1
|
Hophing L, Kyriakopoulos P, Bui E. Sex and gender differences in epilepsy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 164:235-276. [PMID: 36038205 DOI: 10.1016/bs.irn.2022.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sex and gender differences in epilepsy are important influencing factors in epilepsy care. In epilepsy, the hormonal differences between the sexes are important as they impact specific treatment considerations for patients at various life stages particularly during early adulthood with establishment of the menstrual cycle, pregnancy, perimenopause and menopause. Choice of antiseizure medication may have direct consequences on hormonal cycles, hormonal contraception, pregnancy and fetal risk of major congenital malformation. Conversely hormones whether intrinsic or extrinsically administered may have direct impact on antiseizure medications and seizure control. This chapter explores these important influences on the management of persons with epilepsy.
Collapse
Affiliation(s)
- Lauren Hophing
- Krembil Brain Institute, University Health Network, University of Toronto, Toronto, Canada
| | | | - Esther Bui
- Krembil Brain Institute, University Health Network, University of Toronto, Toronto, Canada.
| |
Collapse
|
2
|
Blankers SA, Galea LA. Androgens and Adult Neurogenesis in the Hippocampus. ANDROGENS: CLINICAL RESEARCH AND THERAPEUTICS 2021; 2:203-215. [PMID: 35024692 PMCID: PMC8744005 DOI: 10.1089/andro.2021.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 11/12/2022]
Abstract
Adult neurogenesis in the hippocampus is modulated by steroid hormones, including androgens, in male rodents. In this review, we summarize research showing that chronic exposure to androgens, such as testosterone and dihydrotestosterone, enhances the survival of new neurons in the dentate gyrus of male, but not female, rodents, via the androgen receptor. However, the neurogenesis promoting the effect of androgens in the dentate gyrus may be limited to younger adulthood as it is not evident in middle-aged male rodents. Although direct exposure to androgens in adult or middle age does not significantly influence neurogenesis in female rodents, the aromatase inhibitor letrozole enhances neurogenesis in the hippocampus of middle-aged female mice. Unlike other androgens, androgenic anabolic steroids reduce neurogenesis in the hippocampus of male rodents. Collectively, the research indicates that the ability of androgens to enhance hippocampal neurogenesis in adult rodents is dependent on dose, androgen type, sex, duration, and age. We discuss these findings and how androgens may be influencing neuroprotection, via neurogenesis in the hippocampus, in the context of health and disease.
Collapse
Affiliation(s)
- Samantha A. Blankers
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada
| | - Liisa A.M. Galea
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada
- Department of Psychology, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
3
|
Christian CA, Reddy DS, Maguire J, Forcelli PA. Sex Differences in the Epilepsies and Associated Comorbidities: Implications for Use and Development of Pharmacotherapies. Pharmacol Rev 2021; 72:767-800. [PMID: 32817274 DOI: 10.1124/pr.119.017392] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The epilepsies are common neurologic disorders characterized by spontaneous recurrent seizures. Boys, girls, men, and women of all ages are affected by epilepsy and, in many cases, by associated comorbidities as well. The primary courses of treatment are pharmacological, dietary, and/or surgical, depending on several factors, including the areas of the brain affected and the severity of the epilepsy. There is a growing appreciation that sex differences in underlying brain function and in the neurobiology of epilepsy are important factors that should be accounted for in the design and development of new therapies. In this review, we discuss the current knowledge on sex differences in epilepsy and associated comorbidities, with emphasis on those aspects most informative for the development of new pharmacotherapies. Particular focus is placed on sex differences in the prevalence and presentation of various focal and generalized epilepsies; psychiatric, cognitive, and physiologic comorbidities; catamenial epilepsy in women; sex differences in brain development; the neural actions of sex and stress hormones and their metabolites; and cellular mechanisms, including brain-derived neurotrophic factor signaling and neuronal-glial interactions. Further attention placed on potential sex differences in epilepsies, comorbidities, and drug effects will enhance therapeutic options and efficacy for all patients with epilepsy. SIGNIFICANCE STATEMENT: Epilepsy is a common neurological disorder that often presents together with various comorbidities. The features of epilepsy and seizure activity as well as comorbid afflictions can vary between men and women. In this review, we discuss sex differences in types of epilepsies, associated comorbidities, pathophysiological mechanisms, and antiepileptic drug efficacy in both clinical patient populations and preclinical animal models.
Collapse
Affiliation(s)
- Catherine A Christian
- Department of Molecular and Integrative Physiology, Neuroscience Program, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois (C.A.C.); Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas (D.S.R.); Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts (J.M.); and Departments of Pharmacology and Physiology and Neuroscience, Georgetown University, Washington, D.C. (P.A.F.)
| | - Doodipala Samba Reddy
- Department of Molecular and Integrative Physiology, Neuroscience Program, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois (C.A.C.); Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas (D.S.R.); Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts (J.M.); and Departments of Pharmacology and Physiology and Neuroscience, Georgetown University, Washington, D.C. (P.A.F.)
| | - Jamie Maguire
- Department of Molecular and Integrative Physiology, Neuroscience Program, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois (C.A.C.); Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas (D.S.R.); Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts (J.M.); and Departments of Pharmacology and Physiology and Neuroscience, Georgetown University, Washington, D.C. (P.A.F.)
| | - Patrick A Forcelli
- Department of Molecular and Integrative Physiology, Neuroscience Program, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois (C.A.C.); Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas (D.S.R.); Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts (J.M.); and Departments of Pharmacology and Physiology and Neuroscience, Georgetown University, Washington, D.C. (P.A.F.)
| |
Collapse
|
4
|
Robitaille J, Langlois VS. Consequences of steroid-5α-reductase deficiency and inhibition in vertebrates. Gen Comp Endocrinol 2020; 290:113400. [PMID: 31981690 DOI: 10.1016/j.ygcen.2020.113400] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 01/16/2023]
Abstract
In 1974, a lack of 5α-dihydrotestosterone (5α-DHT), the most potent androgen across species except for fish, was shown to be the origin of a type of pseudohermaphrodism in which boys have female-like external genitalia. This human intersex condition is linked to a mutation in the steroid-5α-reductase type 2 (SRD5α2) gene, which usually produces an important enzyme capable of reducing the Δ4-ene of steroid C-19 and C-21 into a 5α-stereoisomer. Seeing the potential of SRD5α2 as a target for androgen synthesis, pharmaceutical companies developed 5α-reductase inhibitors (5ARIs), such as finasteride (FIN) and dutasteride (DUT) to target SRD5α2 in benign prostatic hyperplasia and androgenic alopecia. In addition to human treatment, the development of 5ARIs also enabled further research of SRD5α functions. Therefore, this review details the morphological, physiological, and molecular effects of the lack of SRD5α activity induced by both SRD5α mutations and inhibitor exposures across species. More specifically, data highlights 1) the role of 5α-DHT in the development of male secondary sexual organs in vertebrates and sex determination in non-mammalian vertebrates, 2) the role of SRD5α1 in the synthesis of the neurosteroid allopregnanolone (ALLO) and 5α-androstane-3α,17β-diol (3α-diol), which are involved in anxiety and sexual behavior, respectively, and 3) the role of SRD5α3 in N-glycosylation. This review also features the lesser known functions of SRD5αs in steroid degradation in the uterus during pregnancy and glucocorticoid clearance in the liver. Additionally, the review describes the regulation of SRD5αs by the receptors of androgens, progesterone, estrogen, and thyroid hormones, as well as their differential DNA methylation. Factors known to be involved in their differential methylation are age, inflammation, and mental stimulation. Overall, this review helps shed light on the various essential functions of SRD5αs across species.
Collapse
Affiliation(s)
- Julie Robitaille
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Quebec City, QC, Canada
| | - Valerie S Langlois
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Quebec City, QC, Canada.
| |
Collapse
|
5
|
Tutka P, Mróz K, Mróz T, Buszewicz G, Aebisher D, Bartusik-Aebisher D, Kołodziejczyk P, Łuszczki JJ. Effects of androsterone on the protective action of various antiepileptic drugs against maximal electroshock-induced seizures in mice. Psychoneuroendocrinology 2019; 101:27-34. [PMID: 30408720 DOI: 10.1016/j.psyneuen.2018.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/20/2018] [Accepted: 10/20/2018] [Indexed: 10/28/2022]
Abstract
This study evaluated the effect of androsterone (AND), a metabolite of testosterone, on the ability of selected classical and novel antiepileptic drugs to prevent seizures caused by maximal electroshock (MES), which may serve as an experimental model of human generalized tonic-clonic seizures in mice. Single intraperitoneal (i.p.) administration of AND (80 mg kg-1) significantly raised the threshold for convulsions in the MES seizure threshold test. Lower doses of AND (5, 10, 20, and 40 mg kg-1) failed to change the threshold. AND at a subthreshold dose of 40 mg kg-1 significantly enhanced the protective activity of carbamazepine, gabapentin, and phenobarbital against MES-induced seizures decreasing their median effective doses (ED50) values ± SEM from 8.59 ± 0.76 to 6.05 ± 0.81 mg kg-1 (p = 0.0308) for carbamazepine, from 419.9 ± 120.6 to 111.5 ± 41.1 mg kg-1 (p = 0.0405) for gabapentin, and from 20.86 ± 1.64 to 10.0 ± 1.21 mg kg-1 (p = 0.0007) for phenobarbital. There were no significant changes in total brain concentrations of carbamazepine, gabapentin, and phenobarbital following AND administration. This suggests that the enhancing effects of AND on the protective activity of these antiepileptic drugs are not related to pharmacokinetic factors. A lower dose of AND (20 mg kg-1) had no effect on the protective activity of carbamazepine, gabapentin, and phenobarbital. AND administered at a dose of 40 mg kg-1 failed to change the anticonvulsant activity of lamotrigine, oxcarbazepine, phenytoin, topiramate, and valproate in the MES test. In the chimney test, AND given at a dose enhancing the protective activity of carbamazepine, gabapentin, and phenobarbital (which alone was without effect on motor performance of mice) did not affect impairment of motor coordination produced by the antiepileptics. Our findings recommend further preclinical and clinical research on AND in respect of its use as adjuvant therapy in the management of epilepsy in men with deficiency of androgens.
Collapse
Affiliation(s)
- Piotr Tutka
- Department of Experimental and Clinical Pharmacology, Faculty of Medicine, University of Rzeszów, Al. Kopisto 2a, PL, 35-959, Rzeszów, Poland; Laboratory for Innovative Research in Pharmacology, Centre for Innovative Research in Medical and Natural Sciences', University of Rzeszów, Warzywna 1A, PL, 35-310, Rzeszów, Poland.
| | - Katarzyna Mróz
- Department of Neurology, District Hospital, Cicha 14, PL, 21-100, Lubartów, Poland
| | - Tomasz Mróz
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, PL, 20-090, Lublin, Poland
| | - Grzegorz Buszewicz
- Laboratory of Forensic Toxicology, Medical University of Lublin, Jaczewskiego 8b, PL, 20-090, Lublin, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Faculty of Medicine, University of Rzeszów, Al. Kopisto 2a, PL, 35-959, Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Experimental and Clinical Pharmacology, Faculty of Medicine, University of Rzeszów, Al. Kopisto 2a, PL, 35-959, Rzeszów, Poland
| | - Patrycjusz Kołodziejczyk
- Department of Experimental and Clinical Pharmacology, Faculty of Medicine, University of Rzeszów, Al. Kopisto 2a, PL, 35-959, Rzeszów, Poland
| | - Jarogniew J Łuszczki
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, PL, 20-090, Lublin, Poland
| |
Collapse
|
6
|
Aromatase inhibition by letrozole attenuates kainic acid-induced seizures but not neurotoxicity in mice. Epilepsy Res 2018; 143:60-69. [DOI: 10.1016/j.eplepsyres.2018.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/02/2018] [Accepted: 04/07/2018] [Indexed: 12/11/2022]
|
7
|
Reduced estradiol synthesis by letrozole, an aromatase inhibitor, is protective against development of pentylenetetrazole-induced kindling in mice. Neurochem Int 2015; 90:271-4. [PMID: 26449311 DOI: 10.1016/j.neuint.2015.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 01/16/2023]
Abstract
Neurosteroids, such as testosterone and their metabolites, are known to modulate neuronal excitability. The enzymes regulating the metabolism of these neurosteroids, thus, may be targeted as a noval strategy for the development of new antiepileptic drugs. The present work targeted two such enzymes i,e aromatase and 5α-reductase in order to explore the potential of letrozole (an aromatase inhibitor) on pentylenetetrazole (PTZ)-induced kindling in mice and the ability of finasteride (a 5α-reductase inhibitor) to modulate any such effects. PTZ (30 mg/kg, i.p.), when administered once every two days (for a total of 24 doses) induced kindling in Swiss albino mice. Letrozole (1 mg/kg, p.o.), administered prior to PTZ, significantly reduced the % incidence of kindling, delayed mean onset time of seizures and reduced seizure severity score. Letrozole reduced the levels of plasma 17β-estradiol after induction of kindling. The concurrent administration of finasteride and letrozole produced effects similar to letrozole on PTZ-kindling and on estradiol levels. This implies that the ability of letrozole to redirect the synthesis of dihydrotestosterone (DHT) and 5α-androstanediol from testosterone doesn't appear to play a significant role in the protective effects of letrozole against PTZ kindling. Letrozole, however, increased the levels of 5α-DHT in mice plasma. The aromatase inhibitors, thus, may be exploited for inhibiting the synthesis of proconvulsant (17β-estradiol) and/or redirecting the synthesis of anticonvulsant (DHT and 5α-androstanediol) neurosteroids.
Collapse
|
8
|
Ford MM, Nickel JD, Kaufman MN, Finn DA. Null mutation of 5α-reductase type I gene alters ethanol consumption patterns in a sex-dependent manner. Behav Genet 2015; 45:341-53. [PMID: 25416204 PMCID: PMC4425631 DOI: 10.1007/s10519-014-9694-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/10/2014] [Indexed: 02/04/2023]
Abstract
The neuroactive steroid allopregnanolone (ALLO) is a positive modulator of GABAA receptors, and manipulation of neuroactive steroid levels via injection of ALLO or the 5α-reductase inhibitor finasteride alters ethanol self-administration patterns in male, but not female, mice. The Srd5a1 gene encodes the enzyme 5α-reductase-1, which is required for the synthesis of ALLO. The current studies investigated the influence of Srd5a1 deletion on voluntary ethanol consumption in male and female wildtype (WT) and knockout (KO) mice. Under a continuous access condition, 6 and 10 % ethanol intake was significantly greater in KO versus WT females, but significantly lower in KO versus WT males. In 2-h limited access sessions, Srd5a1 deletion retarded acquisition of 10 % ethanol intake in female mice, but facilitated it in males, versus respective WT mice. The present findings demonstrate that the Srd5a1 gene modulates ethanol consumption in a sex-dependent manner that is also contingent upon ethanol access condition and concentration.
Collapse
Affiliation(s)
- Matthew M Ford
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA,
| | | | | | | |
Collapse
|
9
|
Luef G, Madersbacher H. Sexual dysfunction in patients with epilepsy. HANDBOOK OF CLINICAL NEUROLOGY 2015; 130:383-94. [DOI: 10.1016/b978-0-444-63247-0.00022-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Tanchuck-Nipper MA, Ford MM, Hertzberg A, Beadles-Bohling A, Cozzoli DK, Finn DA. Sex Differences in Ethanol's Anxiolytic Effect and Chronic Ethanol Withdrawal Severity in Mice with a Null Mutation of the 5α-Reductase Type 1 Gene. Behav Genet 2014; 45:354-67. [PMID: 25355320 DOI: 10.1007/s10519-014-9691-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/16/2014] [Indexed: 02/04/2023]
Abstract
Manipulation of endogenous levels of the GABAergic neurosteroid allopregnanolone alters sensitivity to some effects of ethanol. Chronic ethanol withdrawal decreases activity and expression of 5α-reductase-1, an important enzyme in allopregnanolone biosynthesis encoded by the 5α-reductase-1 gene (Srd5a1). The present studies examined the impact of Srd5a1 deletion in male and female mice on several acute effects of ethanol and on chronic ethanol withdrawal severity. Genotype and sex did not differentially alter ethanol-induced hypothermia, ataxia, hypnosis, or metabolism, but ethanol withdrawal was significantly lower in female versus male mice. On the elevated plus maze, deletion of the Srd5a1 gene significantly decreased ethanol's effect on total entries versus wildtype (WT) mice and significantly decreased ethanol's anxiolytic effect in female knockout (KO) versus WT mice. The limited sex differences in the ability of Srd5a1 genotype to modulate select ethanol effects may reflect an interaction between developmental compensations to deletion of the Srd5a1 gene with sex hormones and levels of endogenous neurosteroids.
Collapse
Affiliation(s)
- Michelle A Tanchuck-Nipper
- Department of Behavioral Neuroscience, VAMC Research (R&D-49), Oregon Health & Science University, 3710 SW, U.S. Veterans Hospital Road, Portland, OR, 97239, USA,
| | | | | | | | | | | |
Collapse
|
11
|
van Luijtelaar G, Onat FY, Gallagher MJ. Animal models of absence epilepsies: what do they model and do sex and sex hormones matter? Neurobiol Dis 2014; 72 Pt B:167-79. [PMID: 25132554 DOI: 10.1016/j.nbd.2014.08.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 11/28/2022] Open
Abstract
While epidemiological data suggest a female prevalence in human childhood- and adolescence-onset typical absence epilepsy syndromes, the sex difference is less clear in adult-onset syndromes. In addition, although there are more females than males diagnosed with typical absence epilepsy syndromes, there is a paucity of studies on sex differences in seizure frequency and semiology in patients diagnosed with any absence epilepsy syndrome. Moreover, it is unknown if there are sex differences in the prevalence or expression of atypical absence epilepsy syndromes. Surprisingly, most studies of animal models of absence epilepsy either did not investigate sex differences, or failed to find sex-dependent effects. However, various rodent models for atypical syndromes such as the AY9944 model (prepubertal females show a higher incidence than prepubertal males), BN model (also with a higher prevalence in males) and the Gabra1 deletion mouse in the C57BL/6J strain offer unique possibilities for the investigation of the mechanisms involved in sex differences. Although the mechanistic bases for the sex differences in humans or these three models are not yet known, studies of the effects of sex hormones on seizures have offered some possibilities. The sex hormones progesterone, estradiol and testosterone exert diametrically opposite effects in genetic absence epilepsy and pharmacologically-evoked convulsive types of epilepsy models. In addition, acute pharmacological effects of progesterone on absence seizures during proestrus are opposite to those seen during pregnancy. 17β-Estradiol has anti-absence seizure effects, but it is only active in atypical absence models. It is speculated that the pro-absence action of progesterone, and perhaps also the delayed pro-absence action of testosterone, are mediated through the neurosteroid allopregnanolone and its structural and functional homolog, androstanediol. These two steroids increase extrasynaptic thalamic tonic GABAergic inhibition by selectively targeting neurosteroid-selective subunits of GABAA receptors (GABAARs). Neurosteroids also modulate the expression of GABAAR containing the γ2, α4, and δ subunits. It is hypothesized that differences in subunit expression during pregnancy and ovarian cycle contribute to the opposite effects of progesterone in these two hormonal states.
Collapse
Affiliation(s)
- Gilles van Luijtelaar
- Donders Centre of Cognition, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | - Filiz Yilmaz Onat
- Department of Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey
| | | |
Collapse
|
12
|
Hosseini M, Sadeghnia HR, Salehabadi S, Soukhtanloo M. Contribution of estradiol in sex-dependent differences of pentylenetetrazole-induced seizures in rats. ACTA ACUST UNITED AC 2013; 100:237-45. [PMID: 23524184 DOI: 10.1556/aphysiol.100.2013.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present study the contribution of estradiol in sex-dependent differences of pentylenetetrazole (PTZ)-induced seizures was investigated in rats. The rats were divided into four groups: 1) sham, 2) ovariectomized (OVX), 3) ovariectomized-estradiol (OVX-Est) and 4) male. The OVX-Est group received estradiol valerate (2 mg/kg; i.m/4 weeks) while, male, sham and OVX groups received vehicle. The animals were injected by PTZ (90 mg/kg). The latencies to minimal clonic seizures (MCS) and generalized tonic-clonic seizures (GTCS), were recorded. Serum 17β-estradiol and testosterone levels were also determined using an Elisa kit. GTCS latency in OVX rats was higher than in sham-operated animals (P < 0.05). MCS and GTCS latency in the male group was significantly higher than in the sham, OVX and OVX-Est groups (P < 0.001 and P < 0.01). There was no significant difference in MCS or GTCS latencies among OVX-Est, sham and OVX groups. Serum 17β-estradiol level in the OVX group was significantly lower than in the sham (P < 0.01) and in the OVX-Est group it was higher than in the sham, OVX and male groups (P < 0.01 and P < 0.001). Serum testosterone level in the male group was significantly higher than in all the other three groups (P < 0.001). It seems that testosterone probably has a more efficient role than estradiol in the gender dependent difference in seizure caused by PTZ in rats.
Collapse
Affiliation(s)
- Mahmoud Hosseini
- Mashhad University of Medical Sciences Neuroscience Research Center & Department of Physiology, School of Medicine Mashhad Iran Mashhad University Medical Sciences Department of Physiology, Scool of Medicine Mashhad Iran
| | | | | | | |
Collapse
|
13
|
Reddy DS. Role of hormones and neurosteroids in epileptogenesis. Front Cell Neurosci 2013; 7:115. [PMID: 23914154 PMCID: PMC3728472 DOI: 10.3389/fncel.2013.00115] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/01/2013] [Indexed: 12/03/2022] Open
Abstract
This article describes the emerging evidence of hormonal influence on epileptogenesis, which is a process whereby a brain becomes progressively epileptic due to an initial precipitating event of diverse origin such as brain injury, stroke, infection, or prolonged seizures. The molecular mechanisms underlying the development of epilepsy are poorly understood. Neuroinflammation and neurodegeneration appear to trigger epileptogenesis. There is an intense search for drugs that truly prevent the development of epilepsy in people at risk. Hormones play an important role in children and adults with epilepsy. Corticosteroids, progesterone, estrogens, and neurosteroids have been shown to affect seizure activity in animal models and in clinical studies. However, the impact of hormones on epileptogenesis has not been investigated widely. There is emerging new evidence that progesterone, neurosteroids, and endogenous hormones may play a role in regulating the epileptogenesis. Corticosterone has excitatory effects and triggers epileptogenesis in animal models. Progesterone has disease-modifying activity in epileptogenic models. The antiepileptogenic effect of progesterone has been attributed to its conversion to neurosteroids, which binds to GABA-A receptors and enhances phasic and tonic inhibition in the brain. Neurosteroids are robust anticonvulsants. There is pilot evidence that neurosteroids may have antiepileptogenic properties. Future studies may generate new insight on the disease-modifying potential of hormonal agents and neurosteroids in epileptogenesis.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center Bryan, TX, USA
| |
Collapse
|
14
|
Abstract
OBJECTIVE 5α-reductases are a family of isozymes expressed in a wide host of tissues including the central nervous system (CNS) and play a pivotal role in male sexual differentiation, development and physiology. METHODS A comprehensive literature search from 1970 to 2011 was made through PubMed and the relevant information was summarized. RESULTS 5α reductases convert testosterone, progesterone, deoxycorticosterone, aldosterone and corticosterone into their respective 5α-dihydro-derivatives, which serve as substrates for 3α-hydroxysteroid dehydrogenase enzymes. The latter transforms these 5α-reduced metabolites into a subclass of neuroactive steroid hormones with distinct physiological functions. The neuroactive steroid hormones modulate a multitude of functions in human physiology encompassing regulation of sexual differentiation, neuroprotection, memory enhancement, anxiety, sleep and stress, among others. In addition, 5α -reductase type 3 is also implicated in the N-glycosylation of proteins via formation of dolichol phosphate. The family of 5α-reductases was targeted for drug development to treat pathophysiological conditions, such as benign prostatic hyperplasia and androgenetic alopecia. While the clinical use of 5α-reductase inhibitors was well established, the scope and the magnitude of the adverse side effects of such drugs, especially on the CNS, is still unrecognized due to lack of knowledge of the various physiological functions of this family of enzymes, especially in the CNS. CONCLUSION There is an urgent need to better understand the function of 5α-reductases and the role of neuroactive steroids in human physiology in order to minimize the potential adverse side effects of inhibitors targeting 5α-reductases to treat benign prostatic hyperplasia and androgenic alopecia.
Collapse
Affiliation(s)
- Abdulmaged M Traish
- Department of Urology, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| |
Collapse
|
15
|
Abstract
Complex, multidirectional interactions between hormones, seizures, and the medications used to control them can present a challenge for clinicians treating patients with epilepsy. Many hormones act as neurosteroids, modulating brain excitability via direct binding sites. Thus, changes in endogenous or exogenous hormone levels can affect the occurrence of seizures directly as well as indirectly through pharmacokinetic effects that alter the concentrations of antiepileptic drugs. The underlying structural and physiological brain abnormalities of epilepsy and the metabolic activity of antiepileptic drugs can adversely affect hypothalamic and gonadal functioning. Knowledge of these complex interactions has increased and can now be incorporated in meaningful treatment approaches for men and women with epilepsy.
Collapse
Affiliation(s)
- Cynthia L Harden
- Division of Epilepsy and Electroencephalography, Hofstra North Shore-LIJ School of Medicine at Hofstra University, Hempstead, NY, USA.
| | | |
Collapse
|
16
|
Koonce CJ, Walf AA, Frye CA. Type 1 5α-reductase may be required for estrous cycle changes in affective behaviors of female mice. Behav Brain Res 2011; 226:376-80. [PMID: 21946309 DOI: 10.1016/j.bbr.2011.09.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 01/16/2023]
Abstract
There are estrous cycle differences in affective behaviors of rodents that are generally attributed to cyclic variations in estradiol, progesterone (P) and its metabolites. A question is the role of the steroid metabolism enzyme, 5α-reductase, for these estrous cycle differences. To address the requirement of 5α-reductase, estrous cycle variations in the behavior of wildtype mice and their littermates that are deficient in the 5α-reductase type 1 enzyme (5αRKO mice) were examined. The hypothesis was that if some of the estrous cycle differences in exploratory (open field) and anxiety (elevated plus maze) are due to P's 5α-reduction to 5α-pregnan-3α-ol-20-one (3α,5α-THP), then wildtype mice will have estrous cycle differences in the expression of these behaviors, but 5αRKO mice will not. Mice were tested in these tasks and then had plasma and brains collected so that steroid levels (estradiol, P, 3α,5α-THP, corticosterone) could be measured in these tissues. Results supported this hypothesis. There were estrous cycle differences among wildtype, but not 5αRKO, mice. Proestrous wildtype mice made more central entries in the open field and spent more time on the open arms of the plus maze, coincident with higher 3α,5α-THP levels in plasma and brain regions important for these behaviors, such as the hippocampus and cortex, compared to their diestrous counterparts. Variability in the open field and elevated plus maze could be explained by circulating and hippocampus levels of 3α,5α-THP, respectively. Thus, 5α-reductase may be required for the estrous cycle variations in affective behavior and 3α,5α-THP levels of female mice.
Collapse
Affiliation(s)
- Carolyn J Koonce
- Dept Psychology, The University at Albany-SUNY, Albany, NY 12222, USA
| | | | | |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Epilepsy and anticonvulsant medications may substantially alter endocrine homeostasis, including the male reproductive hormonal system. RECENT FINDINGS Seizures in medial temporal lobe structures, through their connectivity to the hypothalamus, alter the secretion of gonadotropins. Levels of circulating bioavailable testosterone are affected by changes in the level of binding proteins, which in turn may be affected by seizure medications. The use of older generation medications that induce the cytochrome P450 system is associated with an increase in sex hormone-binding globulin and lower bioactive testosterone. Sexual dysfunction, including decreased libido and decreased potency, and infertility, is seen commonly in men with epilepsy. However, its relation to sex hormone levels remains unclear. Comorbid depression and anxiety may be important confounding factors. Testosterone and sexual function appear not to be affected by the newer generation (noninducing) anticonvulsants. SUMMARY Epilepsy and its drug treatments are associated with alterations in hormonal and sexual function in men. Further study is needed to clarify the precise mechanisms behind these alterations, as some of the data conflict. More attention should be paid to this issue in male patients with seizures; when appropriate, treatment for psychiatric comorbidity and switches in anticonvulsant therapy may be worth consideration.
Collapse
Affiliation(s)
- Kartik Sivaraaman
- Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
18
|
Steckelbroeck S, Lütjohann D, Bauman DR, Ludwig M, Friedl A, Hans VHJ, Penning TM, Klingmüller D. Non-stereo-selective cytosolic human brain tissue 3-ketosteroid reductase is refractory to inhibition by AKR1C inhibitors. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:1221-31. [PMID: 20673851 DOI: 10.1016/j.bbalip.2010.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/16/2010] [Accepted: 07/19/2010] [Indexed: 01/02/2023]
Abstract
Cerebral 3α-hydroxysteroid dehydrogenase (3α-HSD) activity was suggested to be responsible for the local directed formation of neuroactive 5α,3α-tetrahydrosteroids (5α,3α-THSs) from 5α-dihydrosteroids. We show for the first time that within human brain tissue 5α-dihydroprogesterone and 5α-dihydrotestosterone are converted via non-stereo-selective 3-ketosteroid reductase activity to produce the respective 5α,3α-THSs and 5α,3β-THSs. Apart from this, we prove that within the human temporal lobe and limbic system cytochrome P450c17 and 3β-HSD/Δ(5-4) ketosteroid isomerase are not expressed. Thus, it appears that these brain regions are unable to conduct de novo biosynthesis of Δ(4)-3-ketosteroids from Δ(5)-3β-hydroxysteroids. Consequently, the local formation of THSs will depend on the uptake of circulating Δ(4)-3-ketosteroids such as progesterone and testosterone. 3α- and 3β-HSD activity were (i) equally enriched in the cytosol, (ii) showed equal distribution between cerebral neocortex and subcortical white matter without sex- or age-dependency, (iii) demonstrated a strong and significant positive correlation when comparing 46 different specimens and (iv) exhibited similar sensitivities to different inhibitors of enzyme activity. These findings led to the assumption that cerebral 3-ketosteroid reductase activity might be catalyzed by a single enzyme and is possibly attributed to the expression of a soluble AKR1C aldo-keto reductase. AKR1Cs are known to act as non-stereo-selective 3-ketosteroid reductases; low AKR1C mRNA expression was detected. However, the cerebral 3-ketosteroid reductase was clearly refractory to inhibition by AKR1C inhibitors indicating the expression of a currently unidentified enzyme. Its lack of stereo-selectivity is of physiological significance, since only 5α,3α-THSs enhance the effect of GABA on the GABA(A) receptor, whereas 5α,3β-THSs are antagonists.
Collapse
Affiliation(s)
- Stephan Steckelbroeck
- Institute of Clinical Chemistry and Pharmacology, University of Bonn, 53105 Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Reddy DS, Jian K. The testosterone-derived neurosteroid androstanediol is a positive allosteric modulator of GABAA receptors. J Pharmacol Exp Ther 2010; 334:1031-41. [PMID: 20551294 DOI: 10.1124/jpet.110.169854] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Testosterone modulates seizure susceptibility, but the underlying mechanisms are obscure. Recently, we demonstrated that testosterone affects seizure activity via its conversion to neurosteroids in the brain. Androstanediol (5alpha-androstan-3alpha,17beta-diol) is an endogenous neurosteroid synthesized from testosterone. However, the molecular mechanism underlying the seizure protection activity of androstanediol remains unclear. Here, we show that androstanediol has positive allosteric activity as a GABA(A) receptor modulator. In whole-cell recordings from acutely dissociated hippocampus CA1 pyramidal cells, androstanediol (but not its 3beta-epimer) produced a concentration-dependent enhancement of GABA-activated currents (EC(50) of 5 microM). At 1 microM, androstanediol produced a 50% potentiation of GABA responses. In the absence of GABA, androstanediol has moderate direct effects on GABA(A) receptor-mediated currents at high concentrations. Systemic doses of androstanediol (5-100 mg/kg), but not its 3beta-epimer, caused dose-dependent suppression of behavioral and electrographic seizures in mouse hippocampus kindling, which is a model of temporal lobe epilepsy. The ED(50) value for antiseizure effects of androstanediol was 50 mg/kg, which did not produce sedation/motor toxicity. At high (2x ED(50)) doses, androstanediol produced complete seizure protection that lasted for up to 3 h after injection. The estimated plasma concentrations of androstanediol producing 50% seizure protection in the kindling model (10.6 microM) are within the range of concentrations that modulate GABA(A) receptors. These studies suggest that androstanediol could be a neurosteroid mediator of testosterone actions on neuronal excitability and seizure susceptibility via its activity as a GABA(A) receptor modulator and that androstanediol may play a key role in men with epilepsy, especially during the age-related decline in androgen levels.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, 228 Reynolds Medical Bldg., College Station, TX 77843-1114, USA.
| | | |
Collapse
|
20
|
Frye CA, Ryan A, Rhodes M. Antiseizure effects of 3alpha-androstanediol and/or 17beta-estradiol may involve actions at estrogen receptor beta. Epilepsy Behav 2009; 16:418-22. [PMID: 19854112 DOI: 10.1016/j.yebeh.2009.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/03/2009] [Accepted: 09/06/2009] [Indexed: 10/20/2022]
Abstract
Testosterone (T), the principal androgen secreted by the testes, can have antiseizure effects. Some of these effects may be mediated by T's metabolites. T is metabolized to 3alpha-androstanediol (3alpha-diol). T, but not 3alpha-diol, binds androgen receptor. We investigated effects of 3alpha-diol (1 mg/kg, SC) and/or an androgen receptor blocker (flutamide 10 mg, SC), 1 hour prior to administration of pentylenetetrazol (85 mg/kg, IP). Juvenile male rats administered 3alpha-diol had less seizure activity than those administered vehicle. Flutamide had no effects. T is aromatized to 17beta-estradiol (E(2)), which, like 3alpha-diol, acts at estrogen receptors (ERs). Selective estrogen receptor modulators that favor ERalpha (propyl pyrazole triol, 17alpha-E(2)) or ERbeta (diarylpropionitrile, coumestrol, 3alpha-diol), or both (17beta-E(2)), were administered (0.1 mg/kg, SC) to juvenile male rats 1 hour before pentylenetetrazol. Estrogens with activity at ERbeta, but not those selective for ERalpha, produced antiseizure effects. Actions at ERbeta may underlie some antiseizure effects of T's metabolites.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, University at Albany-SUNY, Albany, NY 12222, USA.
| | | | | |
Collapse
|
21
|
Pereno G, Beltramino C. Differential role of gonadal hormones on kainic acid–induced neurodegeneration in medial amygdaloid nucleus of female and male rats. Neuroscience 2009; 163:952-63. [DOI: 10.1016/j.neuroscience.2009.06.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 06/24/2009] [Accepted: 06/27/2009] [Indexed: 11/30/2022]
|
22
|
|
23
|
Antiseizure effects of 5*-androstane-3*,7beta-diol may be independent of actions at estrogen receptor beta. Epilepsy Behav 2008; 13:32-5. [PMID: 18455477 DOI: 10.1016/j.yebeh.2008.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 03/25/2008] [Accepted: 03/26/2008] [Indexed: 11/23/2022]
Abstract
Testosterone (T), the principal androgen secreted by the testes, can have antiseizure effects; however, the mechanism(s) underlying this action is not well understood. T is metabolized to dihydrotestosterone (DHT) by the enzyme 5*-reductase. DHT is then converted to 5*-androstane-3*,17beta-diol (3*-diol) by the enzyme 3*-hydroxysteroid dehydrogenase. T and DHT bind with high affinity to intracellular androgen receptors; however, 3*-diol does not. The mnemonic effects of 3*-diol are mediated in part through the beta isoform of estrogen receptors (ERbeta) in the hippocampus. As such, we investigated whether 3*-diol has antiseizure effects in mice that require action at ERbeta. 3*-Diol (2 mg/kg subcutaneously) was administered to wild-type C57/B6 mice and heterozygous and homozygous ERbeta knockout (betaERKO) mice 1 hour prior to administration of pentylenetetrazol (PTZ; 85 mg/kg intraperitoneally). Mice administered 3*-diol had significantly longer latencies to clonic seizure and death and lower seizure scores than did mice administered vehicle. This pattern of effects was observed in wild-type or betaERKO mice. Thus, for these mice, the antiseizure effects of 3*-diol for the chemoconvulsant PTZ occur independent of actions at ERbeta.
Collapse
|
24
|
Abstract
Reproductive disorders are unusually common among women and men with epilepsy. They are generally associated with and may be the consequence of reproductive endocrine disorders. Both epilepsy itself and antiepileptic drug use have been implicated in their pathophysiology. This review focuses on how temporolimbic dysfunction in epilepsy may disrupt normal neuroendocrine regulation and promote the development of reproductive endocrine disorders. The particular nature of the dysregulation may relate to the laterality and focality of the epilepsy and some hormonal changes may develop in close temporal relation to the occurrence of epileptiform discharges. In women, reproductive endocrine disorders include polycystic ovary syndrome, hypothalamic amenorrhea, functional hyperprolactinemia, and premature menopause. In men, hypogonadism may be hypogonadotropic, hypergonadotropic or related to hyperprolactinemia. The significance of these reproductive endocrine disorders is that they may contribute not only to sexual dysfunction and infertility but may also have an adverse impact on seizure control.
Collapse
|
25
|
Reddy DS. Mass spectrometric assay and physiological-pharmacological activity of androgenic neurosteroids. Neurochem Int 2007; 52:541-53. [PMID: 17624627 PMCID: PMC2390862 DOI: 10.1016/j.neuint.2007.05.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 05/15/2007] [Accepted: 05/22/2007] [Indexed: 10/23/2022]
Abstract
Steroid hormones play a key role in the pathophysiology of several brain disorders. Testosterone modulates neuronal excitability, but the underlying mechanisms are obscure. There is emerging evidence that testosterone-derived "androgenic neurosteroids", 3alpha-androstanediol and 17beta-estradiol, mediate the testosterone effects on neural excitability and seizure susceptibility. Testosterone undergoes metabolism to neurosteroids via two distinct pathways. Aromatization of the A-ring converts testosterone into 17beta-estradiol. Reduction of testosterone by 5alpha-reductase generates 5alpha-dihydrotestosterone, which is then converted to 3alpha-androstanediol, a powerful GABA(A) receptor-modulating neurosteroid with anticonvulsant properties. Although the 3alpha-androstanediol is an emerging neurosteroid in the brain, there is no specific and sensitive assay for determination of 3alpha-androstanediol in biological samples. This article describes the development and validation of mass spectrometric assay of 3alpha-androstanediol, and the molecular mechanisms underlying the testosterone modulation of seizure susceptibility. A liquid chromatography-tandem mass spectrometry assay to measure 3alpha-androstanediol is validated with excellent linearity, specificity, sensitivity, and reproducibility. Testosterone modulation of seizure susceptibility is demonstrated to occur through its conversion to neurosteroids with "anticonvulsant" and "proconvulsant" actions and hence the net effect of testosterone on neural excitability and seizure activity depends on the levels of distinct testosterone metabolites. The proconvulsant effect of testosterone is associated with increases in plasma 17beta-estradiol concentrations. The 5alpha-reduced metabolites of testosterone, 5alpha-dihydrotestosterone and 3alpha-androstanediol, had powerful anticonvulsant activity. Overall, the testosterone-derived neurosteroids 3alpha-androstanediol and 17beta-estradiol could contribute to the net cellular actions of testosterone in the brain. Because 3alpha-androstanediol is a potent positive allosteric modulator of GABA(A) receptors, it could serve as an endogenous neuromodulator of neuronal excitability in men. The 3alpha-androstanediol assay is an important tool in this area because of the growing interest in the potential to use adjuvant aromatase inhibitor therapy to improve treatment of epilepsy.
Collapse
Affiliation(s)
- Doodipala S Reddy
- North Carolina State University, Department of Molecular Biomedical Sciences, Raleigh, NC 27606, USA.
| |
Collapse
|
26
|
Edinger KL, Frye CA. Androgens’ performance-enhancing effects in the inhibitory avoidance and water maze tasks may involve actions at intracellular androgen receptors in the dorsal hippocampus. Neurobiol Learn Mem 2007; 87:201-8. [PMID: 17029870 DOI: 10.1016/j.nlm.2006.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 08/18/2006] [Accepted: 08/22/2006] [Indexed: 11/23/2022]
Abstract
Androgens can have performance-enhancing effects in some cognitive tasks, but the mechanism of these effects has not been established. Experiments examined whether androgens' actions to bind to intracellular androgen receptors (ARs) in the hippocampus are necessary to enhance cognitive performance in the inhibitory avoidance and water maze tasks. If androgens' binding at ARs are essential, then blocking them through intrahippocampal administration of flutamide, an AR receptor antagonist, should attenuate androgens' performance-enhancing effects in the inhibitory avoidance and water maze tasks. In Experiments 1 and 2, flutamide was administered through intrahippocampal inserts to intact male rats immediately pre- and post-training in the inhibitory avoidance and water maze tasks. Both pre- and post-training administration of flutamide to the dorsal hippocampus, but not missed sites, produced significantly poorer performance in the inhibitory avoidance and water maze tasks, without influencing control measures such as flinch/jump threshold or swim speed. In Experiment 3, flutamide administration to the hippocampus was delayed two hours following training in the inhibitory avoidance and water maze tasks. There was no significant effect of delayed administration of flutamide on performance in either of these tasks. Together, these findings suggest that blocking ARs in the dorsal hippocampus with flutamide administration immediately pre- or post-training can produce decrements in cognitive performance, which implies that androgens' performance-enhancing effects may occur, in part, through binding at intracellular androgen receptors in the dorsal hippocampus.
Collapse
Affiliation(s)
- Kassandra L Edinger
- Department of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA
| | | |
Collapse
|
27
|
Abstract
Accumulating evidence suggests that both male- and/or female-typical sex steroids contribute to seizure susceptibility in epilepsy. Although there is rich literature regarding how female-typical sex steroids, such as progestins and estrogens, influence epilepsy, the role of androgens in seizure processes are just beginning to be understood. Given that some of the effects and mechanisms of androgen action on ictal activity may converge with that of progestins and/or estrogens, this review discusses what is known concerning the role of each of these sex steroids on seizures. Additionally, evidence that seizures and/or antiepileptic drugs can themselves influence steroid-dependent behaviors, such as affective, cognitive and reproductive function, is also reviewed. Considerations for therapeutic management and future directions for research and drug discovery are summarized.
Collapse
Affiliation(s)
- Cheryl A Frye
- University of New York, Life Sciences Research Building, Room 01058, The University at Albany-SUNY, 1400 Washington Avenue Albany, NY 12222, USA.
| |
Collapse
|
28
|
Abstract
Manipulation of neurosteroids to treat epilepsy has been an area of active research. The effect of testosterone on brain excitability and seizure threshold has been mixed; the estradiol metabolite of testosterone increases brain excitability, while the reduced metabolite of testosterone, 3alpha-androstanediol, decreases brain excitability, likely through an action at the gamma-amino butyric acid A receptor. Therefore, the metabolites of testosterone produce opposite effects on brain excitability in seizure models. Aromatase is the enzyme for the conversion of testosterone to 17beta-estradiol. Aromatase inhibitors could decrease brain excitability by decreasing local estradiol levels and therefore, could be beneficial for the treatment of epilepsy. Aromatase inhibitors are US Food and Drug Administration-approved and have a long history of safe use in menopausal women with breast cancer. This review presents the results of using anastrazole in an open-label, add-on manner in a small group of men with epilepsy in order to improve seizures. The results suggested some effect on reduction of seizures and no side effects. Testosterone levels did increase, but not to above the normal range. Letrozole used in a single case was also beneficial for seizures. It was concluded that aromatase inhibitors may be a useful adjunct to the treatment of epilepsy, but habituation to the treatment may be limiting. Many men with epilepsy have low testosterone, and aromatase inhibition may be helpful in restoring levels to normal. Modulation of reproductive hormones by aromatase inhibition as well as enhancement of the 3alpha-androstanediol pathway may be an avenue of epilepsy treatment that would not produce sedative side effects, which is often a limiting factor with standard antiseizure medications. A further interesting result is that elevated follicle stimulating hormone and luteal stimulating hormone levels were associated with seizure reduction, suggesting that they may be a biomarker for a beneficial effect of aromatase inhibition on brain excitability.
Collapse
Affiliation(s)
- Cynthia Harden
- Weill Medical College of Cornell University, Comprehensive Epilepsy Center, 525 East 68th Street, Room K-615, NY 10021, USA.
| | | |
Collapse
|
29
|
Dubrovsky BO. Steroids, neuroactive steroids and neurosteroids in psychopathology. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:169-92. [PMID: 15694225 DOI: 10.1016/j.pnpbp.2004.11.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2004] [Indexed: 10/26/2022]
Abstract
The term "neurosteroid" (NS) was introduced by Baulieu in 1981 to name a steroid hormone, dehydroepiandrosterone sulfate (DHEAS), that was found at high levels in the brain long after gonadectomy and adrenalectomy, and shown later to be synthetized by the brain. Later, androstenedione, pregnenolone and their sulfates and lipid derivatives as well as tetrahydrometabolites of progesterone (P) and deoxycorticosterone (DOC) were identified as neurosteroids. The term "neuroactive steroid" (NAS) refers to steroids which, independent of their origin, are capable of modifying neural activities. NASs bind and modulate different types of membrane receptors. The GABA and sigma receptor complexes have been the most extensively studied, while glycine-activated chloride channels, nicotinic acetylcholine receptors, voltage-activated calcium channels, although less explored, are also modulated by NASs. Within the glutamate receptor family, N-methyl-d-aspartate (NMDA) receptors, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and kainate receptors have also been demonstrated to be a target for steroid modulation. Besides their membrane effects, once inside the neuron oxidation of Ring A reduced pregnanes, THP and THDOC, bind to the progesterone intracellular receptor and regulate gene expression through this path. The involvement of NASs on depression syndromes, anxiety disorders, stress responses to different stress stimuli, memory processes and related phenomena such as long-term potentiation are reviewed and critically evaluated. The importance of context for the interpretation of behavioral effects of hormones as well as for hormonal levels in body fluids is emphasized. Some suggestions for further research are given.
Collapse
Affiliation(s)
- Bernardo O Dubrovsky
- McGill University, 3445 Drummond Street, #701, Montreal, Quebec, H3G 1X9, Canada.
| |
Collapse
|
30
|
Rhodes ME, Frye CA. Androgens in the hippocampus can alter, and be altered by, ictal activity. Pharmacol Biochem Behav 2005; 78:483-93. [PMID: 15251257 DOI: 10.1016/j.pbb.2004.04.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 03/09/2004] [Accepted: 04/13/2004] [Indexed: 10/26/2022]
Abstract
Steroid hormones, such as androgens, can modulate seizure processes. This review summarizes prior research and presents new data that support the role of androgens in modulating seizure processes. Testosterone, the primary endogenous androgen, has antiseizure effects in people and in animal models of epilepsy. Furthermore, testosterone's antiseizure effects may involve actions of its 5alpha-reduced metabolite and neuroactive steroid, 5alpha-androstane-3alpha,17beta-diol (3alpha-diol). The hippocampus is a target for androgen action and is involved in many types of seizure disorder. Data suggest that actions of androgens in the hippocampus may be important for androgens' antiseizure effects. Interestingly, there may also be a reciprocal relationship between androgens and seizures. Ictal activity can alter the gonadal responsiveness of people with epilepsy and in animal models of seizure disorder. Thus, this paper will review data in support of androgens' antiseizure effects. Further understanding of androgens' role in seizure processes is important for potential therapeutic effects.
Collapse
Affiliation(s)
- Madeline E Rhodes
- Department of Psychology, The University at Albany-SUNY, Social Science 220, 1400 Washington Avenue, Albany, NY 12222, USA
| | | |
Collapse
|
31
|
Dubrovsky B. Potential use of neurosteroids and neuroactive steroids as modulators of symptoms of depression, anxiety, and psychotic disorders. Drug Dev Res 2005. [DOI: 10.1002/ddr.20033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Frye CA, Walf AA, Rhodes ME, Harney JP. Progesterone enhances motor, anxiolytic, analgesic, and antidepressive behavior of wild-type mice, but not those deficient in type 1 5 alpha-reductase. Brain Res 2004; 1004:116-24. [PMID: 15033426 DOI: 10.1016/j.brainres.2004.01.020] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2004] [Indexed: 11/21/2022]
Abstract
The importance of progesterone's (P(4)) metabolism by the 5 alpha-reductase type I enzyme was examined in homozygous and heterozygous 5 alpha-reductase type I knockout mice and their wild-type siblings. P(4) (1.0 mg) or vehicle was administered and effects on motor, anxiety, nociceptive, and depression behavior were observed. After testing, whole-brain progesterone and 5 alpha-pregnan-3 alpha-ol-20-one (3 alpha,5 alpha-THP) levels were determined by radioimmunoassay. Motor behavior in the horizontal crossing and open field tasks of 5 alpha-reductase-deficient mice administered P(4) was similar to vehicle control mice and significantly reduced compared to wild-type mice administered P(4). In the open field, 5 alpha-reductase-deficient mice administered P(4) had a similar number of central entries as did vehicle control mice, both were lower than central entries of P(4)-administered wild-type mice. However, in the plus maze, P(4) to 5 alpha-reductase-deficient or wild-type mice significantly increased open arm activity compared to vehicle-administered control mice. P(4) to wild-type, but not 5 alpha-reductase-deficient mice, significantly increased latencies to lick front and back paws in response to radiant heat stimuli compared to vehicle administration to control mice. In the forced swim test, 5 alpha-reductase-deficient mice administered P(4) were similar to vehicle control mice and the latency to immobility was significantly decreased, and the duration of immobility was significantly increased, compared to wild-type mice administered P(4). Thus, these data suggest metabolism by the 5 alpha-reductase type I enzyme may mitigate P(4)'s effects on some tasks of motor, anxiety, nociception, and depression behavior.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology and Center for Neurobiology, The University at Albany-SUNY, 1400 Washington Avenue, Albany, NY 12222, USA.
| | | | | | | |
Collapse
|
33
|
Rhodes ME, Harney JP, Frye CA. Gonadal, adrenal, and neuroactive steroids' role in ictal activity. Brain Res 2004; 1000:8-18. [PMID: 15053947 DOI: 10.1016/j.brainres.2003.12.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2003] [Indexed: 10/26/2022]
Abstract
Of the many people that have epilepsy, only about 70% achieve seizure control with traditional pharmacotherapies. Steroids have long been known to influence ictal activity and may have a therapeutic role. This review summarizes recent investigations that have enhanced knowledge of the effects and mechanisms of gonadal, adrenal, and neuroactive steroids on seizure processes. Progesterone, which varies across reproductive cycles, pregnancy, and as a function of aging, has been shown to have anti-seizure effects among women with epilepsy and in animal models of epilepsy. Further, data suggest that progesterone's anti-seizure effects may involve its metabolism to the neuroactive steroid, 5 alpha-pregnan-3 alpha-ol-20-one (3 alpha,5 alpha-THP), and its subsequent actions at GABA(A) receptors. Androgens also have anti-seizure effects. Androgens' anti-seizure effects may be mediated, in part, through actions of the testosterone metabolite, and neuroactive steroid, 5 alpha-androstane-3 alpha,17 alpha-diol (3 alpha-diol) at GABA(A) receptors. Stress can alter seizure susceptibility, suggesting a role of adrenal steroids on seizure processes. In animal models of epilepsy, acute or chronic stress can increase ictal activity. Notably, stress and seizures can alter levels of gonadal, adrenal, and neuroactive steroids, which may then influence subsequent seizure activity. Thus, this review summarizes recent progress in the role of gonadal, adrenal, and/or neuroactive steroids in seizure processes which suggest that greater understanding of these steroids' effects and mechanisms may ultimately lead to improved seizure control for people with epilepsy.
Collapse
Affiliation(s)
- Madeline E Rhodes
- Department of Psychology, The University at Albany-SUNY, 1400 Washington Avenue, Albany, NY 12222, USA
| | | | | |
Collapse
|
34
|
Harden C, MacLusky NJ. Aromatase inhibition, testosterone, and seizures. Epilepsy Behav 2004; 5:260-3. [PMID: 15123030 DOI: 10.1016/j.yebeh.2003.12.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 12/05/2003] [Accepted: 12/09/2003] [Indexed: 10/26/2022]
Abstract
The effect of testosterone on brain excitability is unclear. The excitatory aspect of testosterone's action in the brain may be due to its conversion to estrogen via aromatase. We report herein a 61-year-old man with temporal lobe epilepsy and sexual dysfunction due to low testosterone levels. Use of an aromatase inhibitor, letrozole, normalized his testosterone level and improved his sexual functioning. Letrozole, in addition to standard antiseizure medication, was also associated with improved seizure control. This was sustained and, further, was associated with seizure exacerbation after withdrawing letrozole, and subsequent seizure improvement after restarting it. During the course of treatment, his serum testosterone level increased, sex hormone-binding globulin decreased (SHBG), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) levels increased, while serum estradiol levels remained undetectable. Letrozole may, therefore, have produced a central alteration in the testosterone/estrogen ratio, thereby impairing estrogen-mediated feedback control of the pituitary, resulting in the observed increase in circulating LH and FSH levels. This experience suggests that aromatase inhibitors should be further investigated as a beneficial treatment modality for male patients with epilepsy.
Collapse
Affiliation(s)
- Cynthia Harden
- Department of Neurology and Neuroscience, Comprehensive Epilepsy Center, Weill Medical College of Cornell University, New York, NY, USA.
| | | |
Collapse
|
35
|
Abstract
3alpha-Androstanediol is synthesized from testosterone in peripheral tissues and in the brain, but the clinical importance of this neurosteroid remains unclear. This study evaluated the effects of 3alpha-androstanediol on seizure susceptibility in mouse models of epilepsy. 3alpha-Androstanediol protected mice against seizures induced by GABAA receptor antagonists pentylenetetrazol, picrotoxin, and beta-carboline ester in a dose-dependent fashion. However, 3alpha-androstanediol was inactive against seizures induced by glutamate receptor agonists kainic acid, NMDA and 4-aminopyridine. Pretreatment with the androgen receptor antagonist flutamide had no effect on seizure protection by 3alpha-androstanediol. These results suggest that 3alpha-androstanediol has powerful anticonvulsant activity that occurs largely through non-genomic mechanisms. Testosterone-derived 3alpha-androstanediol might be an endogenous protective neurosteroid in the brain.
Collapse
Affiliation(s)
- Doodipala S Reddy
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, 4700 Hillsborough Street, Raleigh, NC 27606, USA.
| |
Collapse
|
36
|
Reddy DS. Testosterone modulation of seizure susceptibility is mediated by neurosteroids 3α-androstanediol and 17β-estradiol. Neuroscience 2004; 129:195-207. [PMID: 15489042 DOI: 10.1016/j.neuroscience.2004.08.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2004] [Indexed: 11/18/2022]
Abstract
Testosterone modulates seizure susceptibility in animals and humans, but the underlying mechanisms are obscure. Here, testosterone modulation of seizure susceptibility is hypothesized to occur through its conversion to neurosteroids with "anticonvulsant" and "proconvulsant" actions, and hence the net effect of testosterone on neural excitability and seizure activity depends on the levels of distinct testosterone metabolites. Testosterone undergoes metabolism to neurosteroids via two distinct pathways. Aromatization of the A-ring converts testosterone into 17beta-estradiol. Reduction of testosterone by 5alpha-reductase generates 5alpha-dihydrotestosterone (DHT), which is then converted to 3alpha-androstanediol (3alpha-Diol), a powerful GABA(A) receptor-modulating neurosteroid with anticonvulsant properties. Systemic doses of testosterone decreased seizure threshold in rats and increased the incidence and severity of pentylenetetrazol (PTZ)-induced seizures in mice. These proconvulsant effects of testosterone were associated with increases in plasma 17beta-estradiol and 3alpha-Diol concentrations. Pretreatment with letrozole, an aromatase inhibitor that blocks the conversion of testosterone to 17beta-estradiol, significantly inhibited testosterone-induced exacerbation of seizures. The 5alpha-reductase inhibitor finasteride significantly reduced 3alpha-Diol levels and also blocked letrozole's ability to inhibit the proconvulsant effects of testosterone. The 5alpha-reduced metabolites of testosterone, DHT and 3alpha-Diol, had powerful anticonvulsant activity in the PTZ test. Letrozole or finasteride had no effect on seizure protection by DHT and 3alpha-Diol, but indomethacin partially reversed DHT actions. 3alpha-Diol but not 3beta-androstanediol, a GABA(A) receptor-inactive stereoisomer, suppressed 4-aminopyridine-induced spontaneous epileptiform bursting in rat hippocampal slices. Thus, testosterone-derived neurosteroids 3alpha-Diol and 17beta-estradiol could contribute to the net cellular actions of testosterone on neural excitability and seizure susceptibility.
Collapse
Affiliation(s)
- D S Reddy
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, 4700 Hillsborough Street, Raleigh, NC 27606, USA.
| |
Collapse
|
37
|
Amini H, Ahmadiani A. Increase in testosterone metabolism in the rat central nervous system by formalin-induced tonic pain. Pharmacol Biochem Behav 2002; 74:199-204. [PMID: 12376168 DOI: 10.1016/s0091-3057(02)00986-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of formalin-induced tonic pain (FITP) on testosterone (T) concentrations in the central nervous system (CNS) and serum were investigated in rats. T was nearly eliminated from the brain and spinal cord 1.5 and 24 h after a single subcutaneous injection (100 microl/rat, sc) of 5% formalin and its levels were similar to that seen following castration. In serum, T concentrations were decreased significantly 1.5 h following formalin injection, but after 24 h, the serum level of T was within normal range. T concentrations in the brain, spinal cord, and serum were not modified 20 min after formalin injection. Pretreatment of rats with finasteride, a 5alpha-reductase (5alpha-R) inhibitor (5 mg/kg, sc) blocked T elimination from the brain and spinal cord by FITP, but it failed to prevent decrease in serum T. However, 3 h after administration of exogenous T (5 mg/kg, sc), FITP did not cause a significant decrease in T levels in the CNS and serum. These results suggest that FITP eliminates endogenous T in the brain and spinal cord by increasing 5alpha-R activity in the CNS.
Collapse
Affiliation(s)
- Hossein Amini
- Department of Pharmacology, Neuroscience Research Center, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
38
|
Frye CA, Rhodes ME, Walf A, Harney JP. Testosterone enhances aggression of wild-type mice but not those deficient in type I 5alpha-reductase. Brain Res 2002; 948:165-70. [PMID: 12383970 DOI: 10.1016/s0006-8993(02)03076-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Testosterone's (T) aggression-enhancing effects may be mediated in part by its 5alpha-reduced, 3-hydroxysteroid dehydrogenized metabolite 5alpha-androstane-3alpha,17beta-diol (3alpha-diol). To test this hypothesis, in Expt. 1 gonadectomized (gdx) C21 mice were administered T, 3alpha-diol, or vehicle and were observed in the resident intruder test of aggression 1 h later. C21 mice administered androgens had significantly higher incidences of aggression than did vehicle-administered mice. In Expt. 2, wild-type mice and mice deficient in the 5alpha-reductase type I enzyme were administered T or vehicle and tested 1 h later in the resident intruder paradigm. Wild-type mice administered T had significantly shorter latencies and greater incidences of aggression than did 5alpha-reductase type I knockout mice administered T or vehicle-administered mice. Data from Expt. 1 are consistent with T and 3alpha-diol having similar aggression-enhancing effects, and results of Expt. 2 suggest that the inability to metabolize T to its 5alpha-reduced products may attenuate some aggression-enhancing effects of mice in the resident intruder test of aggression.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany-SUNY, 1400 Washington Avenue, Albany, NY 12222, USA.
| | | | | | | |
Collapse
|
39
|
Schwartz M, Harris J, Chu L, Gijsbers K, Dubrovsky B. Effects of androstenedione on long term potentiation in the rat dentate gyrus. Relevance for affective and degenerative diseases. Brain Res Bull 2002; 58:207-11. [PMID: 12127019 DOI: 10.1016/s0361-9230(02)00781-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We studied the effects of the androgenic hormone androstenedione, a 17-ketosteroid, on long term potentiation (LTP) in the dentate gyrus (DG) of intact, urethane anesthetized rats. Intravenous injection of 10mg of the hormone dissolved in Nutralipid produced a significant increase of the population spike (PS), but not of the excitatory post-synaptic potentials (EPSPs). The results are discussed in terms of the potential enhancement that androstenedione may have on some aspects of memory processes as reported for other androgenic steroids. Also noted are the plausible beneficial effects of the hormone on depression as well as in recovery following both central and peripheral neural injury.
Collapse
Affiliation(s)
- M Schwartz
- McGill University, Que., Montreal, Canada
| | | | | | | | | |
Collapse
|
40
|
Herzog AG. Altered reproductive endocrine regulation in men with epilepsy: implications for reproductive function and seizures. Ann Neurol 2002; 51:539-42. [PMID: 12112098 DOI: 10.1002/ana.10230] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|