1
|
Sarkar B, Ma X, Agas A, Siddiqui Z, Iglesias-Montoro P, Nguyen PK, Kim KK, Haorah J, Kumar VA. In vivo Neuroprotective Effect of a Self-assembled Peptide Hydrogel. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 408:127295. [PMID: 37842134 PMCID: PMC10571100 DOI: 10.1016/j.cej.2020.127295] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Traumatic brain injury (TBI) is associated with poor intrinsic healing responses and long-term cognitive decline. A major pathological outcome of TBI is acute glutamate-mediated excitotoxicity (GME) experienced by neurons. Short peptides based on the neuroprotective extracellular glycoprotein ependymin have shown the ability to slow down the effect of GME - however, such short peptides tend to diffuse away from target sites after in vivo delivery. We have designed a self-assembling peptide containing an ependymin mimic that can form nanofibrous matrices. The peptide was evaluated in situ to assess neuroprotective utility after an acute fluidpercussion injury. This biomimetic matrix can conform to the intracranial damaged site after delivery, due its shear-responsive rheological properties. We demonstrated the potential efficacy of the peptide for supporting neuronal survival in vitro and in vivo. Our study demonstrates the potential of these implantable acellular hydrogels for managing the acute (up to 7 days) pathophysiological sequelae after traumatic brain injury. Further work is needed to evaluate less invasive administrative routes and long-term functional and behavioral improvements after injury.
Collapse
Affiliation(s)
- Biplab Sarkar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Xiaotang Ma
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Agnieszka Agas
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | | | - Peter K. Nguyen
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Ka Kyung Kim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - James Haorah
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Vivek A. Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Chemical & Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| |
Collapse
|
2
|
Zhang Y, Sun J, Mu H, Li J, Zhang Y, Xu F, Xiang Z, Qian PY, Qiu JW, Yu Z. Proteomic basis of stress responses in the gills of the pacific oyster Crassostrea gigas. J Proteome Res 2014; 14:304-17. [PMID: 25389644 DOI: 10.1021/pr500940s] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Pacific oyster Crassostrea gigas is one of the dominant sessile inhabitants of the estuarine intertidal zone, which is a physically harsh environment due to the presence of a number of stressors. Oysters have adapted to highly dynamic and stressful environments, but the molecular mechanisms underlying such stress adaptation are largely unknown. In the present study, we examined the proteomic responses in the gills of C. gigas exposed to three stressors (high temperature, low salinity, and aerial exposure) they often encounter in the field. We quantitatively compared the gill proteome profiles using iTRAQ-coupled 2-D LC-MS/MS. There were 3165 identified proteins among which 2379 proteins could be quantified. Heat shock, hyposalinity, and aerial exposure resulted in 50, 15, and 33 differentially expressed gill proteins, respectively. Venn diagram analysis revealed substantial different responses to the three stressors. Only xanthine dehydrogenase/oxidase showed a similar expression pattern across the three stress treatments, suggesting that reduction of ROS accumulation may be a conserved response to these stressors. Heat shock caused significant overexpression of molecular chaperones and production of S-adenosyl-l-methionine, indicating their crucial protective roles against protein denature. In addition, heat shock also activated immune responses, Ca(2+) binding protein expression. By contrast, hyposalinity and aerial exposure resulted in the up-regulation of 3-demethylubiquinone-9 3-methyltransferase, indicating that increase in ubiquinone synthesis may contribute to withstanding both the osmotic and desiccation stress. Strikingly, the majority of desiccation-responsive proteins, including those involved in metabolism, ion transportation, immune responses, DNA duplication, and protein synthesis, were down-regulated, indicating conservation of energy as an important strategy to cope with desiccation stress. There was a high consistency between the expression levels determined by iTRAQ and Western blotting, highlighting the high reproducibility of our proteomic approach and its great value in revealing molecular mechanisms of stress responses.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Kates SA, Casale RA, Baguisi A, Beeuwkes R. Lipoic acid analogs with enhanced pharmacological activity. Bioorg Med Chem 2013; 22:505-12. [PMID: 24316353 DOI: 10.1016/j.bmc.2013.10.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/23/2013] [Accepted: 10/31/2013] [Indexed: 02/07/2023]
Abstract
Lipoic acid (1,2-dithiolane-3-pentanoic acid) is a pharmacophore with unique antioxidant and cytoprotective properties. We synthesized a library based upon the condensation of natural and unnatural amino acids with the carboxylic acid moiety of lipoic acid. SAR studies were conducted using a cardiac ischemia-reperfusion animal model. Cytoprotective efficacy was associated with the R-enantiomer of the dithiolane. Potency of library compounds was dictated by the acidic strength of the adduct. α-N-[(R)-1,2-dithiolane-3-pentanoyl]-L-glutamyl-L-alanine, designated CMX-2043, was chosen for further pharmacologic evaluation.
Collapse
Affiliation(s)
- Steven A Kates
- Ischemix, LLC, 63 Great Road, Maynard, MA 01759, United States.
| | - Ralph A Casale
- Ischemix, LLC, 63 Great Road, Maynard, MA 01759, United States
| | | | | |
Collapse
|
4
|
Characterization of Unique Signature Sequences in the Divergent Maternal Protein Bcl2l10. Mol Biol Evol 2011; 28:3271-83. [DOI: 10.1093/molbev/msr152] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
5
|
Smith RW, Cash P, Ellefsen S, Nilsson GE. Proteomic changes in the crucian carp brain during exposure to anoxia. Proteomics 2009; 9:2217-29. [PMID: 19322784 DOI: 10.1002/pmic.200800662] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During exposure to anoxia, the crucian carp brain is able to maintain normal overall protein synthesis rates. However, it is not known if there are alterations in the synthesis or expression of specific proteins. This investigation addresses this issue by comparing the normoxic and anoxic brain proteome. Nine proteins were found to be reduced by anoxia. Reductions in the glycolytic pathway proteins creatine kinase, fructose biphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, triosephosphate isomerase and lactate dehydrogenase reflect the reduced production and requirement for adenosine tri-phosphate during anoxia. In terms of neural protection, voltage-dependent anion channel, a protein associated with neuronal apoptosis, was reduced, along with gefiltin, a protein associated with the subsequent need for neuronal repair. Additionally the expression of proteins associated with neural degeneration and impaired cognitive function also declined; dihydropyrimidinase-like protein-3 and vesicle amine transport protein-1. One protein was found to be increased by anoxia; pre-proependymin, the precursor to ependymin. Ependymin fulfils multiple roles in neural plasticity, memory formation and learning, neuron growth and regeneration, and is able to reverse the possibility of apoptosis, thus further protecting the anoxic brain.
Collapse
Affiliation(s)
- Richard W Smith
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | |
Collapse
|
6
|
Cai J, Du J, Ge ZH, Zhou F, Zhou LY, Chen LY. Effect of Kangxin Capsule on the expression of nerve growth factors in parietal lobe of cortex and hippocampus CA1 area of vascular dementia model rats. Chin J Integr Med 2007; 12:292-6. [PMID: 17361527 DOI: 10.1007/s11655-001-0292-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To observe the effect of Kangxin Capsule (KXC) on the expression of nerve growth factor (NGF) as well as the morphology and amount of nerve synapse in the cortical parietal lobe and hippocampus CA, area of vascular dementia ( VD) model rats. METHODS The model rats of VD made by photochemical reaction technique were randomly divided into five groups: the model group (MG), the high-dose, middle-dose and low-dose KXC groups (HDG, MDG and LDG), and the Western medicine hydergin control group (WMG). They were treated respectively with distilled water, high, middle and low dosage of KXC suspended liquid, and hydergin for a month. Besides, a blank group consisting of normal (non-model) rats was set up for control (CG). The ultrastructure of nerve synapse in the cortical parietal lobe and hippocampus CA1 area of the rats were observed and its density estimated. The condition of NGF positive neurons in the above-mentioned two regions were also observed by immunohistochemical stain. RESULTS All the KXC or hydergin treated groups demonstrated a normal amount of nerve synapse with integral structure in the cortical parietal lobe and hippocampus CA, area, which approached that in the CG and was superior to that in the MG. Also, the NGF positive neuron in all the treated groups was much more than that in MG with significant difference ( P<0.01), approaching to that in the CG. CONCLUSION KXC could elevate the expression of NGF in the cortical parietal lobe and hippocampus CA, area, preserve the number and morphology of synapse, thus to protect the function of nerve system from ischemic injury.
Collapse
Affiliation(s)
- Jing Cai
- Institute of Geriatrics, Fujian College of Traditional Chinese Medicine, Fuzhou (350003).
| | | | | | | | | | | |
Collapse
|
7
|
Schauer E, Wronski R, Patockova J, Moessler H, Doppler E, Hutter-Paier B, Windisch M. Neuroprotection of Cerebrolysin in tissue culture models of brain ischemia: post lesion application indicates a wide therapeutic window. J Neural Transm (Vienna) 2005; 113:855-68. [PMID: 16362636 DOI: 10.1007/s00702-005-0384-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 09/10/2005] [Indexed: 01/24/2023]
Abstract
All attempts to reduce neuronal damage after acute brain ischemia by the use of neuroprotective compounds have failed to prove efficacy in clinical trials so far. One of the main reasons might be the relatively narrow time window for intervention. In this study 2 different tissue culture models of ischemia, excitotoxic lesion by the use of glutamate and oxygen-glucose deprivation (OGD), were used to investigate the effects of delayed application of Cerebrolysin (Cere) on neuronal survival. This drug consists of low molecular weight peptides with neuroprotective and neurotrophic properties similar to naturally occurring growth factors. After both types of lesion, acute as well as delayed treatment with Cere resulted in a dose dependent and significant rescue of neurons. In the model of excitotoxic cell death significant drug effects were found even when the treatment started with a delay of 96 hours after addition of glutamate. In the OGD model pronounced effects were found after 48 hours delay of treatment, and even after 72 hours a small but significant rescue of neurons was detected. The neuroprotective effects of a single addition of Cerebrolysin to the culture medium resulted in significant protection until end of the experiments which was up to 2 weeks after the initial lesion. A shift of the efficacious dosages from low to high concentrations indicates that most likely active compounds are used up, indicating that multiple dosing might even increase the effect size. In conclusion the results indicate that Cere displays a relatively wide therapeutic time window which might be explained by a combination of acute neuroprotective properties and neurotrophic efficacy.
Collapse
Affiliation(s)
- E Schauer
- JSW-Research, Institute of Experimental Pharmacology, Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
8
|
Shashoua VE, Adams DS, Volodina NV, Li H. New synthetic peptides can enhance gene expression of key antioxidant defense enzymes in vitro and in vivo. Brain Res 2004; 1024:34-43. [PMID: 15451365 DOI: 10.1016/j.brainres.2004.06.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2004] [Indexed: 12/01/2022]
Abstract
Neurodegenerative, cardiovascular, and age-related disorders have been attributed to the cellular damage caused by elevated production of reactive oxygen species (ROS) and free radicals (FRs). These cannot be adequately defended by existing levels of key antioxidant enzymes. Two peptides, 8 and 14 amino acids long, were synthesized and found to up-regulate, at nanomolar concentrations, superoxide dismutase (SOD) and catalase (CAT) m-RNAs (9- to 12-fold) within 3 h, and then elevate by 5- to 10-fold the protein levels of SOD, CAT, and glutathione peroxidase (GPX) in rat primary cortical cultures. Kinetic studies showed that the peptide up-regulation of all three enzymes appears to be a coordinated process which occurs in vitro and in vivo. We also found that ischemia alone, without added drugs, can lead to enhanced gene expression of SOD, CAT, and GPX. This suggests that the CNS can initiate its own "defense" against ROS and FR. Thus, our peptides may activate such systems, as well as AP-1 transcription factor, reported in earlier findings to lead to "repair" (growth) of injured cells.
Collapse
Affiliation(s)
- Victor E Shashoua
- CereMedix Research Laboratory, 63 Great Road, Maynard, MA 01754, USA.
| | | | | | | |
Collapse
|
9
|
Dhandapani KM, Hadman M, De Sevilla L, Wade MF, Mahesh VB, Brann DW. Astrocyte protection of neurons: role of transforming growth factor-beta signaling via a c-Jun-AP-1 protective pathway. J Biol Chem 2003; 278:43329-39. [PMID: 12888549 DOI: 10.1074/jbc.m305835200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Astrocytes have become a focal point for research in neurobiology, especially regarding their purported ability to regulate neuronal communication and survival. The present study addressed a poorly understood but important focus in this area, the mechanism(s) underlying astrocyte-induced survival of neurons. The results of the study show that soluble factors in astrocyte-conditioned media (ACM) protect murine GT1-7 neurons from serum deprivation-induced cell death and that this neuroprotection is correlated with enhanced activation/phosphorylation of the AP-1 transcription factor, c-JunSer-63. A parallel and correlated activation of the upstream kinases, c-Jun N-terminal kinase (JNK) and mitogen-activated protein kinase kinase-4 (MKK4) was also demonstrated. Furthermore, co-administration of JNK inhibitors, but not a MEK inhibitor, significantly attenuated ACM-induced phosphorylation of c-JunSer-63 and blocked its neuroprotective action. Gel shift analysis demonstrated that ACM enhanced AP-1 binding, an effect that appears functionally important, since an AP-1 binding inhibitor significantly attenuated the neuroprotective action of ACM. Further studies implicated transforming growth factor (TGF)-beta1 and TGF-beta2 as critical active soluble factors released by astrocytes, since both were demonstrated in ACM, and immunoneutralization of the conditioned media with a panspecific TGF-beta antibody significantly attenuated the enhanced AP-1 binding and neuroprotective action of the ACM. Furthermore, exogenous application of TGF-beta1 and TGF-beta2 was found to enhance c-JunSer-63 phosphorylation and to be neuroprotective, and co-administration of JNK inhibitors or an AP-1 binding inhibitor blocked TGF-beta-induced neuroprotection. Taken together, these studies suggest that astrocytes can protect neurons from serum deprivation-induced cell death, at least in part, by release of TGF-beta and activation of a c-Jun/AP-1 protective pathway.
Collapse
Affiliation(s)
- Krishnan M Dhandapani
- Institute of Molecular Medicine and Genetics, Program in Neurobiology, and Department of Neurology, School of Medicine, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | | | |
Collapse
|