaptation for tactile duration. No other concomitant perceptual changes were reported (such as apparent speed or enhanced temporal discrimination), ruling out a generalized effect of body movement on somatosensory processing. We suggest that active movement resets timing mechanisms in preparation for the new scenario that the movement will cause, eliminating inappropriate biases in perceived time. Our brain seems to utilize the intention-to-move signals to retune its perceptual machinery appropriately, to prepare to extract new temporal information.
Collapse
Affiliation(s)
- Alice Tomassini
- Department of Robotics, Brain and Cognitive Sciences, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | | | | | | | | |
Collapse
|
25
|
Effects of fusion between tactile and proprioceptive inputs on tactile perception. PLoS One 2011; 6:e18073. [PMID: 21464943 PMCID: PMC3064587 DOI: 10.1371/journal.pone.0018073] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 02/24/2011] [Indexed: 11/30/2022] Open
Abstract
Tactile perception is typically considered the result of cortical interpretation of afferent signals from a network of mechanical sensors underneath the skin. Yet, tactile illusion studies suggest that tactile perception can be elicited without afferent signals from mechanoceptors. Therefore, the extent that tactile perception arises from isomorphic mapping of tactile afferents onto the somatosensory cortex remains controversial. We tested whether isomorphic mapping of tactile afferent fibers onto the cortex leads directly to tactile perception by examining whether it is independent from proprioceptive input by evaluating the impact of different hand postures on the perception of a tactile illusion across fingertips. Using the Cutaneous Rabbit Effect, a well studied illusion evoking the perception that a stimulus occurs at a location where none has been delivered, we found that hand posture has a significant effect on the perception of the illusion across the fingertips. This finding emphasizes that tactile perception arises from integration of perceived mechanical and proprioceptive input and not purely from tactile interaction with the external environment.
Collapse
|
26
|
Stringer EA, Chen LM, Friedman RM, Gatenby C, Gore JC. Differentiation of somatosensory cortices by high-resolution fMRI at 7 T. Neuroimage 2010; 54:1012-20. [PMID: 20887793 DOI: 10.1016/j.neuroimage.2010.09.058] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/16/2010] [Accepted: 09/21/2010] [Indexed: 11/28/2022] Open
Abstract
This study aimed to evaluate the ability of BOLD signals at high MRI field (7 T) to map fine-scale single-digit activations in subdivisions (areas 3b and 1) of the human primary somatosensory cortex (SI) in individual subjects. We acquired BOLD fMRI data from cortical areas around the central suclus in six healthy human subjects while stimulating individual finger pads with 2-Hz air puffs. Discrete, single-digit responses were identified in an area along the posterior bank of the central sulcus corresponding to area 3b and in an area along the crest of the postcentral gyrus corresponding to area 1. In single subjects, activations of digits 1 to 4 in both areas 3b and 1 were organized in a somatotopic manner. The separation of digit representations was measured for adjacent digits and was approximately 1.6 times greater in area 3b than in area 1. Within individual subjects, the cortical responses to single-digit stimulations and the magnitude of the BOLD signals were reproducible across imaging runs and were comparable across subjects. Our findings demonstrate that BOLD fMRI at 7 T is capable of revealing the somatotopic organization of single-digit activations with good within-subject reliability and reproducibility, and activation maps can be acquired within a reasonably short time window, which are essential characteristics for several neurological applications within patient populations.
Collapse
|
27
|
Meesen RLJ, Cuypers K, Rothwell JC, Swinnen SP, Levin O. The effect of long-term TENS on persistent neuroplastic changes in the human cerebral cortex. Hum Brain Mapp 2010; 32:872-82. [PMID: 20533559 DOI: 10.1002/hbm.21075] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 03/12/2010] [Accepted: 03/14/2010] [Indexed: 11/11/2022] Open
Abstract
The long-term effect of daily somatosensory stimulation with transcutaneous electrical nerve stimulation (TENS) on reorganization of the motor cortex was investigated in a group of neurologically intact humans. The scalp representation of the corticospinal projection to the finger (APB, ADM) and forearm (FCR, ECR) muscles was mapped by means of transcranial magnetic stimulation (TMS) before and after a 3-week intervention period, using map area and volume, and topographical overlaps between the cortical motor representations of these muscles as primary dependent measures. Findings revealed a significant increase in cortical motor representation of all four muscles for the TENS group from pre to posttest (all, P ≤ 0.026). No significant changes in cortical motor representations were observed in the control group. The present observations highlight the potential benefit of sensory training by means of TENS as a useful complementary therapy in neurorehabilitation.
Collapse
Affiliation(s)
- Raf L J Meesen
- REVAL-Rehabilitation and Health Care Research Center, Department of Healthcare, University College of Limburg, Hasselt, Belgium.
| | | | | | | | | |
Collapse
|
28
|
Cuypers K, Levin O, Thijs H, Swinnen SP, Meesen RLJ. Long-Term TENS Treatment Improves Tactile Sensitivity in MS Patients. Neurorehabil Neural Repair 2010; 24:420-7. [DOI: 10.1177/1545968309356301] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. Transcutaneous electrical nerve stimulation (TENS) is commonly used in neurorehabilitation for the treatment of pain and spasticity. Objective. The long-term effects of sensory stimulation by means of TENS on hand sensitivity were investigated in patients with multiple sclerosis (MS). Methods. TENS was applied for 3 weeks (1 hour per day) on the median nerve region of the dominant hand. Sensitivity was assessed by the Semmes—Weinstein monofilaments before and 12 hours following the last intervention as well as 3 weeks later. Results. Long-lasting increases in tactile sensitivity were achieved by repetitive stimulation of sensory afferents with TENS in MS patients but not in healthy subjects. This increased sensitivity was not only restricted to the median nerve area but also expanded to the ulnar nerve area. Remarkably, MS patients reached the same level of sensitivity as healthy subjects immediately after the intervention, and long-term effects were reported 3 weeks later. Conclusions. The findings of this study demonstrated lasting improvements in tactile sensitivity of the fingers as a result of a long-term TENS intervention in MS patients, who ultimately reached a level comparable with that of healthy subjects.
Collapse
Affiliation(s)
- Koen Cuypers
- Hasselt University, Diepenbeek, Belgium, , PHL University College, Hasselt, Belgium
| | - Oron Levin
- PHL University College, Hasselt, Belgium
| | | | | | - Raf L. J. Meesen
- Hasselt University, Diepenbeek, Belgium, PHL University College, Hasselt, Belgium, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Intra- and inter-subject variability of high field fMRI digit maps in somatosensory area 3b of new world monkeys. Neuroscience 2009; 165:252-64. [PMID: 19799969 DOI: 10.1016/j.neuroscience.2009.09.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 09/24/2009] [Accepted: 09/25/2009] [Indexed: 11/23/2022]
Abstract
This study evaluates the intra- and inter-subject variability of digit maps in area 3b of anesthetized squirrel monkeys. Maps were collected using high field blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI). BOLD responses to individual digit stimulations were mapped and their response properties (location, area of activation, % signal change, time to peak response) were compared within and across imaging sessions separated by up to 20 months. During single digit stimulation using a block design, the spatiotemporal response of the BOLD signal for individual runs within and across sessions and animals was well conserved, with a time to peak BOLD response of 20+/-4 s. The variability in the center of BOLD activation in area 3b was 0.41+/-0.24 mm (mean+/-SD) across individual 5-7 min runs within a scanning session and 0.55+/-0.15 mm across sessions. The average signal change across all animals, runs and sessions was 0.62+/-0.38%, and varied 32% within and 40% across sessions. In a comparison of the stability and reproducibility of the area of single digit activation obtained using three approaches, use of a fixed statistical threshold (P<10(-5)) yielded an average area of 4.8+/-3.5 mm(2) (mean+/-SD), adaptive statistical thresholding 1.32+/-1.259 mm(2) (mean+/-SD), and combined fixed statistical and adaptive BOLD signal amplitude 4.4+/-2.5 mm(2) (mean+/-SD) across image runs and sessions. The somatotopic organization was stable within animals across sessions, while across animals, there was some variation in overall activation pattern and inter-digit distances. These results confirm that BOLD activation maps of single digits in area 3b as characterized by activation center, signal amplitudes, and temporal profile are very stable. The activation sizes determined by various criteria are the most variable measure in this preparation, but adaptive statistical thresholding appears to yield the most stable and reproducible maps. This study serves as a baseline assessment of the limits imposed on the detection of plastic changes by experimental variations of the digit BOLD fMRI activation maps in normal animals, and as an indicator of the likely performance limits in human studies.
Collapse
|
30
|
Nierhaus T, Schön T, Becker R, Ritter P, Villringer A. Background and evoked activity and their interaction in the human brain. Magn Reson Imaging 2009; 27:1140-50. [PMID: 19497696 DOI: 10.1016/j.mri.2009.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 03/03/2009] [Accepted: 04/23/2009] [Indexed: 10/20/2022]
Abstract
Most functional neuroimaging studies have investigated brain activity evoked by certain types of stimulation or tasks. In recent years, resting brain activity and its influence on evoked activity has become accessible for investigation. However, despite numerous studies on background and evoked activities, either observed with vascular (functional magnetic resonance imaging, positron emission tomography, optical) or electrophysiological (electroencephalography, magnetoencephalography) or a combination of both methods, so far, there is no generally accepted view concerning both the precise meaning of background activity and its relationship to evoked activity. In this article, we give an overview of the current knowledge on this issue and we review recent studies examining the influence of ongoing activity on behavioral responses and the relationship between ongoing and evoked activity.
Collapse
Affiliation(s)
- Till Nierhaus
- Berlin NeuroImaging Center and Department Neurology, Charité, Berlin, Germany.
| | | | | | | | | |
Collapse
|
31
|
Bikmullina R, Bäumer T, Zittel S, Münchau A. Sensory afferent inhibition within and between limbs in humans. Clin Neurophysiol 2009; 120:610-8. [DOI: 10.1016/j.clinph.2008.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 12/02/2008] [Accepted: 12/05/2008] [Indexed: 11/26/2022]
|
32
|
Finger representations in human primary somatosensory cortex as revealed by high-resolution functional MRI of tactile stimulation. Neuroimage 2008; 42:28-35. [PMID: 18550386 DOI: 10.1016/j.neuroimage.2008.04.184] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 04/02/2008] [Accepted: 04/15/2008] [Indexed: 11/24/2022] Open
|
33
|
Kastrup A, Baudewig J, Schnaudigel S, Huonker R, Becker L, Sohns JM, Dechent P, Klingner C, Witte OW. Behavioral correlates of negative BOLD signal changes in the primary somatosensory cortex. Neuroimage 2008; 41:1364-71. [PMID: 18495495 DOI: 10.1016/j.neuroimage.2008.03.049] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 03/14/2008] [Accepted: 03/23/2008] [Indexed: 10/22/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) hypothesis testing based on the blood oxygenation level dependent (BOLD) contrast mechanism typically involves a search for a positive effect during a specific task relative to a control state. However, aside from positive BOLD signal changes there is converging evidence that neuronal responses within various cortical areas also induce negative BOLD signals. Although it is commonly believed that these negative BOLD signal changes reflect suppression of neuronal activity direct evidence for this assumption is sparse. Since the somatosensory system offers the opportunity to quantitatively test sensory function during concomitant activation and has been well-characterized with fMRI in the past, the aim of this study was to determine the functional significance of ipsilateral negative BOLD signal changes during unilateral sensory stimulation. For this, we measured BOLD responses in the somatosensory system during unilateral electric stimulation of the right median nerve and additionally determined the current perception threshold of the left index finger during right-sided electrical median nerve stimulation as a quantitative measure of sensory function. As expected, positive BOLD signal changes were observed in the contralateral primary and bilateral secondary somatosensory areas, whereas a decreased BOLD signal was observed in the ipsilateral primary somatosensory cortex (SI). The negative BOLD signal changes were much more spatially extensive than the representation of the hand area within the ipsilateral SI. The negative BOLD signal changes in the area of the index finger highly correlated with an increase in current perception thresholds of the contralateral, unstimulated finger, thus supporting the notion that the ipsilateral negative BOLD response reflects a functionally effective inhibition in the somatosensory system.
Collapse
Affiliation(s)
- Andreas Kastrup
- Department of Neurology, University of Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Dresel C, Parzinger A, Rimpau C, Zimmer C, Ceballos-Baumann AO, Haslinger B. A new device for tactile stimulation during fMRI. Neuroimage 2008; 39:1094-103. [DOI: 10.1016/j.neuroimage.2007.09.033] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 07/22/2007] [Accepted: 09/14/2007] [Indexed: 11/28/2022] Open
|
35
|
Nelson AJ, Chen R. Digit somatotopy within cortical areas of the postcentral gyrus in humans. Cereb Cortex 2008; 18:2341-51. [PMID: 18245039 DOI: 10.1093/cercor/bhm257] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Characterizing the cortical representation of the body surface is fundamental to understanding the neural basis of human somatic sensation. Monkey studies benefited from the detailed somatotopic maps obtained from electrophysiology methods. Advances in noninvasive neuroimaging techniques now permit such questions to be probed in humans. The present study characterizes the detailed somatotopic representation of individual digits within subregions of the postcentral gyrus in humans using high-spatial resolution functional magnetic resonance imaging and surface-based mapping. Four areas of consistent activation included area 3b, area 2, and 2 discrete foci within area 1. Area 3b and the superior area 1 foci demonstrated an orderly somatotopic distribution for all digits of the hand, whereby the thumb was represented most lateral, anterior, and inferior and the fifth digit was most medial, posterior, and superior. Compared with area 3b, somatotopic variability was greater in area 1 and the digits spanned less cortical territory. This study additionally identified the specific digit pairs that are separable in areas 3b and 1 using current imaging methods. Somatotopy was not resolved in area 2 or in the inferior area 1 foci.
Collapse
Affiliation(s)
- Aimee J Nelson
- Division of Neurology and Krembil Neuroscience Centre, Toronto Western Research Institute, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
36
|
Taskin B, Holtze S, Krause T, Villringer A. Inhibitory impact of subliminal electrical finger stimulation on SI representation and perceptual sensitivity of an adjacent finger. Neuroimage 2007; 39:1307-13. [PMID: 18024161 DOI: 10.1016/j.neuroimage.2007.09.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 08/15/2007] [Accepted: 09/25/2007] [Indexed: 11/16/2022] Open
Abstract
Simultaneous stimulation of two adjacent fingers above sensory perception threshold (supraliminal stimulation) leads to an inhibitory interaction effect on responses in primary somatosensory cortex (SI). Moreover, during electrical finger stimulation closely below threshold for conscious perception (subliminal stimulation) inhibitory interneurons in cortical layer 4 are assumed to be activated preferentially as compared to excitatory interneurons. Using fMRI in humans, here we show that interspersed subliminal electrical stimulation of an adjacent finger reduces the response to target finger stimulation in contralateral SI. This effect was shown in a complementary study to be associated behaviorally with a diminished detectability of test pulses on the target finger. We propose the mechanism underlying this lateral inhibitory effect to be related to a representational overlap of inhibitory interneurons in SI based on the divergence of thalamocortical feedforward projections, or to intracortical lateral inhibitory projections targeting juxtaposed receptive fields, or both.
Collapse
Affiliation(s)
- Birol Taskin
- Neurologische Klinik und Poliklinik, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin NeuroImaging Center, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | |
Collapse
|
37
|
Zhang N, Gore JC, Chen LM, Avison MJ. Dependence of BOLD signal change on tactile stimulus intensity in SI of primates. Magn Reson Imaging 2007; 25:784-94. [PMID: 17614230 DOI: 10.1016/j.mri.2007.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 03/24/2007] [Indexed: 10/23/2022]
Abstract
Recently, we have demonstrated that the fine-digit topography (millimeter sized) previously identified in the primary somatosensory cortex (SI), using electrophysiology and intrinsic signal optical imaging, can also be mapped with submillimeter resolution using blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging at high field. In the present study, we have examined the dependence of BOLD signal response on stimulus intensity in two subregions of SI, Areas 3b and 1. In a region(s)-of-interest (ROI) analysis of Area 3b, BOLD signal amplitude increased linearly with increasing amplitude of an 8-Hz vibrotactile stimulus, and BOLD signal was sustained throughout the stimulation period. In contrast, in Area 1, a significant BOLD signal response was only observed with more intense stimuli, and ROI analysis of the dependence of BOLD response showed no significant dependence on stimulus intensity. In addition, activation was not sustained throughout the period of stimulation. Differing responses of Areas 3b and 1 suggest potentially divergent roles for subregions of SI cortices in vibrotactile intensity encoding. Moreover, this study underscores the importance of imaging at small spatial scales. In this case, such high-resolution imaging allows differentiation between area-specific roles in intensity encoding and identifies anatomic targets for detailed electrophysiological studies of somatosensory neuronal populations with different coding properties. These experiments illustrate the value of nonhuman primates for characterizing the dependence of the BOLD signal response on stimulus parameters and on underlying neural response properties.
Collapse
Affiliation(s)
- Na Zhang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232-2310, USA
| | | | | | | |
Collapse
|
38
|
Gasser T, Sandalcioglu E, Schoch B, Gizewski E, Forsting M, Stolke D, Wiedemayer H. Functional magnetic resonance imaging in anesthetized patients: a relevant step toward real-time intraoperative functional neuroimaging. Neurosurgery 2006; 57:94-9; discussion 94-9. [PMID: 15987574 DOI: 10.1227/01.neu.0000163488.91335.c5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Accepted: 09/30/2004] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE The introduction of intraoperative 1.5-T magnetic resonance imaging may provide up-to-date functional information in the surgical environment. However, feasible passive paradigms that allow the examination of anesthetized patients will be a precondition for intraoperative functional magnetic resonance imaging (fMRI). The aim of this study is to evaluate the feasibility of a recently developed passive fMRI paradigm for functional neuroimaging in anesthetized patients. METHODS We investigated four anesthetized patients with intracranial pathological conditions not related to the sensorimotor cortex. All patients had been anesthetized with standard total intravenous anesthesia for more than 24 hours before the fMRI scan. Anesthesia and monitoring were sustained during the scanning procedure. A simultaneous electrical stimulation of the median and tibial nerves was applied to elicit a cortical activation using a custom-designed magnetoelectrically shielded conductor. Statistical evaluation using Statistical Parametric Mapping software (Wellcome Department of Imaging Neuroscience, University College, London, England) and the Talairach Daemon Client (Version 1.1; Research Imaging Center, University of Texas Health Science Center, San Antonio, TX) followed. RESULTS Three of four patients showed a good activation of the sensorimotor cortex under anesthesia. In one patient, no significant activation was observed, presumably as a result of increased body impedance because of severe edema. Standard dosages of the narcotics did not influence the cortical response; however, stimulation intensity had to be increased compared with awake patients. We did not detect relevant interferences with magnetic resonance imaging arising from the technical setup. CONCLUSION The method presented proved to be a feasible paradigm for fMRI evaluation of the sensorimotor cortex in anesthetized patients and thus forms a relevant step toward real intraoperative functional neuroimaging.
Collapse
Affiliation(s)
- Thomas Gasser
- Department of Neurosurgery, University of Essen, Essen, Germany.
| | | | | | | | | | | | | |
Collapse
|
39
|
Taskin B, Jungehulsing GJ, Ruben J, Brunecker P, Krause T, Blankenburg F, Villringer A. Preserved Responsiveness of Secondary Somatosensory Cortex in Patients with Thalamic Stroke. Cereb Cortex 2005; 16:1431-9. [PMID: 16357339 DOI: 10.1093/cercor/bhj080] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cortical representations may change when somatosensory input is altered. Here, we investigated the functional consequences of partial "central" deafferentation of the somatosensory cortex due to a lesion of the ventroposterior lateral nucleus (VPL) in patients at a chronic stage after solitary infarction of the thalamus. Event-related functional magnetic resonance imaging during electrical index finger stimulation of the affected and nonaffected side was performed in 6 patients exhibiting contralesional sensory deficits (mainly hypesthesia). Involvement of the VPL and additional nuclei was determined by high-resolution magnetic resonance imaging (MRI) and subsequent MRI-to-atlas coregistration. For the group, statistical parametric maps showed a reduced activation of contralateral primary somatosensory cortex (SI) in response to stimulation of the affected side. However, no significant difference in the activation of contralateral secondary somatosensory cortex (SII) compared with stimulation of the nonaffected side was detected. Correspondingly, the ratio of SII-to-SI activation for the ipsilesional hemisphere was markedly elevated as compared with the contralesional hemisphere. For preserved responsiveness of SII in thalamic stroke comparable with that of the contralesional hemisphere, possible explanations are a direct thalamocortical input to SII mediating parallel information processing, nonlinear response behavior of SII in serial processing, or reorganizational processes that evolved over time.
Collapse
Affiliation(s)
- Birol Taskin
- Neurologische Klinik und Poliklinik, Charité-Universitätsmedizin Berlin, Berlin NeuroImaging Center, Germany.
| | | | | | | | | | | | | |
Collapse
|
40
|
Ruben J, Krause T, Taskin B, Blankenburg F, Moosmann M, Villringer A. Sub-area-specific Suppressive Interaction in the BOLD responses to simultaneous finger stimulation in human primary somatosensory cortex: evidence for increasing rostral-to-caudal convergence. ACTA ACUST UNITED AC 2005; 16:819-26. [PMID: 16162856 DOI: 10.1093/cercor/bhj025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the primary somatosensory cortex (SI) of non-human primates, receptive field properties have been shown to differ between its sub-areas with increasing convergence in areas 1 and 2 as compared with area 3b. In this study, we searched for a similar functional organization of human SI. We performed fMRI in healthy subjects during separate or simultaneous electrical stimulation of the second and third finger of the right hand. Activation patterns in response to stimulation of single fingers reflected the somatotopical arrangement within the hand area of SI. Somatotopy was more clear-cut in area 3b as compared with areas 1 and 2. The response to simultaneous stimulation was considerably smaller than the summed responses to separate stimulation of each finger alone, pointing to a suppressive interaction effect. A region-of-interest analysis in the representational areas of the second and third finger revealed sub-area-specific differential suppressive interaction with an increase along the rostral-caudal axis (areas 3b, 1 and 2: 26, 32.7 and 42.2%, respectively). These findings on differences in the topographic as well as functional organization between sub-areas of SI support the notion of increasing convergence and integration from area 3b to areas 1 and 2 in human subjects.
Collapse
Affiliation(s)
- Jan Ruben
- Charité - Universitätsmedizin Berlin, Berlin NeuroImaging Center and Department of Neurology, 10117 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
41
|
Tamburin S, Fiaschi A, Andreoli A, Marani S, Zanette G. Sensorimotor integration to cutaneous afferents in humans: the effect of the size of the receptive field. Exp Brain Res 2005; 167:362-9. [PMID: 16078031 DOI: 10.1007/s00221-005-0041-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 04/26/2005] [Indexed: 12/19/2022]
Abstract
Transcranial magnetic stimulation (TMS) can be used to study sensorimotor integration in humans non-invasively. Motor excitability has been found to be inhibited when afferent stimuli are given to a peripheral nerve and precede TMS at interstimulus intervals (ISIs) of 20-50 ms. This phenomenon has been referred to as short-latency afferent inhibition (SAI). To better understand the functional meaning of these phenomena, we examined the effect of the size of the receptive field on SAI to cutaneous afferents in upper-limb sensorimotor areas in humans. We examined the effect of the stimulation of the isolated right first (D1), second (D2) and third finger (D3), the right second and third finger together (D23) and the right first three fingers together (D123) on the amplitude of motor evoked potentials (MEPs) to TMS in hand and forearm muscles. We examined the right abductor pollicis brevis (APB), first dorsal interosseous (FDI), extensor carpi radialis (ECR) and flexor carpi radialis (FCR) muscles. Digital stimulation preceded TMS at ISIs of 20-50 ms. The effect of D2 stimulation was MEP inhibition (SAI), which was more marked and consistent in APB and FDI muscles than in ECR and FCR muscles. Similarly, D1 and D3 stimulation caused MEP reduction, while no MEP enhancement could be found to single finger stimulation. In contrast, D123 stimulation induced less effective SAI in upper-limb muscles. MEP potentiation was recorded in some muscles to D123 stimulation. A significant difference between D2 and D123 stimulation was found in APB (ISIs = 30-50 ms) and FDI (ISIs = 40-50 ms) muscles, but not in forearm muscles. The effect to D23stimulation on MEP amplitude was intermediate between those to D2 and D123 stimulation. Our data suggest that motor excitability to cutaneous afferents may be influenced by the size of the receptive fields, this effect being the result of increasing convergence between hand afferents in the somatosensory system. These phenomena appear to be topographically arranged across the representation of upper-limb muscles. These findings may help to understand the functional significance of SAI in normal physiology and pathophysiology.
Collapse
Affiliation(s)
- Stefano Tamburin
- Department of Neurological Sciences and Vision, Section of Neurological Rehabilitation, University of Verona, Verona, Italy.
| | | | | | | | | |
Collapse
|
42
|
Helmich RCG, Bäumer T, Siebner HR, Bloem BR, Münchau A. Hemispheric asymmetry and somatotopy of afferent inhibition in healthy humans. Exp Brain Res 2005; 167:211-9. [PMID: 16034577 DOI: 10.1007/s00221-005-0014-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Accepted: 03/31/2005] [Indexed: 10/25/2022]
Abstract
A conditioning electrical stimulus to a digital nerve can inhibit the motor-evoked potentials (MEPs) in adjacent hand muscles elicited by transcranial magnetic stimulation (TMS) to the contralateral primary motor cortex (M1) when given 25-50 ms before the TMS pulse. This is referred to as short-latency afferent inhibition (SAI). We studied inter-hemispheric differences (Experiment 1) and within-limb somatotopy (Experiment 2) of SAI in healthy right-handers. In Experiment 1, conditioning electrical pulses were applied to the right or left index finger (D2) and MEPs were recorded from relaxed first dorsal interosseus (FDI) and abductor digiti minimi (ADM) muscles ipsilateral to the conditioning stimulus. We found that SAI was more pronounced in right hand muscles. In Experiment 2, electrical stimulation was applied to the right D2 and MEPs were recorded from ipsilateral FDI, extensor digitorum communis (EDC) and biceps brachii (BB) muscles. The amount of SAI did not differ between FDI, EDC and BB muscles. These data demonstrate inter-hemispheric differences in the processing of cutaneous input from the hand, with stronger SAI in the dominant left hemisphere. We also found that SAI occurred not only in hand muscles adjacent to electrical digital stimulation, but also in distant hand and forearm and also proximal arm muscles. This suggests that SAI induced by electrical D2 stimulation is not focal and somatotopically specific, but a more widespread inhibitory phenomenon.
Collapse
Affiliation(s)
- R C G Helmich
- Department of Neurology, Radboud University Nijmegen Medical Centre, The Netherlands
| | | | | | | | | |
Collapse
|
43
|
Sato K, Nariai T, Tanaka Y, Maehara T, Miyakawa N, Sasaki S, Momose-Sato Y, Ohno K. Functional representation of the finger and face in the human somatosensory cortex: intraoperative intrinsic optical imaging. Neuroimage 2005; 25:1292-301. [PMID: 15850747 DOI: 10.1016/j.neuroimage.2004.12.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 12/13/2004] [Accepted: 12/17/2004] [Indexed: 11/26/2022] Open
Abstract
We applied the intrinsic optical imaging technique to the human primary somatosensory cortex during brain tumor/epilepsy surgery for nine patients. The cortical surface was illuminated with a Xenon light through an operating microscope, and the reflected light, which passed through a 605 nm bandpass filter, was detected by a CCD camera-based optical imaging system. Individual electrical stimulation of five digits induced changes in the reflected light intensities. Visualizing the intrinsic optical responses, we constructed maps of finger representation in Brodmann's area 1. In the maps, response areas of Digits I to V were sequentially aligned along the central sulcus in the crown of the postcentral gyrus from the latero-inferior region (Digit I) to the medio-superior region (Digit V). The neighboring response areas partially overlapped each other, as previously described in the monkey somatosensory cortex. Similar results were obtained in the face region with stimulation of the three branches of the trigeminal nerve. These results suggest that the overlap of the response areas is a common feature in the somatosensory cortex not only in monkeys, but also in humans.
Collapse
Affiliation(s)
- Katsushige Sato
- Department of Physiology, Tokyo Medical and Dental University Graduate School and Faculty of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Kitada R, Hashimoto T, Kochiyama T, Kito T, Okada T, Matsumura M, Lederman SJ, Sadato N. Tactile estimation of the roughness of gratings yields a graded response in the human brain: an fMRI study. Neuroimage 2005; 25:90-100. [PMID: 15734346 DOI: 10.1016/j.neuroimage.2004.11.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 10/09/2004] [Accepted: 11/20/2004] [Indexed: 11/26/2022] Open
Abstract
Human subjects can tactually estimate the magnitude of surface roughness. Although many psychophysical and neurophysiological experiments have elucidated the peripheral neural mechanisms that underlie tactile roughness estimation, the associated cortical mechanisms are not well understood. To identify the brain regions responsible for the tactile estimation of surface roughness, we used functional magnetic resonance imaging (fMRI). We utilized a combination of categorical (subtraction) and parametric factorial approaches wherein roughness was varied during both the task and its control. Fourteen human subjects performed a tactile roughness-estimation task and received the identical tactile stimulation without estimation (no-estimation task). The bilateral parietal operculum (PO), insula and right lateral prefrontal cortex showed roughness-related activation. The bilateral PO and insula showed activation during the no-estimation task, and hence might represent the sensory-based processing during roughness estimation. By contrast, the right prefrontal cortex is more related to the cognitive processing, as there was activation during the estimation task compared with the no-estimation task, but little activation was observed during the no-estimation task in comparison with rest. The lateral prefrontal area might play an important cognitive role in tactile estimation of surface roughness, whereas the PO and insula might be involved in the sensory processing that is important for estimating surface roughness.
Collapse
Affiliation(s)
- Ryo Kitada
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Porro CA, Lui F, Facchin P, Maieron M, Baraldi P. Percept-related activity in the human somatosensory system: functional magnetic resonance imaging studies. Magn Reson Imaging 2004; 22:1539-48. [PMID: 15707803 DOI: 10.1016/j.mri.2004.10.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Accepted: 10/08/2004] [Indexed: 11/28/2022]
Abstract
In this paper, we review blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) studies addressing the neural correlates of touch, thermosensation, pain and the mechanisms of their cognitive modulation in healthy human subjects. There is evidence that fMRI signal changes can be elicited in the parietal cortex by stimulation of single mechanoceptive afferent fibers at suprathreshold intensities for conscious perception. Positive linear relationships between the amplitude or the spatial extents of BOLD fMRI signal changes, stimulus intensity and the perceived touch or pain intensity have been described in different brain areas. Some recent fMRI studies addressed the role of cortical areas in somatosensory perception by comparing the time course of cortical activity evoked by different kinds of stimuli with the temporal features of touch, heat or pain perception. Moreover, parametric single-trial functional MRI designs have been adopted in order to disentangle subprocesses within the nociceptive system. Available evidence suggest that studies that combine fMRI with psychophysical methods may provide a valuable approach for understanding complex perceptual mechanisms and top-down modulation of the somatosensory system by cognitive factors specifically related to selective attention and to anticipation. The brain networks underlying somatosensory perception are complex and highly distributed. A deeper understanding of perceptual-related brain mechanisms therefore requires new approaches suited to investigate the spatial and temporal dynamics of activation in different brain regions and their functional interaction.
Collapse
Affiliation(s)
- Carlo Adolfo Porro
- Dip. Scienze e Tecnologie Biomediche, Univ. di Udine, P.le Kolbe 4, I-33100 Udine, Italy.
| | | | | | | | | |
Collapse
|
46
|
Nelson AJ, Staines WR, Graham SJ, McIlroy WE. Activation in SI and SII: the influence of vibrotactile amplitude during passive and task-relevant stimulation. ACTA ACUST UNITED AC 2004; 19:174-84. [PMID: 15019713 DOI: 10.1016/j.cogbrainres.2003.11.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2003] [Indexed: 11/25/2022]
Abstract
Using functional magnetic resonance imaging (fMRI), responses in human somatosensory cortex were quantified in response to changes in the amplitude of peripheral stimulation during (1) passive vibration and (2) an attention-demanding tactile tracking task whereby changes in vibration amplitude were used to guide motor behaviour. Functional MRI was conducted using a scanner operating at 1.5 T, and vibration was delivered to the volar surface of the right index finger with a custom-built magnetomechanical device. Results showed that primary somatosensory cortex (SI) reliably reflects changes in vibration amplitude applied to the finger during passive vibration and also in the presence of a task that modulates the activity in SI. Secondary somatosensory cortex did not reveal any clear relationship with vibration amplitude but was more often activated during the attention demanding tracking task compared with passive vibration. The present study supports an increasing stimulus-response relationship between vibrotactile stimuli and activity in SI that persists during attentive, active states.
Collapse
Affiliation(s)
- Aimee J Nelson
- Sunnybrook and Women's College Health, University of Toronto, Canada
| | | | | | | |
Collapse
|
47
|
Ferretti A, Babiloni C, Gratta CD, Caulo M, Tartaro A, Bonomo L, Rossini PM, Romani GL. Functional topography of the secondary somatosensory cortex for nonpainful and painful stimuli: an fMRI study. Neuroimage 2003; 20:1625-38. [PMID: 14642473 DOI: 10.1016/j.neuroimage.2003.07.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The regional activity of the contralateral primary (SI) and the bilateral secondary (SII) somatosensory areas during median nerve stimulations at five intensity levels (ranging from nonpainful motor threshold to moderate pain) was studied by means of functional magnetic resonance imaging (fMRI). The aim was to characterize the functional topography of SII compared to SI as a function of the stimulus intensity. Results showed that the galvanic stimulation of the median nerve activated the contralateral SI at all stimulus intensities. When considered as a single region, SII was more strongly activated in the contralateral than in the ipsilateral hemisphere. When a finer spatial analysis of the SII responses was performed, the activity for the painful stimulation was localized more posteriorly compared to that for the nonpainful stimulation. This is the first report on such a SII segregation for transient galvanic stimulations. The activity (relative signal intensity) of this posterior area increased with the increase of the stimulus intensity. These results suggest a spatial segregation of the neural populations that process signals conveyed by dorsal column-medial lemniscus (nonpainful signals) and neospinothalamic (painful signals) pathways. Further fMRI experiments should evaluate the functional properties of these two SII subregions during tasks involving sensorimotor integration, learning, and memory demands.
Collapse
Affiliation(s)
- Antonio Ferretti
- Department of Clinical Sciences and Bio-imaging, University of Chieti, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hamada Y, Suzuki R. Hand posture modulates neuronal interaction in the primary somatosensory cortex of humans. Clin Neurophysiol 2003; 114:1689-96. [PMID: 12948798 DOI: 10.1016/s1388-2457(03)00129-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To investigate the effects of hand posture on the modulation of neuronal interactions in the cortical finger regions of the human somatosensory cortex. METHODS Neuronal magnetic fields, evoked by electrical stimuli to the thumb and/or to the index finger of the right hand, were recorded in different hand postures ('OPEN': opened hand and 'CLOSE': both fingers in opposite position to pick up something) by using a whole head type magnetoencephalography. The equivalent current dipole (ECD) for components in the primary (SI) and secondary somatosensory cortices (SII) was calculated. The interaction ratio (IR) was calculated as a ratio of the vector sum of ECD moments evoked by respective stimulation of each finger to the ECD moment evoked by simultaneous stimulation of both fingers. RESULTS The mean IR of N20m was significantly larger in CLOSE than in OPEN (p=0.033, ANOVA). On the contrary, the IR of P40m was larger in OPEN than in CLOSE (p=0.042). The IR of SII components was not significantly different between the different hand postures (p=0.35). CONCLUSIONS Neuronal interaction between the thumb and index finger in the human SI is modulated by hand posture. Provided that forming hand posture is related to receiving sensory input, the interaction modulation may play a role in the facilitation of somatosensory processing. SIGNIFICANCE Our results suggest experimental evidence for the immediate modulation of neuronal activity in the somatosensory area.
Collapse
Affiliation(s)
- Yasukazu Hamada
- Linguistics and Philosophy, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA.
| | | |
Collapse
|
49
|
Butterworth S, Francis S, Kelly E, McGlone F, Bowtell R, Sawle GV. Abnormal cortical sensory activation in dystonia: an fMRI study. Mov Disord 2003; 18:673-82. [PMID: 12784271 DOI: 10.1002/mds.10416] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Despite the obvious motor manifestations of focal dystonia, it is recognised that the sensory system plays an important role in this condition. This functional magnetic resonance imaging study examines the sensory representations of individual digits both within the subregions of the primary sensory cortex (SI) and in other nonprimary sensory areas. Patients with focal dystonia and controls were scanned during vibrotactile stimulation of both the index (digit 2) and little (digit 5) fingers of their dominant hand (which was the affected hand in all the dystonic subjects). The activation maps obtained were analysed for location, size, and magnitude of activation and three-dimensional (3-D) orientation of digit representations. Data from both groups were compared. There were significant differences in the average 3-D separation between the two digit representations in area 1 of SI between subject groups (9.6 +/- 1.2 mm for controls and 4.1 +/- 0.2 mm for dystonic subjects). There were also strong trends for reversed ordering of the representation of the two digits in both the secondary sensory cortex and posterior parietal area between the two groups. In addition, in dystonic subjects, there was significant under activation in the secondary somatosensory cortex (SII/area 40) for both digits and in the posterior parietal area for digit 5. These results indicate the presence of widespread activation abnormalities in the cortical sensory system in dystonia.
Collapse
Affiliation(s)
- Stephen Butterworth
- Department of Clinical Neurology, Queen's Medical Centre, Nottingham, United Kingdom.
| | | | | | | | | | | |
Collapse
|
50
|
Silva AC, Koretsky AP. Laminar specificity of functional MRI onset times during somatosensory stimulation in rat. Proc Natl Acad Sci U S A 2002; 99:15182-7. [PMID: 12407177 PMCID: PMC137564 DOI: 10.1073/pnas.222561899] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2002] [Accepted: 09/17/2002] [Indexed: 11/18/2022] Open
Abstract
The blood oxygenation level-dependent (BOLD) response to somatosensory stimulation was measured in alpha-chloralose-anesthetized rats. BOLD fMRI was obtained at 40-ms temporal resolution and spatial resolution of 200 x 200 x 2,000 microm(3) by using a gated activation paradigm in an 11.7 T MRI. Results show a consistent heterogeneity of fMRI onset times and amplitudes. The earliest onset time (0.59 +/- 0.17 s, n = 9) corresponded anatomically to layer IV, with superficial and deeper layers starting significantly later (1.27 +/- 0.43 s in layers I-III, and 1.11 +/- 0.45 s in layer VI). The amplitude of BOLD signal changes also varied with the cortical depth from the pial surface. Changes in the supragranular layers (8.3%) were 44% bigger than changes in the intermediate layers (5.5%), located only approximately 700 microm below, and 144% larger than the bottom layer (3.5%), located approximately 1.4 mm below the pial surface. The data presented demonstrate that BOLD signal changes have distinct amplitude and temporal characteristics, which vary spatially across cortical layers.
Collapse
Affiliation(s)
- Afonso C Silva
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA.
| | | |
Collapse
|