1
|
Alves JL, Reis PM, Quinta-Ferreira RM, Quinta-Ferreira ME, Matias CM. Changes in reactive oxygen species and autofluorescence under hypoxia at the hippocampal CA3 area: Role of calcium and zinc influxes. Neurochem Int 2024; 180:105882. [PMID: 39413928 DOI: 10.1016/j.neuint.2024.105882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/12/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Reactive oxygen species (ROS) have an important role in cellular biology, being involved, in a way that depends on their levels, in cell signaling processes or in oxidative stress, probably associated with neurodegenerative and other diseases. Most of the studies about ROS formation were performed in ischemic conditions, and thus, there is limited knowledge about ROS formation in less severe hypoxic conditions. This study investigates neuronal ROS generation and autofluorescence changes in hypoxic conditions, focusing on the involvement of calcium and zinc. Using hippocampal slices from Wistar rats, ROS production was monitored by the permeant fluorescent indicator H2DCFDA under different oxygenation levels. Moderate hypoxia (40% O2) led to a small ROS increase, while severe hypoxia (0% O2) showed a more pronounced rise. KCl-induced depolarization significantly enhanced ROS formation, particularly under severe hypoxia. Inhibition of NMDA receptors reduced ROS generation without affecting autofluorescence, while chelation of zinc ions decreased ROS production and increased flavin adenine dinucleotide (FAD) autofluorescence. These findings suggest that, in hypoxic conditions, ROS formation is mediated by calcium entry through NMDA receptors and also by zinc influxes. Thus, these ions play a crucial role in oxidative stress, which may be related with neurodegenerative diseases associated with ROS dysregulation.
Collapse
Affiliation(s)
- João L Alves
- Department of Life Sciences, University of Coimbra, Portugal; CNC-UC - Center for Neurosciences and Cell Biology, University of Coimbra, Portugal
| | - Patrícia M Reis
- CERES - Chemical Engineering and Renewable Resources for Sustainability, Department of Chemical Engineering, University of Coimbra, Portugal
| | - Rosa M Quinta-Ferreira
- CERES - Chemical Engineering and Renewable Resources for Sustainability, Department of Chemical Engineering, University of Coimbra, Portugal
| | - M Emília Quinta-Ferreira
- CNC-UC - Center for Neurosciences and Cell Biology, University of Coimbra, Portugal; Department of Physics, University of Coimbra, Portugal
| | - Carlos M Matias
- CNC-UC - Center for Neurosciences and Cell Biology, University of Coimbra, Portugal; Department of Physics, UTAD, Vila Real, Portugal.
| |
Collapse
|
2
|
Saavedra A, Ballesteros JJ, Tyebji S, Martínez-Torres S, Blázquez G, López-Hidalgo R, Azkona G, Alberch J, Martín ED, Pérez-Navarro E. Proteolytic Degradation of Hippocampal STEP 61 in LTP and Learning. Mol Neurobiol 2018; 56:1475-1487. [PMID: 29948948 DOI: 10.1007/s12035-018-1170-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/31/2018] [Indexed: 10/14/2022]
Abstract
Striatal-enriched protein tyrosine phosphatase (STEP) modulates key signaling molecules involved in synaptic plasticity and neuronal function. It is postulated that STEP opposes the development of long-term potentiation (LTP) and that it exerts a restraint on long-term memory (LTM). Here, we examined whether STEP61 levels are regulated during hippocampal LTP and after training in hippocampal-dependent tasks. We found that after inducing LTP by high frequency stimulation or theta-burst stimulation STEP61 levels were significantly reduced, with a concomitant increase of STEP33 levels, a product of calpain cleavage. Importantly, inhibition of STEP with TC-2153 improved LTP in hippocampal slices. Moreover, we observed that after training in the passive avoidance and the T-maze spontaneous alternation task, hippocampal STEP61 levels were significantly reduced, but STEP33 levels were unchanged. Yet, hippocampal BDNF content and TrkB levels were increased in trained mice, and it is known that BDNF promotes STEP degradation through the proteasome. Accordingly, hippocampal pTrkBTyr816, pPLCγTyr783, and protein ubiquitination levels were increased in T-SAT trained mice. Remarkably, injection of the TrkB antagonist ANA-12 (2 mg/Kg, but not 0.5 mg/Kg) elicited LTM deficits and promoted STEP61 accumulation in the hippocampus. Also, STEP knockout mice outperformed wild-type animals in an age- and test-dependent manner. Summarizing, STEP61 undergoes proteolytic degradation in conditions leading to synaptic strengthening and memory formation, thus highlighting its role as a molecular constrain, which is removed to enable the activation of pathways important for plasticity processes.
Collapse
Affiliation(s)
- Ana Saavedra
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143 08036, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jesús J Ballesteros
- Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain.,Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shiraz Tyebji
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143 08036, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
| | - Sara Martínez-Torres
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143 08036, Barcelona, Catalonia, Spain.,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Gloria Blázquez
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143 08036, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Rosa López-Hidalgo
- Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain.,Grupo de Patología Celular y Molecular del Alcohol, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Garikoitz Azkona
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143 08036, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jordi Alberch
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143 08036, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Eduardo D Martín
- Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain.,Instituto Cajal, CSIC, Madrid, Spain
| | - Esther Pérez-Navarro
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143 08036, Barcelona, Catalonia, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
3
|
Fester L, Zhou L, Ossig C, Labitzke J, Bläute C, Bader M, Vollmer G, Jarry H, Rune GM. Synaptopodin is regulated by aromatase activity. J Neurochem 2016; 140:126-139. [PMID: 27861893 DOI: 10.1111/jnc.13889] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 10/17/2016] [Accepted: 10/28/2016] [Indexed: 01/25/2023]
Abstract
Locally synthesized estradiol plays an important role in synaptic plasticity in the hippocampus. We have previously shown that in hippocampal neurons, activity of the enzyme aromatase, which converts testosterone into estradiol, is reduced via Ca2+ -dependent phosphorylation. Synaptopodin is a highly estrogen responsive protein, and it has been shown that it is an important regulator of synaptic plasticity, mediated by its close association with internal calcium stores. In this study, we show that the expression of synaptopodin is stronger in the hippocampus of female animals than in that of male animals. Phosphorylation of aromatase, using letrozole, however, down-regulates synaptopodin immunohistochemistry in the hippocampus of both male and females. Similarly, in aromatase knock-out mice synaptopodin expression in the hippocampus is reduced sex independently. Using primary-dissociated hippocampal neurons, we found that evoked release of Ca2+ from internal stores down-regulates aromatase activity, which is paralleled by reduced expression of synaptopodin. Opposite effects were achieved after inhibition of the release. Calcium-dependent regulation of synaptopodin expression was abolished when the control of aromatase activity by the Ca2+ transients was disrupted. Our data suggest that the regulation of aromatase activity by Ca2+ transients in neurons contributes to synaptic plasticity in the hippocampus of male and female animals as an on-site regulatory mechanism.
Collapse
Affiliation(s)
- Lars Fester
- Institute of Neuroanatomy, University Medical Center, Hamburg, Germany
| | - Lepu Zhou
- Institute of Neuroanatomy, University Medical Center, Hamburg, Germany
| | - Christiana Ossig
- Institute of Neuroanatomy, University Medical Center, Hamburg, Germany
| | - Jan Labitzke
- Institute of Neuroanatomy, University Medical Center, Hamburg, Germany
| | - Corinna Bläute
- Institute of Neuroanatomy, University Medical Center, Hamburg, Germany
| | - Manuela Bader
- Department of Biology, Technische Universität Dresden, Dresden, Germany
| | - Günter Vollmer
- Department of Biology, Technische Universität Dresden, Dresden, Germany
| | - Hubertus Jarry
- Department of Experimental Endocrinology, University of Goettingen, Goettingen, Germany
| | - Gabriele M Rune
- Institute of Neuroanatomy, University Medical Center, Hamburg, Germany
| |
Collapse
|
4
|
Zhang X, Ge XY, Wang JG, Wang YL, Wang Y, Yu Y, Li PP, Lu CB. Induction of long-term oscillations in the γ frequency band by nAChR activation in rat hippocampal CA3 area. Neuroscience 2015; 301:49-60. [PMID: 26049144 DOI: 10.1016/j.neuroscience.2015.05.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 01/08/2023]
Abstract
The hippocampal neuronal network oscillation at γ frequency band (γ oscillation) is generated by the precise interaction between interneurons and principle cells. γ oscillation is associated with attention, learning and memory and is impaired in the diseased conditions such as Alzheimer's disease (AD) and schizophrenia. Nicotinic acetylcholine receptor (nAChR) plays an important role in the regulation of hippocampal neurotransmission and network activity. It is not known whether nicotine modulates plasticity of network activity at γ oscillations in the hippocampus. In this study we investigated the effects of nicotine on the long-term changes of KA-induced γ oscillations. We found that hippocampal γ oscillations can be enhanced by a low concentration of nicotine (1μM), such an enhancement lasts for hours after washing out of nicotine, suggesting a form of synaptic plasticity, named as long-term oscillation at γ frequency band (LTOγ). Nicotine-induced LTOγ was mimicked by the selective α4β2 but not by α7 nAChR agonist and was involved in N-methyl-d-aspartate (NMDA) receptor activation as well as depended on excitatory and inhibitory neurotransmission. Our results indicate that nAChR activation induced plasticity in γ oscillation, which may be beneficial for the improvement of cognitive deficiency in AD and schizophrenia.
Collapse
Affiliation(s)
- X Zhang
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - X Y Ge
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - J G Wang
- Department of Pathophysiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Y L Wang
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Y Wang
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Y Yu
- Department of Biomedical Engineering, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - P P Li
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - C B Lu
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China.
| |
Collapse
|
8
|
Schubert M, Siegmund H, Pape HC, Albrecht D. Kindling-induced changes in plasticity of the rat amygdala and hippocampus. Learn Mem 2006; 12:520-6. [PMID: 16204204 PMCID: PMC1240064 DOI: 10.1101/lm.4205] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Temporal lobe epilepsy (TLE) is often accompanied by interictal behavioral abnormalities, such as fear and memory impairment. To identify possible underlying substrates, we analyzed long-term synaptic plasticity in two relevant brain regions, the lateral amygdala (LA) and the CA1 region of the hippocampus, in the kindling model of epilepsy. Wistar rats were kindled through daily administration of brief electrical stimulations to the left basolateral nucleus of the amygdala. Field potential recordings were performed in slices obtained from kindled rats 48 h after the last induced seizure, and in slices from sham-implanted and nonimplanted controls. Kindling resulted in a significant impairment of long-term potentiation (LTP) in both the LA and the CA1, the magnitude of which was dependent on the number of prior stage V seizures. Saturation of CA1-LTP, assessed through repeated spaced delivery of high-frequency stimulation, occurred at lower levels in kindled compared to sham-implanted animals, consistent with the hypothesis of reduced capacity of further synaptic strengthening. Furthermore, theta pulse stimulation elicited long-term depression in the amygdala in nonimplanted and sham-implanted controls, whereas the same stimulation protocol stimulation caused LTP in kindled rats. In conclusion, kindling differentially affects the magnitude, saturation, and polarity of LTP in the CA1 and LA, respectively, most likely indicating an activity-dependent mechanism in the context of synaptic metaplasticity.
Collapse
Affiliation(s)
- Manja Schubert
- Institute of Neurophysiology; Charité-University Medicine Berlin, 10117 Berlin, Germany
| | | | | | | |
Collapse
|