1
|
Nakamura K, Moorhouse AJ, Cheung DL, Eto K, Takeda I, Rozenbroek PW, Nabekura J. Overexpression of neuronal K +-Cl - co-transporter enhances dendritic spine plasticity and motor learning. J Physiol Sci 2019; 69:453-463. [PMID: 30758780 PMCID: PMC10717839 DOI: 10.1007/s12576-018-00654-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 12/17/2018] [Indexed: 11/30/2022]
Abstract
The neuronal K+-Cl- cotransporter KCC2 maintains a low intracellular Cl- concentration and facilitates hyperpolarizing GABAA receptor responses. KCC2 also plays a separate role in stabilizing and enhancing dendritic spines in the developing nervous system. Using a conditional transgenic mouse strategy, we examined whether overexpression of KCC2 enhances dendritic spines in the adult nervous system and characterized the effects on spine dynamics in the motor cortex in vivo during rotarod training. Mice overexpressing KCC2 showed significantly increased spine density in the apical dendrites of layer V pyramidal neurons, measured in vivo using two-photon imaging. During modest accelerated rotarod training, mice overexpressing KCC2 displayed enhanced spine formation rates, greater balancing skill at higher rotarod speeds and a faster rate of learning in this ability. Our results demonstrate that KCC2 enhances spine density and dynamics in the adult nervous system and suggest that KCC2 may play a role in experience-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Kayo Nakamura
- Division of Homeostatic Development, Department of Fundamental Neuroscience, National Institutes for Physiological Sciences, Okazaki, 444-8585, Japan
- Department of Physiological Sciences, Sokendai, Hayama, 240-0193, Japan
| | - Andrew John Moorhouse
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Dennis Lawrence Cheung
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Kei Eto
- Division of Homeostatic Development, Department of Fundamental Neuroscience, National Institutes for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Ikuko Takeda
- Division of Homeostatic Development, Department of Fundamental Neuroscience, National Institutes for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Paul Wiers Rozenbroek
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Junichi Nabekura
- Division of Homeostatic Development, Department of Fundamental Neuroscience, National Institutes for Physiological Sciences, Okazaki, 444-8585, Japan.
- Department of Physiological Sciences, Sokendai, Hayama, 240-0193, Japan.
| |
Collapse
|
2
|
Neurobiological Correlates of Pain Avoidance-Like Behavior in Morphine-Dependent and Non-Dependent Rats. Neuroscience 2017; 366:1-14. [PMID: 29024786 DOI: 10.1016/j.neuroscience.2017.09.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 12/30/2022]
Abstract
Repeated use of opioids can lead to the development of analgesic tolerance and dependence. Additionally, chronic opioid exposure can cause a paradoxical emergence of heightened pain sensitivity to noxious stimuli, termed hyperalgesia, which may drive continued or escalated use of opioids to manage worsening pain symptoms. Opioid-induced hyperalgesia has traditionally been measured in rodents via reflex-based assays, including the von Frey method. To better model the cognitive/motivational dimension of pain in a state of opioid dependence and withdrawal, we employed a recently developed non-reflex-based method for measuring pain avoidance-like behavior in animals (mechanical conflict avoidance test). Adult male Wistar rats were administered an escalating dose regimen of morphine (opioid-dependent group) or repeated saline (control group). Morphine-dependent rats exhibited significantly greater avoidance of noxious stimuli during withdrawal. We next investigated individual relationships between pain avoidance-like behavior and alterations in protein phosphorylation in central motivation-related brain areas. We discovered that pain avoidance-like behavior was significantly correlated with alterations in phosphorylation status of protein kinases (ERK, CaMKII), transcription factors (CREB), presynaptic markers of neurotransmitter release (Synapsin), and the rate-limiting enzyme for dopamine synthesis (TH) across specific brain regions. Our findings suggest that alterations in phosphorylation events in specific brain centers may support cognitive/motivational responses to avoid pain.
Collapse
|
3
|
CaM Kinases: From Memories to Addiction. Trends Pharmacol Sci 2015; 37:153-166. [PMID: 26674562 DOI: 10.1016/j.tips.2015.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/29/2022]
Abstract
Drug addiction is a major psychiatric disorder with a neurobiological basis that is still insufficiently understood. Initially, non-addicted, controlled drug consumption and drug instrumentalization are established. They comprise highly systematic behaviours acquired by learning and the establishment of drug memories. Ca(2+)/calmodulin-dependent protein kinases (CaMKs) are important Ca(2+) sensors translating glutamatergic activation into synaptic plasticity during learning and memory formation. Here we review the role of CaMKs in the establishment of drug-related behaviours in animal models and in humans. Converging evidence now shows that CaMKs are a crucial mechanism of how addictive drugs induce synaptic plasticity and establish various types of drug memories. Thereby, CaMKs are not only molecular relays for glutamatergic activity but they also directly control dopaminergic and serotonergic activity in the mesolimbic reward system. They can now be considered as major molecular pathways translating normal memory formation into establishment of drug memories and possibly transition to drug addiction.
Collapse
|
4
|
Easton AC, Lourdusamy A, Havranek M, Mizuno K, Solati J, Golub Y, Clarke TK, Vallada H, Laranjeira R, Desrivières S, Moll GH, Mössner R, Kornhuber J, Schumann G, Giese KP, Fernandes C, Quednow BB, Müller CP. αCaMKII controls the establishment of cocaine's reinforcing effects in mice and humans. Transl Psychiatry 2014; 4:e457. [PMID: 25290264 PMCID: PMC4350526 DOI: 10.1038/tp.2014.97] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/18/2014] [Accepted: 08/21/2014] [Indexed: 12/23/2022] Open
Abstract
Although addiction develops in a considerable number of regular cocaine users, molecular risk factors for cocaine dependence are still unknown. It was proposed that establishing drug use and memory formation might share molecular and anatomical pathways. Alpha-Ca(2+)/calmodulin-dependent protein kinase-II (αCaMKII) is a key mediator of learning and memory also involved in drug-related plasticity. The autophosphorylation of αCaMKII was shown to accelerate learning. Thus, we investigated the role of αCaMKII autophosphorylation in the time course of establishing cocaine use-related behavior in mice. We found that αCaMKII autophosphorylation-deficient αCaMKII(T286A) mice show delayed establishment of conditioned place preference, but no changes in acute behavioral activation, sensitization or conditioned hyperlocomotion to cocaine (20 mg kg(-1), intraperitoneal). In vivo microdialysis revealed that αCaMKII(T286A) mice have blunted dopamine (DA) and blocked serotonin (5-HT) responses in the nucleus accumbens (NAcc) and prefrontal cortex after acute cocaine administration (20 mg kg(-1), intraperitoneal), whereas noradrenaline responses were preserved. Under cocaine, the attenuated DA and 5-HT activation in αCaMKII(T286A) mice was followed by impaired c-Fos activation in the NAcc. To translate the rodent findings to human conditions, several CAMK2A gene polymorphisms were tested regarding their risk for a fast establishment of cocaine dependence in two independent samples of regular cocaine users from Brazil (n=688) and Switzerland (n=141). A meta-analysis across both samples confirmed that CAMK2A rs3776823 TT-allele carriers display a faster transition to severe cocaine use than C-allele carriers. Together, these data suggest that αCaMKII controls the speed for the establishment of cocaine's reinforcing effects.
Collapse
Affiliation(s)
- A C Easton
- MRC Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, King's College London, London, UK
| | - A Lourdusamy
- MRC Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, King's College London, London, UK
- Faculty of Medicine and Health Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - M Havranek
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - K Mizuno
- Centre for the Cellular Basis of Behavior, Institute of Psychiatry, King's College London, London, UK
| | - J Solati
- Department of Child and Adolescent Mental Health, University Clinic Erlangen, Erlangen, Germany
- Department of Biology, Faculty of Science, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Y Golub
- Department of Child and Adolescent Mental Health, University Clinic Erlangen, Erlangen, Germany
| | - T-K Clarke
- Translational Research Laboratory, Department of Psychiatry, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - H Vallada
- Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - R Laranjeira
- UNIAD, Federal University of São Paulo, São Paulo, Brazil
| | - S Desrivières
- MRC Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, King's College London, London, UK
| | - G H Moll
- Department of Child and Adolescent Mental Health, University Clinic Erlangen, Erlangen, Germany
| | - R Mössner
- Department of Psychiatry, University of Bonn, Bonn, Germany
| | - J Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - G Schumann
- MRC Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, King's College London, London, UK
| | - K P Giese
- Centre for the Cellular Basis of Behavior, Institute of Psychiatry, King's College London, London, UK
| | - C Fernandes
- MRC Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, King's College London, London, UK
| | - B B Quednow
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - C P Müller
- MRC Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, King's College London, London, UK
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
5
|
Nasu M, Yada S, Igarashi A, Sutoo D, Akiyama K, Ito M, Yoshida N, Ueda S. Mammalian-specific sequences in pou3f2 contribute to maternal behavior. Genome Biol Evol 2014; 6:1145-56. [PMID: 24709564 PMCID: PMC4040985 DOI: 10.1093/gbe/evu072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2014] [Indexed: 11/16/2022] Open
Abstract
Various mutations have occurred during evolution among orthologs, genes in different species that diverged from a common ancestral gene by speciation. Here, we report the remarkable deterioration of a characteristic mammalian maternal behavior, pup retrieval, in nonmammalized mice, in which the transcription factor Pou3f2 was replaced with the Xenopus ortholog lacking all of the homopolymeric amino acid repeats of mammalian POU3F2. Most of the pups born to the nonmammalized mice died within days after birth, depending on the dam genotype alone. Quantitative immunohistochemical analysis revealed decreases in the rate-limiting enzymes of dopamine and serotonin synthesis in various brain structures. Similar results were obtained in knock-in mice in which all of the homopolymeric amino acid repeats of mammalian POU3F2 were removed. Pup retrieval behavior in mammals is thus strongly related to monoamine neurotransmitter levels via the acquisition of homopolymeric amino acid repeats during mammalian evolution.
Collapse
Affiliation(s)
- Makoto Nasu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
| | - Saori Yada
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
| | - Atsushi Igarashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
| | - Den'etsu Sutoo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, JapanInstitute of Medical Science, University of Tsukuba, Japan
| | - Kayo Akiyama
- Institute of Medical Science, University of Tsukuba, Japan
| | - Meguru Ito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
| | - Nobuaki Yoshida
- Center for Experimental Medicine and Systems Biology, Institute of Medical Science, The University of Tokyo, Japan
| | - Shintaroh Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
| |
Collapse
|
6
|
Khalil OS, Forrest CM, Pisar M, Smith RA, Darlington LG, Stone TW. Prenatal activation of maternal TLR3 receptors by viral-mimetic poly(I:C) modifies GluN2B expression in embryos and sonic hedgehog in offspring in the absence of kynurenine pathway activation. Immunopharmacol Immunotoxicol 2013; 35:581-93. [PMID: 23981041 DOI: 10.3109/08923973.2013.828745] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activation of the immune system during pregnancy is believed to lead to psychiatric and neurological disorders in the offspring, but the molecular changes responsible are unknown. Polyinosinic:polycytidylic acid (poly(I:C)) is a viral-mimetic double-stranded RNA complex which activates Toll-Like-Receptor-3 and can activate the metabolism of tryptophan through the oxidative kynurenine pathway to compounds that modulate activity of glutamate receptors. The aim was to determine whether prenatal administration of poly(I:C) affects the expression of neurodevelopmental proteins in the offspring and whether such effects were mediated via the kynurenine pathway. Pregnant rats were treated with poly(I:C) during late gestation and the offspring were allowed to develop to postnatal day 21 (P21). Immunoblotting of the brains at P21 showed decreased expression of sonic hedgehog, a key protein in dopaminergic neuronal maturation. Expression of α-synuclein was decreased, while tyrosine hydroxylase was increased. Disrupted in Schizophrenia-1 (DISC-1) and 5-HT2C receptor levels were unaffected, as were the dependence receptors Unc5H1, Unc5H3 and Deleted in Colorectal Cancer (DCC), the inflammation-related transcription factor NFkB and the inducible oxidative enzyme cyclo-oxygenase-2 (COX-2). An examination of embryo brains 5 h after maternal poly(I:C) showed increased expression of GluN2B, with reduced doublecortin and DCC but no change in NFkB. Despite altered protein expression, there were no changes in the kynurenine pathway. The results show that maternal exposure to poly(I:C) alters the expression of proteins in the embryos and offspring which may affect the development of dopaminergic function. The oxidation of tryptophan along the kynurenine pathway is not involved in these effects.
Collapse
Affiliation(s)
- Omari S Khalil
- Institute for Neuroscience and Psychology, University of Glasgow, West Medical Building , Glasgow , United Kingdom and
| | | | | | | | | | | |
Collapse
|
7
|
Yabuki Y, Nakagawasai O, Tadano T, Fukunaga K. [Imaging monitoring method of CaMKII activity by immunohistochemical analysis in schizophrenic model rats]. YAKUGAKU ZASSHI 2013; 133:501-6. [PMID: 23649390 DOI: 10.1248/yakushi.12-00278-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Schizophrenia is characterized by various behavioral abnormalities including cognitive dysfunction. Neonatal ventral hippocampus (NVH)-lesioned rats had been known as neurodevelopmental animal model similar to schizophrenia. Previous observations indicate that postpubertal NVH-lesioned rats exhibit impairments in prepulse inhibition (PPI), spontaneous locomotion, social interaction behavior and working memory. Here, we document the neurochemical basis of those defects in NVH-lesioned rats. Since Ca²⁺/calmodulin-dependent protein kinase II (CaMKII), which is NMDA receptor downstream kinase, is essential for memory and learning acquisition, we developed a protocol to monitor the spatial changes in CaMKII autophosphorylation using immunohistochemical imaging of whole brain slices with anti-autophosphorylated CaMKII antibody in order to address mechanisms underlying impaired cognitive function in NVH-lesioned rats. Immunohistochemical analyses using anti-autophosphorylated CaMKII antibody revealed that CaMKII autophosphorylation was significantly reduced in the medial prefrontal cortex (mPFC) of NVH-lesioned rats compared with control animals. This immunohistochemical technique is useful to investigate temporal and special changes in CaMKII activity in rodent brain and to evaluate drugs to improve the cognitive impairment.
Collapse
Affiliation(s)
- Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University
| | | | | | | |
Collapse
|
8
|
Yabuki Y, Nakagawasai O, Moriguchi S, Shioda N, Onogi H, Tan-No K, Tadano T, Fukunaga K. Decreased CaMKII and PKC activities in specific brain regions are associated with cognitive impairment in neonatal ventral hippocampus-lesioned rats. Neuroscience 2013; 234:103-15. [DOI: 10.1016/j.neuroscience.2012.12.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/22/2012] [Accepted: 12/28/2012] [Indexed: 11/28/2022]
|
9
|
Rice MW, Roberts RC, Melendez-Ferro M, Perez-Costas E. Neurochemical characterization of the tree shrew dorsal striatum. Front Neuroanat 2011; 5:53. [PMID: 21887131 PMCID: PMC3157016 DOI: 10.3389/fnana.2011.00053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Accepted: 08/01/2011] [Indexed: 11/29/2022] Open
Abstract
The striatum is a major component of the basal ganglia and is associated with motor and cognitive functions. Striatal pathologies have been linked to several disorders, including Huntington’s, Tourette’s syndrome, obsessive–compulsive disorders, and schizophrenia. For the study of these striatal pathologies different animal models have been used, including rodents and non-human primates. Rodents lack on morphological complexity (for example, the lack of well defined caudate and putamen nuclei), which makes it difficult to translate data to the human paradigm. Primates, and especially higher primates, are the closest model to humans, but there are ever-increasing restrictions to the use of these animals for research. In our search for a non-primate animal model with a striatum that anatomically (and perhaps functionally) can resemble that of humans, we turned our attention to the tree shrew. Evolutionary genetic studies have provided strong data supporting that the tree shrews (Scadentia) are one of the closest groups to primates, although their brain anatomy has only been studied in detail for specific brain areas. Morphologically, the tree shrew striatum resembles the primate striatum with the presence of an internal capsule separating the caudate and putamen, but little is known about its neurochemical composition. Here we analyzed the expression of calcium-binding proteins, the presence and distribution of the striosome and matrix compartments (by the use of calbindin, tyrosine hydroxylase, and acetylcholinesterase immunohistochemistry), and the GABAergic system by immunohistochemistry against glutamic acid decarboxylase and Golgi impregnation. In summary, our results show that when compared to primates, the tree shrew dorsal striatum presents striking similarities in the distribution of most of the markers studied, while presenting some marked divergences when compared to the rodent striatum.
Collapse
Affiliation(s)
- Matthew W Rice
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA
| | | | | | | |
Collapse
|
10
|
Lou H, Montoya SE, Alerte TNM, Wang J, Wu J, Peng X, Hong CS, Friedrich EE, Mader SA, Pedersen CJ, Marcus BS, McCormack AL, Di Monte DA, Daubner SC, Perez RG. Serine 129 phosphorylation reduces the ability of alpha-synuclein to regulate tyrosine hydroxylase and protein phosphatase 2A in vitro and in vivo. J Biol Chem 2010; 285:17648-61. [PMID: 20356833 PMCID: PMC2878529 DOI: 10.1074/jbc.m110.100867] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/06/2010] [Indexed: 11/22/2022] Open
Abstract
Alpha-synuclein (a-Syn), a protein implicated in Parkinson disease, contributes significantly to dopamine metabolism. a-Syn binding inhibits the activity of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis. Phosphorylation of TH stimulates its activity, an effect that is reversed by protein phosphatase 2A (PP2A). In cells, a-Syn overexpression activates PP2A. Here we demonstrate that a-Syn significantly inhibited TH activity in vitro and in vivo and that phosphorylation of a-Syn serine 129 (Ser-129) modulated this effect. In MN9D cells, a-Syn overexpression reduced TH serine 19 phosphorylation (Ser(P)-19). In dopaminergic tissues from mice overexpressing human a-Syn in catecholamine neurons only, TH-Ser-19 and TH-Ser-40 phosphorylation and activity were also reduced, whereas PP2A was more active. Cerebellum, which lacks excess a-Syn, had PP2A activity identical to controls. Conversely, a-Syn knock-out mice had elevated TH-Ser-19 phosphorylation and activity and less active PP2A in dopaminergic tissues. Using an a-Syn Ser-129 dephosphorylation mimic, with serine mutated to alanine, TH was more inhibited, whereas PP2A was more active in vitro and in vivo. Phosphorylation of a-Syn Ser-129 by Polo-like-kinase 2 in vitro reduced the ability of a-Syn to inhibit TH or activate PP2A, identifying a novel regulatory role for Ser-129 on a-Syn. These findings extend our understanding of normal a-Syn biology and have implications for the dopamine dysfunction of Parkinson disease.
Collapse
Affiliation(s)
- Haiyan Lou
- From the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- the Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Susana E. Montoya
- From the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Tshianda N. M. Alerte
- From the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Jian Wang
- From the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Jianjun Wu
- From the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Xiangmin Peng
- From the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Chang-Sook Hong
- From the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Emily E. Friedrich
- From the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Samantha A. Mader
- From the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Courtney J. Pedersen
- From the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Brian S. Marcus
- From the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | | | | | - S. Colette Daubner
- the Department of Biological Sciences, St. Mary's University, San Antonio, Texas 78229, and
| | - Ruth G. Perez
- From the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- the Departments of Neurology and
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
11
|
Sutoo D, Akiyama K. Music improves dopaminergic neurotransmission: demonstration based on the effect of music on blood pressure regulation. Brain Res 2004; 1016:255-62. [PMID: 15246862 DOI: 10.1016/j.brainres.2004.05.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2004] [Indexed: 11/16/2022]
Abstract
The mechanism by which music modifies brain function is not clear. Clinical findings indicate that music reduces blood pressure in various patients. We investigated the effect of music on blood pressure in spontaneously hypertensive rats (SHR). Previous studies indicated that calcium increases brain dopamine (DA) synthesis through a calmodulin (CaM)-dependent system. Increased DA levels reduce blood pressure in SHR. In this study, we examined the effects of music on this pathway. Systolic blood pressure in SHR was reduced by exposure to Mozart's music (K.205), and the effect vanished when this pathway was inhibited. Exposure to music also significantly increased serum calcium levels and neostriatal DA levels. These results suggest that music leads to increased calcium/CaM-dependent DA synthesis in the brain, thus causing a reduction in blood pressure. Music might regulate and/or affect various brain functions through dopaminergic neurotransmission, and might therefore be effective for rectification of symptoms in various diseases that involve DA dysfunction.
Collapse
Affiliation(s)
- Den'etsu Sutoo
- Institute of Medical Science, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | | |
Collapse
|
12
|
Abstract
The present study systematically and quantitatively analyzed the immunohistochemical distribution of various substances involved in synthesis, binding, and transport of dopamine in the forebrain of epileptic mice (EL mouse strain) using a brain mapping analyzer. A reduction in serum calcium levels decreases calcium/calmodulin-dependent-dopamine synthesis in the brain and subsequently increases susceptibility to epileptic convulsions and induces abnormal behavior in EL mice. The immunohistochemical levels of D(2) receptors in the medial area of the neostriatum were significantly higher in EL mice than in ddY mice (mother strain of EL mice), while there were no differences in the levels of tyrosine hydroxylase, calcium/calmodulin-dependent protein kinase II, calmodulin, D(1) receptors, and dopamine transporters. Together with our previous findings, the results suggest that the decrease in serum calcium levels and subsequent decrease in brain dopamine synthesis comprise the primary physiologic disorder in EL mice, and convulsions or increased D(2) receptors are secondarily-induced phenomena to improve or compensate for the principal disorder.
Collapse
Affiliation(s)
- Den'etsu Sutoo
- Institute of Medical Science, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | | |
Collapse
|
13
|
Abstract
The effect of excercise on brain function was investigated through animal experiments. Exercise leads to increased serum calcium levels, and the calcium is transported to the brain. This in turn enhances brain dopamine synthesis through a calmodulin-dependent system, and increased dopamine levels regulate various brain functions. There are abnormally low levels of dopamine in the neostriatum and nucleus accumbens of epileptic mice (El mice strain) and spontaneously hypertensive rats (SHR). The low dopamine levels in those animals were improved following intracerebroventricular administration of calcium chloride. Dopamine levels and blood pressure in SHR were also normalized by exercise. In epileptic El mice, convulsions normalized dopamine levels and physiologic function. These findings suggest that exercise or convulsions affect brain function through calcium/calmodulin-dependent dopamine synthesis. This leads to the possibility that some symptoms of Parkinson's disease or senile dementia might be improved by exercise.
Collapse
Affiliation(s)
- Den'etsu Sutoo
- Institute of Medical Science, University of Tsukuba, Tsukuba, 305-8575, Japan.
| | | |
Collapse
|