1
|
Zhou W, Li H, Song J, Suo F, Gu M, Qi S. Healthy Plasma Exosomes Exert Potential Neuroprotective Effects against Methylmalonic Acid-Induced Hippocampal Neuron Injury. ACS Chem Neurosci 2024; 15:3022-3033. [PMID: 39026168 DOI: 10.1021/acschemneuro.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Exosomes have shown good potential for alleviating neurological deficits and delaying memory deterioration, but the neuroprotective effects of exosomes remain unknown. Methylmalonic acidemia is a metabolic disorder characterized by the accumulation of methylmalonic acid (MMA) in various tissues that inhibits neuronal survival and function, leading to accelerated neurological deterioration. Effective therapies to mitigate these symptoms are lacking. The purpose of this study was to explore the neuroprotective effects of plasma exosomes on cells and a mouse model of MMA-induced injury. We evaluated the ability of plasma exosomes to reduce the neuronal apoptosis, cross the blood-brain barrier, and affect various parameters related to neuronal function. MMA promoted cell apoptosis, disrupted the metabolic balance, and altered the expression of B-cell lymphoma-2 (Bcl-2), Bcl2-associated X (Bax), and synaptophysin-1 (Syp-1), and these changes may be involved in MMA-induced neuronal apoptosis. Additionally, plasma exosomes normalized learning and memory and protected against MMA-induced neuronal apoptosis. Our findings indicate that neurological deficits are linked to the pathogenesis of methylmalonic acidemia, and healthy plasma exosomes may exert neuroprotective and therapeutic effects by altering the expression of exosomal microRNAs, facilitating neuronal functional recovery in the context of this inherited metabolic disease. Intravenous plasma-derived exosome treatment may be a novel clinical therapeutic strategy for methylmalonic acidemia.
Collapse
Affiliation(s)
- Wei Zhou
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou 221004, P.R China
- Newborn Screening Center, The Affiliated Xuzhou Maternity and Child Health Care Hospital of Xuzhou Medical University, Xuzhou 221009, P.R China
| | - Huizhong Li
- Newborn Screening Center, The Affiliated Xuzhou Maternity and Child Health Care Hospital of Xuzhou Medical University, Xuzhou 221009, P.R China
| | - Jinxiu Song
- Pharmacology College, Xuzhou Medical University, Xuzhou 221004, P.R China
| | - Feng Suo
- Newborn Screening Center, The Affiliated Xuzhou Maternity and Child Health Care Hospital of Xuzhou Medical University, Xuzhou 221009, P.R China
| | - Maosheng Gu
- Newborn Screening Center, The Affiliated Xuzhou Maternity and Child Health Care Hospital of Xuzhou Medical University, Xuzhou 221009, P.R China
| | - Suhua Qi
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou 221004, P.R China
- Pharmacology College, Xuzhou Medical University, Xuzhou 221004, P.R China
- Medical and Technology School, Xuzhou Medical University, Xuzhou 221004, P.R China
| |
Collapse
|
2
|
Cao B, Xiao Y, Liu D. Associations of methylmalonic acid and depressive symptoms with mortality: a population-based study. Transl Psychiatry 2024; 14:297. [PMID: 39030164 PMCID: PMC11271623 DOI: 10.1038/s41398-024-03015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024] Open
Abstract
Methylmalonic acid (MMA), a biomarker of mitochondrial dysfunction, has been reported to be associated with depression in specific populations (i.e., older adults and postpartum women). Our study aimed to investigate to what extent MMA was associated with depressive symptoms and mortality in the general population, and assess whether depressive symptoms mediate the relationship between MMA and mortality. We analyzed cross-sectional data from 8343 participants from the US National Health and Nutrition Examination Survey. MMA was measured by liquid chromatography-tandem mass spectrometry, while depressive symptoms were measured by the Patient Health Questionnaire-9. Mortality data were obtained through linkage with National Death Index records. Linear regression models were performed to assess the association between MMA and depressive symptoms. The Cox proportional hazard regression model was utilized to assess the association of MMA and depressive symptoms with mortality. Mediation analysis was conducted within the counterfactual framework. In this general population, each SD (around 0.49 μmol/L) increase in MMA was associated with a 0.03 SD (approximately 0.15 score) increase in depressive symptoms (β = 0.033, 95% CI: 0.010, 0.055, p = 0.005). Notably, this association was more pronounced in men and participants over 60 years old. Higher levels of MMA and having more depressive symptoms were associated with a higher risk of mortality. However, depressive symptoms do not mediate the relationship between MMA and mortality. Elevated MMA levels were associated with depressive symptoms and an increased risk of mortality. These findings suggest that mitochondrial dysfunction may contribute to the multifactorial etiology of depression.
Collapse
Affiliation(s)
- Bing Cao
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, 400715, P. R. China
- National Demonstration Center for Experimental Psychology Education, Southwest University, Chongqing, 400715, P. R. China
| | - Yefei Xiao
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, 400715, P. R. China
| | - Dan Liu
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
3
|
Zhan F, Lin G, Su L, Xue L, Duan K, Chen L, Ni J. The association between methylmalonic acid, a biomarker of mitochondrial dysfunction, and cause-specific mortality in Alzheimer's disease and Parkinson's disease. Heliyon 2024; 10:e29357. [PMID: 38681550 PMCID: PMC11053175 DOI: 10.1016/j.heliyon.2024.e29357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/01/2024] Open
Abstract
Background Alzheimer's disease (AD) and Parkinson's disease (PD) are the leading causes of death among the elderly. Recent research has demonstrated that mitochondrial dysfunction, which is hallmark of neurodegenerative diseases, is a contributor to the development of these diseases. Methods and materials Methylmalonic acid (MMA), AD, PD, inflammatory markers and covariates were extracted from the National Health and Nutrition Examination Survey (NHANES). The classification of the inflammatory markers was done through quartile conversion. A restricted cubic spike function was performed to study their dose-response relationship. MMA subgroups from published studies were used to explore the correlation between different subgroups and cause-specific mortality. Multivariable weighted Cox regression was carried out to investigate MMA and cause-specific mortality in patients with AD and PD. Weighted survival analysis was used to study the survival differences among MMA subgroups. Results A non-linear correlation was observed between MMA and AD-specific death and PD-specific mortality. The presence of MMA Q4 was linked to increased death rates among AD patients (HR = 6.39, 95%CI: 1.19-35.24, P = 0.03) after controlling for potential confounders in a multivariable weighted Cox regression model. In PD patients, the MMA Q4 (Q4: HR: 5.51, 95 % CI: 1.26-24, P = 0.02) was also related to increased mortality. The results of survival analysis indicated that the poorer prognoses were observed in AD and PD patients with MMA Q4. Conclusion The higher level of mitochondria-derived circulating MMA was associated with a higher mortality rate in AD and PD patients. MMA has the potential to be a valuable indicator for evaluating AD and PD patients' prognosis in the clinic.
Collapse
Affiliation(s)
- Fangfang Zhan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350000, China
- Department of Rehabilitation Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| | - Gaoteng Lin
- Department of Urology, The 900th Hospital of Joint Logistic Support Force, Fuzhou, China
| | - Lifang Su
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, 351106, China
| | - Lihong Xue
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, 351106, China
| | - Kefei Duan
- Department of Geriatric Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Longfei Chen
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350000, China
| | - Jun Ni
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350000, China
- Department of Rehabilitation Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| |
Collapse
|
4
|
Costa RT, Santos MB, Alberto-Silva C, Carrettiero DC, Ribeiro CAJ. Methylmalonic Acid Impairs Cell Respiration and Glutamate Uptake in C6 Rat Glioma Cells: Implications for Methylmalonic Acidemia. Cell Mol Neurobiol 2023; 43:1163-1180. [PMID: 35674974 DOI: 10.1007/s10571-022-01236-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/20/2022] [Indexed: 11/28/2022]
Abstract
Methylmalonic acidemia is an organic acidemia caused by deficient activity of L-methylmalonyl-CoA mutase or its cofactor cyanocobalamin and it is biochemically characterized by an accumulation of methylmalonic acid (MMA) in tissue and body fluids of patients. The main clinical manifestations of this disease are neurological and observable symptoms during metabolic decompensation are encephalopathy, cerebral atrophy, coma, and seizures, which commonly appear in newborns. This study aimed to investigate the toxic effects of MMA in a glial cell line presenting astrocytic features. Astroglial C6 cells were exposed to MMA (0.1-10 mM) for 24 or 48 h and cell metabolic viability, glucose consumption, and oxygen consumption rate, as well as glutamate uptake and ATP content were analyzed. The possible preventive effects of bezafibrate were also evaluated. MMA significantly reduced cell metabolic viability after 48-h period and increased glucose consumption during the same period of incubation. Regarding the energy homeostasis, MMA significantly reduced respiratory parameters of cells after 48-h exposure, indicating that cell metabolism is compromised at resting and reserve capacity state, which might influence the cell capacity to meet energetic demands. Glutamate uptake and ATP content were also compromised after exposure to MMA, which can be influenced energy metabolism impairment, affecting the functionality of the astroglial cells. Our findings suggest that these effects could be involved in the pathophysiology of neurological dysfunction of this disease. Methylmalonic acid compromises mitochondrial functioning leading to reduced ATP production and reduces glutamate uptake by C6 astroglial cells.
Collapse
Affiliation(s)
- Renata T Costa
- Centro de Ciências Naturais E Humanas (CCNH), UFABC - Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo, SP, CEP 09606-045, Brazil
| | - Marcella B Santos
- Centro de Ciências Naturais E Humanas (CCNH), UFABC - Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo, SP, CEP 09606-045, Brazil
| | - Carlos Alberto-Silva
- Centro de Ciências Naturais E Humanas (CCNH), UFABC - Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo, SP, CEP 09606-045, Brazil
| | - Daniel C Carrettiero
- Centro de Ciências Naturais E Humanas (CCNH), UFABC - Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo, SP, CEP 09606-045, Brazil
| | - César A J Ribeiro
- Centro de Ciências Naturais E Humanas (CCNH), UFABC - Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo, SP, CEP 09606-045, Brazil.
| |
Collapse
|
5
|
The Regulation and Characterization of Mitochondrial-Derived Methylmalonic Acid in Mitochondrial Dysfunction and Oxidative Stress: From Basic Research to Clinical Practice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7043883. [PMID: 35656023 PMCID: PMC9155905 DOI: 10.1155/2022/7043883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/16/2022] [Accepted: 04/23/2022] [Indexed: 01/11/2023]
Abstract
Methylmalonic acid (MMA) can act as a diagnosis of hereditary methylmalonic acidemia and assess the status of vitamin B12. Moreover, as a new potential biomarker, it has been widely reported to be associated with the progression and prognosis of chronic diseases such as cardiovascular events, renal insufficiency, cognitive impairment, and cancer. MMA accumulation may cause oxidative stress and impair mitochondrial function, disrupt cellular energy metabolism, and trigger cell death. This review primarily focuses on the mechanisms and epidemiology or progression in the clinical study on MMA.
Collapse
|
6
|
Haijes HA, van Hasselt PM, Jans JJM, Verhoeven-Duif NM. Pathophysiology of propionic and methylmalonic acidemias. Part 2: Treatment strategies. J Inherit Metab Dis 2019; 42:745-761. [PMID: 31119742 DOI: 10.1002/jimd.12128] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 12/31/2022]
Abstract
Despite realizing increased survival rates for propionic acidemia (PA) and methylmalonic acidemia (MMA) patients, the current therapeutic regimen is inadequate for preventing or treating the devastating complications that still can occur. The elucidation of pathophysiology of these complications allows us to evaluate and rethink treatment strategies. In this review we display and discuss potential therapy targets and we give a systematic overview on current, experimental and unexplored treatment strategies in order to provide insight in what we have to offer PA and MMA patients, now and in the future. Evidence on the effectiveness of treatment strategies is often scarce, since none were tested in randomized clinical trials. This raises concerns, since even the current consensus on best practice treatment for PA and MMA is not without controversy. To attain substantial improvements in overall outcome, gene, mRNA or enzyme replacement therapy is most promising since permanent reduction of toxic metabolites allows for a less strict therapeutic regime. Hereby, both mitochondrial-associated and therapy induced complications can theoretically be prevented. However, the road from bench to bedside is long, as it is challenging to design a drug that is delivered to the mitochondria of all tissues that require enzymatic activity, including the brain, without inducing any off-target effects. To improve survival rate and quality of life of PA and MMA patients, there is a need for systematic (re-)evaluation of accepted and potential treatment strategies, so that we can better determine who will benefit when and how from which treatment strategy.
Collapse
Affiliation(s)
- Hanneke A Haijes
- Section Metabolic Diagnostics, Department of Biomedical Genetics, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Section Metabolic Diseases, Department of Child Health, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Peter M van Hasselt
- Section Metabolic Diseases, Department of Child Health, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Judith J M Jans
- Section Metabolic Diagnostics, Department of Biomedical Genetics, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nanda M Verhoeven-Duif
- Section Metabolic Diagnostics, Department of Biomedical Genetics, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
Altered Redox Homeostasis in Branched-Chain Amino Acid Disorders, Organic Acidurias, and Homocystinuria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1246069. [PMID: 29743968 PMCID: PMC5884027 DOI: 10.1155/2018/1246069] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/26/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023]
Abstract
Inborn errors of metabolism (IEMs) are a group of monogenic disorders characterized by dysregulation of the metabolic networks that underlie development and homeostasis. Emerging evidence points to oxidative stress and mitochondrial dysfunction as major contributors to the multiorgan alterations observed in several IEMs. The accumulation of toxic metabolites in organic acidurias, respiratory chain, and fatty acid oxidation disorders inhibits mitochondrial enzymes and processes resulting in elevated levels of reactive oxygen species (ROS). In other IEMs, as in homocystinuria, different sources of ROS have been proposed. In patients' samples, as well as in cellular and animal models, several studies have identified significant increases in ROS levels along with decreases in antioxidant defences, correlating with oxidative damage to proteins, lipids, and DNA. Elevated ROS disturb redox-signaling pathways regulating biological processes such as cell growth, differentiation, or cell death; however, there are few studies investigating these processes in IEMs. In this review, we describe the published data on mitochondrial dysfunction, oxidative stress, and impaired redox signaling in branched-chain amino acid disorders, other organic acidurias, and homocystinuria, along with recent studies exploring the efficiency of antioxidants and mitochondria-targeted therapies as therapeutic compounds in these diseases.
Collapse
|
8
|
Ghasemi S, Hosseini M, Feizpour A, Alipour F, Sadeghi A, Vafaee F, Mohammadpour T, Soukhtanloo M, Ebrahimzadeh Bideskan A, Beheshti F. Beneficial effects of garlic on learning and memory deficits and brain tissue damages induced by lead exposure during juvenile rat growth is comparable to the effect of ascorbic acid. Drug Chem Toxicol 2016; 40:206-214. [DOI: 10.1080/01480545.2016.1197238] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Simagol Ghasemi
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Iran,
| | - Mahmoud Hosseini
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Iran,
| | - Azadeh Feizpour
- Neurogenic Inflammation Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Iran,
| | - Fatemeh Alipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,
| | - Akram Sadeghi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,
| | - Farzaneh Vafaee
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Iran,
| | - Toktam Mohammadpour
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Iran, and
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Iran
| | | | - Farimah Beheshti
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Iran,
| |
Collapse
|
9
|
Roman-Garcia P, Quiros-Gonzalez I, Mottram L, Lieben L, Sharan K, Wangwiwatsin A, Tubio J, Lewis K, Wilkinson D, Santhanam B, Sarper N, Clare S, Vassiliou GS, Velagapudi VR, Dougan G, Yadav VK. Vitamin B₁₂-dependent taurine synthesis regulates growth and bone mass. J Clin Invest 2014; 124:2988-3002. [PMID: 24911144 DOI: 10.1172/jci72606] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/24/2014] [Indexed: 02/04/2023] Open
Abstract
Both maternal and offspring-derived factors contribute to lifelong growth and bone mass accrual, although the specific role of maternal deficiencies in the growth and bone mass of offspring is poorly understood. In the present study, we have shown that vitamin B12 (B12) deficiency in a murine genetic model results in severe postweaning growth retardation and osteoporosis, and the severity and time of onset of this phenotype in the offspring depends on the maternal genotype. Using integrated physiological and metabolomic analysis, we determined that B12 deficiency in the offspring decreases liver taurine production and associates with abrogation of a growth hormone/insulin-like growth factor 1 (GH/IGF1) axis. Taurine increased GH-dependent IGF1 synthesis in the liver, which subsequently enhanced osteoblast function, and in B12-deficient offspring, oral administration of taurine rescued their growth retardation and osteoporosis phenotypes. These results identify B12 as an essential vitamin that positively regulates postweaning growth and bone formation through taurine synthesis and suggests potential therapies to increase bone mass.
Collapse
|
10
|
Andrade VM, Dal Pont HS, Leffa DD, Damiani AP, Scaini G, Hainzenreder G, Streck EL, Ferreira GC, Schuck PF. Methylmalonic acid administration induces DNA damage in rat brain and kidney. Mol Cell Biochem 2014; 391:137-45. [DOI: 10.1007/s11010-014-1996-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 02/02/2014] [Indexed: 12/11/2022]
|
11
|
Ribas GS, Vargas CR, Wajner M. L-carnitine supplementation as a potential antioxidant therapy for inherited neurometabolic disorders. Gene 2013; 533:469-76. [PMID: 24148561 DOI: 10.1016/j.gene.2013.10.017] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/02/2013] [Accepted: 10/09/2013] [Indexed: 01/11/2023]
Abstract
In recent years increasing evidence has emerged suggesting that oxidative stress is involved in the pathophysiology of a number of inherited metabolic disorders. However the clinical use of classical antioxidants in these diseases has been poorly evaluated and so far no benefit has been demonstrated. l-Carnitine is an endogenous substance that acts as a carrier for fatty acids across the inner mitochondrial membrane necessary for subsequent beta-oxidation and ATP production. Besides its important role in the metabolism of lipids, l-carnitine is also a potent antioxidant (free radical scavenger) and thus may protect tissues from oxidative damage. This review addresses recent findings obtained from patients with some inherited neurometabolic diseases showing that l-carnitine may be involved in the reduction of oxidative damage observed in these disorders. For some of these diseases, reduced concentrations of l-carnitine may occur due to the combination of this compound to the accumulating toxic metabolites, especially organic acids, or as a result of protein restricted diets. Thus, l-carnitine supplementation may be useful not only to prevent tissue deficiency of this element, but also to avoid oxidative damage secondary to increased production of reactive species in these diseases. Considering the ability of l-carnitine to easily cross the blood-brain barrier, l-carnitine supplementation may also be beneficial in preventing neurological damage derived from oxidative injury. However further studies are required to better explore this potential.
Collapse
Affiliation(s)
- Graziela S Ribas
- Federal University of Rio Grande do Sul, Brazil; Serviço de Genética Médica, HCPA, Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil
| | | | | |
Collapse
|
12
|
Affonso AC, Machado DG, Malgarin F, Fraga DB, Ghedim F, Zugno A, Streck EL, Schuck PF, Ferreira GC. Increased susceptibility of brain acetylcholinesterase activity to methylmalonate in young rats with renal failure. Metab Brain Dis 2013; 28:493-500. [PMID: 23475280 DOI: 10.1007/s11011-013-9396-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 02/26/2013] [Indexed: 01/20/2023]
Abstract
Tissue methylmalonic acid (MMA) accumulation is the biochemical hallmark of methylmalonic acidemia. Clinically, the disease is characterized by progressive neurological deterioration and renal failure, whose pathophysiology is still undefined. In the present study we investigated the effect of acute MMA administration on some important parameters of brain neurotransmission in cerebral cortex of rats, namely Na(+), K(+)-ATPase, ouabain-insensitive ATPases and acetylcholinesterase activities, in the presence or absence of kidney injury induced by gentamicin administration. Initially, thirty-day old Wistar rats received one intraperitoneal injection of saline or gentamicin (70 mg/kg). One hour after, the animals received three consecutive subcutaneous injections of MMA (1.67 μmol/g) or saline, with an 11 h interval between each injection. One hour after the last injection the animals were killed and the cerebral cortex isolated. MMA administration by itself was not able to modify Na(+), K(+)-ATPase, ATPases ouabain-insensitive or acetylcholinesterase activities in cerebral cortex of young rats. In rats receiving gentamicin simultaneously with MMA, it was observed an increase in the activity of acetylcholinesterase activity in cerebral cortex, without any alteration in the activity of the other studied enzymes. Therefore, it may be speculated that cholinergic imbalance may play a role in the pathogenesis of the brain damage. Furthermore, the pathophysiology of tissue damage cannot be exclusively attributed to MMA toxicity, and control of kidney function should be considered as a priority in the management of these patients, specifically during episodes of metabolic decompensation when MMA levels are higher.
Collapse
Affiliation(s)
- André C Affonso
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chronic administration of methylmalonate on young rats alters neuroinflammatory markers and spatial memory. Immunobiology 2013; 218:1175-83. [PMID: 23726524 DOI: 10.1016/j.imbio.2013.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 04/04/2013] [Accepted: 04/07/2013] [Indexed: 02/06/2023]
Abstract
The methylmalonic acidemia is an inborn error of metabolism (IEM) characterized by methylmalonic acid (MMA) accumulation in body fluids and tissues, causing neurological dysfunction, mitochondrial failure and oxidative stress. Although neurological evidence demonstrate that infection and/or inflammation mediators facilitate metabolic crises in patients, the involvement of neuroinflammatory processes in the neuropathology of this organic acidemia is not yet established. In this experimental study, we used newborn Wistar rats to induce a model of chronic acidemia via subcutaneous injections of methylmalonate (MMA, from 5th to 28th day of life, twice a day, ranged from 0.72 to 1.67 μmol/g as a function of animal age). In the following days (29th-31st) animal behavior was assessed in the object exploration test and elevated plus maze. It was performed differential cell and the number of neutrophils counting and interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) levels in the blood, as well as levels of IL-1β, TNF-α, inducible nitric oxide synthase (iNOS) and 3-nitrotyrosine (3-NT) in the cerebral cortex were measured. Behavioral tests showed that animals injected chronically with MMA have a reduction in the recognition index (R.I.) when the objects were arranged in a new configuration space, but do not exhibit anxiety-like behaviors. The blood of MMA-treated animals showed a decrease in the number of polymorphonuclear and neutrophils, and an increase in mononuclear and other cell types, as well as an increase of IL-1β and TNF-α levels. Concomitantly, MMA increased levels of IL-1β, TNF-α, and expression of iNOS and 3-NT in the cerebral cortex of rats. The overall results indicate that chronic administration of MMA increased pro-inflammatory markers in the cerebral cortex, reduced immune system defenses in blood, and coincide with the behavioral changes found in young rats. This leads to speculate that, through mechanisms not yet elucidated, the neuroinflammatory processes during critical periods of development may contribute to the progression of cognitive impairment in patients with methylmalonic acidemia.
Collapse
|
14
|
Ribas GS, Biancini GB, Mescka C, Wayhs CY, Sitta A, Wajner M, Vargas CR. Oxidative stress parameters in urine from patients with disorders of propionate metabolism: a beneficial effect of L:-carnitine supplementation. Cell Mol Neurobiol 2012; 32:77-82. [PMID: 21833551 DOI: 10.1007/s10571-011-9736-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 06/30/2011] [Indexed: 10/18/2022]
Abstract
Propionic (PA) and methylmalonic (MMA) acidurias are inherited disorders caused by deficiency of propionyl-CoA carboxylase and methylmalonyl-CoA mutase, respectively. Affected patients present acute metabolic crises in the neonatal period and long-term neurological deficits. Treatments of these diseases include a protein restricted diet and L: -carnitine supplementation. L: -Carnitine is widely used in the therapy of these diseases to prevent secondary L: -carnitine deficiency and promote detoxification, and several recent in vitro and in vivo studies have reported antioxidant and antiperoxidative effects of this compound. In this study, we evaluated the oxidative stress parameters, isoprostane and di-tyrosine levels, and the antioxidant capacity, in urine from patients with PA and MMA at the diagnosis, and during treatment with L: -carnitine and protein-restricted diet. We verified a significant increase of isoprostanes and di-tyrosine, as well as a significant reduction of the antioxidant capacity in urine from these patients at diagnosis, as compared to controls. Furthermore, treated patients presented a marked reduction of isoprostanes and di-tyrosine levels in relation to untreated patients. In addition, patients with higher levels of protein and lipid oxidative damage, determined by di-tyrosine and isoprostanes levels, also presented lower urinary concentrations of total and free L: -carnitine. In conclusion, the present results indicate that treatment with low protein diet and L: -carnitine significantly reduces urinary biomarkers of protein and lipid oxidative damage in patients with disorders of propionate metabolism and that L: -carnitine supplementation may be specially involved in this protection.
Collapse
Affiliation(s)
- Graziela S Ribas
- Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Ipiranga 2752, Porto Alegre, RS, 90610-000, Brazil.
| | | | | | | | | | | | | |
Collapse
|
15
|
Mitochondrial energy metabolism in neurodegeneration associated with methylmalonic acidemia. J Bioenerg Biomembr 2011; 43:39-46. [PMID: 21271280 DOI: 10.1007/s10863-011-9330-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Methylmalonic acidemia is one of the most prevalent inherited metabolic disorders involving neurological deficits. In vitro experiments, animal model studies and tissue analyses from human patients suggest extensive impairment of mitochondrial energy metabolism in this disease. This review summarizes changes in mitochondrial energy metabolism occurring in methylmalonic acidemia, focusing mainly on the effects of accumulated methylmalonic acid, and gives an overview of the results found in different experimental models. Overall, experiments to date suggest that mitochondrial impairment in this disease occurs through a combination of the inhibition of specific enzymes and transporters, limitation in the availability of substrates for mitochondrial metabolic pathways and oxidative damage.
Collapse
|
16
|
Jorge-Finnigan A, Gámez A, Pérez B, Ugarte M, Richard E. Different altered pattern expression of genes related to apoptosis in isolated methylmalonic aciduria cblB type and combined with homocystinuria cblC type. Biochim Biophys Acta Mol Basis Dis 2010; 1802:959-67. [DOI: 10.1016/j.bbadis.2010.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 07/29/2010] [Accepted: 08/03/2010] [Indexed: 12/15/2022]
|
17
|
Sood S, Narang D, Dinda AK, Maulik SK. Chronic oral administration of Ocimum sanctum Linn. augments cardiac endogenous antioxidants and prevents isoproterenol-induced myocardial necrosis in rats. J Pharm Pharmacol 2010; 57:127-33. [PMID: 15651118 DOI: 10.1211/0022357055146] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Wistar rats (200–250 g) of either sex were fed with fresh leaf homogenate of Ocimum sanctum by oral gavage in two different doses, 50 mg kg−1 (Os 50) and 100 mg kg−1 (Os 100), daily for 30 days. This was followed by isoproterenol administration (85 mg kg−1 s.c. two doses at 24 h intervals) in both control and O. sanctum-fed rats to induce myocardial necrosis. Hearts were isolated for estimation of endogenous myocardial antioxidants (superoxide dismutase (SOD), catalase, reduced glutathione (GSH) and glutathione peroxidase (GPx) and myocardial lipid peroxidation) and light microscopic study. Increased basal myocardial antioxidant SOD (9.3 ± 1.2 vs 3.7 ± 0.7 units mg−1 protein; P < 0.05) and catalase activities (34.3 ± 5.4 vs 17.9 ± 5.1 units mg−1 protein; P < 0.05) were observed in the Os 50 group only without any evidence of cellular injury in both the groups. In control rats, isoproterenol administration caused significant depletion of myocardial SOD (1.7 ± 0.2 units mg−1 protein) and GPx (104 ± 2 mU mg−1 protein) activities and increase in GSH (551.7 ± 30.9 μg g−1 wet weight of tissue) level, with evidence of myocardial necrosis. Isoproterenol-induced changes in myocardial SOD, GPx and GSH were prevented by both the doses of O. sanctum, however cellular injury was minimal only with 50 mg kg−1. The results indicate that long-term feeding of O. sanctum offered significant protection against isoproterenol-induced myocardial necrosis through a unique property of enhancement of endogenous antioxidants.
Collapse
Affiliation(s)
- S Sood
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi-110 029, India
| | | | | | | |
Collapse
|
18
|
Mc Guire PJ, Parikh A, Diaz GA. Profiling of oxidative stress in patients with inborn errors of metabolism. Mol Genet Metab 2009; 98:173-80. [PMID: 19604711 PMCID: PMC2915835 DOI: 10.1016/j.ymgme.2009.06.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/09/2009] [Accepted: 06/09/2009] [Indexed: 01/19/2023]
Abstract
Free radical formation resulting in oxidative stress is a hallmark of mitochondrial dysfunction. Indeed, oxidative stress has been demonstrated to be an underlying pathophysiologic process in various inborn errors of metabolism. Metabolic profiling of oxidative stress may provide a non-specific measure of disease activity that may further enable physicians to monitor disease. In the present study, we investigated two markers of oxidative damage in urinary samples from IEM subjects and controls: F-2 isoprostanes, a measure of lipid peroxidation and di-tyrosine, a measure of protein oxidation. We also determined urinary antioxidant activity in these samples. Subsets of IEM patients showed significantly higher levels of the damage markers isoprostanes and di-tyrosine. Of note, patients with cobalamin disorders (i.e., CblB and CblC) consistently had the highest levels of oxidative damage markers. Lower urine antioxidant capacity was seen in all subject categories, particularly cobalamin disorders and propionic acidemia. Longitudinal studies in subjects with MSUD showed good concordance between markers of oxidative damage and acute decompensation. Overall, quantifying oxidative stress offers a unique perspective to IEM. These measures may provide a means of addressing mitochondrial function in IEM and aid in the development of therapeutic targets and clinical monitoring in this diverse set of disorders.
Collapse
Affiliation(s)
- Peter J Mc Guire
- Department of Genetics & Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
19
|
Leipnitz G, Seminotti B, Fernandes CG, Amaral AU, Beskow AP, Silva LDB, Zanatta Â, Ribeiro CA, Vargas CR, Wajner M. Striatum is more vulnerable to oxidative damage induced by the metabolites accumulating in 3‐hydroxy‐3‐methylglutaryl‐CoA lyase deficiency as compared to liver. Int J Dev Neurosci 2009; 27:351-6. [DOI: 10.1016/j.ijdevneu.2009.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/11/2009] [Accepted: 03/03/2009] [Indexed: 01/20/2023] Open
Affiliation(s)
- Guilhian Leipnitz
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUFRGSPorto AlegreRSBrazil
| | - Bianca Seminotti
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUFRGSPorto AlegreRSBrazil
| | - Carolina G. Fernandes
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUFRGSPorto AlegreRSBrazil
| | - Alexandre U. Amaral
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUFRGSPorto AlegreRSBrazil
| | - Ana Paula Beskow
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUFRGSPorto AlegreRSBrazil
| | - Lucila de B. Silva
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUFRGSPorto AlegreRSBrazil
| | - Ângela Zanatta
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUFRGSPorto AlegreRSBrazil
| | - César A.J. Ribeiro
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUFRGSPorto AlegreRSBrazil
| | - Carmen R. Vargas
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUFRGSPorto AlegreRSBrazil
| | - Moacir Wajner
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUFRGSPorto AlegreRSBrazil
- Serviço de Genética MédicaHospital de Clínicas de Porto AlegreRSBrazil
- Universidade Luterana do BrasilCanoasRSBrazil
| |
Collapse
|
20
|
Shahidi S, Komaki A, Mahmoodi M, Atrvash N, Ghodrati M. Ascorbic acid supplementation could affect passive avoidance learning and memory in rat. Brain Res Bull 2008; 76:109-13. [DOI: 10.1016/j.brainresbull.2008.01.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Revised: 12/19/2007] [Accepted: 01/10/2008] [Indexed: 10/22/2022]
|
21
|
Latini A, Scussiato K, Leipnitz G, Gibson KM, Wajner M. Evidence for oxidative stress in tissues derived from succinate semialdehyde dehydrogenase-deficient mice. J Inherit Metab Dis 2007; 30:800-10. [PMID: 17885820 DOI: 10.1007/s10545-007-0599-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 04/19/2007] [Accepted: 06/08/2007] [Indexed: 02/06/2023]
Abstract
Animal models of inborn errors of metabolism are useful for investigating the pathogenesis associated with the corresponding human disease. Since the mechanisms involved in the pathophysiology of succinate semialdehyde dehydrogenase (SSADH) deficiency (Aldh5a1; OMIM 271980) are still not established, in the present study we evaluated the tissue antioxidant defences and lipid peroxidation in various cerebral structures (cortex, cerebellum, thalamus and hippocampus) and in the liver of SSADH-deficient mice. The parameters analysed were total radical-trapping antioxidant potential (TRAP) and glutathione (GSH) levels, the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), as well as thiobarbituric acid-reactive substances (TBARS). We first observed that the tissue nonenzymatic antioxidant defences were significantly reduced in the SSADH-deficient animals, particularly in the liver (decreased TRAP and GSH) and in the cerebral cortex (decreased GSH), as compared to the wild-type mice. Furthermore, SOD activity was significantly increased in the liver and cerebellum, whereas the activity of CAT was significantly higher in the thalamus. In contrast, GPx activity was significantly diminished in the hippocampus. Finally, we observed that lipid peroxidation (TBARS levels) was markedly increased in the liver and cerebral cortex, reflecting a high lipid oxidative damage in these tissues. Our data showing an imbalance between tissue antioxidant defences and oxidative attack strongly indicate that oxidative stress is involved in the pathophysiology of SSADH deficiency in mice, and likely the corresponding human disorder.
Collapse
Affiliation(s)
- A Latini
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | | | |
Collapse
|
22
|
Richard E, Alvarez-Barrientos A, Pérez B, Desviat LR, Ugarte M. Methylmalonic acidaemia leads to increased production of reactive oxygen species and induction of apoptosis through the mitochondrial/caspase pathway. J Pathol 2007; 213:453-61. [DOI: 10.1002/path.2248] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Pettenuzzo LF, Ferreira GDC, Schmidt AL, Dutra-Filho CS, Wyse ATS, Wajner M. Differential inhibitory effects of methylmalonic acid on respiratory chain complex activities in rat tissues. Int J Dev Neurosci 2006; 24:45-52. [PMID: 16324816 DOI: 10.1016/j.ijdevneu.2005.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 10/20/2005] [Accepted: 10/26/2005] [Indexed: 11/30/2022] Open
Abstract
Methylmalonic acidemia is an inherited metabolic disorder biochemically characterized by tissue accumulation of methylmalonic acid (MMA) and clinically by progressive neurological deterioration and kidney failure, whose pathophysiology is so far poorly established. Previous studies have shown that MMA inhibits complex II of the respiratory chain in rat cerebral cortex, although no inhibition of complexes I-V was found in bovine heart. Therefore, in the present study we investigated the in vitro effect of 2.5mM MMA on the activity of complexes I-III, II, II-III and IV in striatum, hippocampus, heart, liver and kidney homogenates from young rats. We observed that MMA caused a significant inhibition of complex II activity in striatum and hippocampus (15-20%) at low concentrations of succinate in the medium, but not in the peripheral tissues. We also verified that the inhibitory property of MMA only occurred after exposing brain homogenates for at least 10 min with the acid, suggesting that this inhibition was mediated by indirect mechanisms. Simultaneous preincubation with the nitric oxide synthase inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME) and catalase (CAT) plus superoxide dismutase (SOD) did not prevent MMA-induced inhibition of complex II, suggesting that common reactive oxygen (superoxide, hydrogen peroxide and hydroxyl radical) and nitric (nitric oxide) species were not involved in this effect. In addition, complex II-III (20-35%) was also inhibited by MMA in all tissues tested, and complex I-III only in the kidney (53%) and liver (38%). In contrast, complex IV activity was not changed by MMA in all tissues studied. These results indicate that MMA differentially affects the activity of the respiratory chain pending on the tissues studied, being striatum and hippocampus more vulnerable to its effect. In case our in vitro data are confirmed in vivo in tissues from methylmalonic acidemic patients, it is feasible that that the present findings may be related to the pathophysiology of the tissue damage characteristic of these patients.
Collapse
Affiliation(s)
- Leticia F Pettenuzzo
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
24
|
Ribeiro MCP, de Avila DS, Schneider CYM, Hermes FS, Furian AF, Oliveira MS, Rubin MA, Lehmann M, Krieglstein J, Mello CF. α-Tocopherol protects against pentylenetetrazol- and methylmalonate-induced convulsions. Epilepsy Res 2005; 66:185-94. [PMID: 16162400 DOI: 10.1016/j.eplepsyres.2005.08.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 08/08/2005] [Accepted: 08/10/2005] [Indexed: 11/26/2022]
Abstract
Increased excitatory amino acid transmission and decreased GABAergic inhibitory responses seem to be important mechanisms in the genesis of convulsions, where reactive oxygen species (ROS) have recently been suggested to play a critical role. Therefore, administration of antioxidants may be potentially beneficial for the treatment of convulsive states. In the current study we investigated the effect of the systemic Vitamin E administration, an antioxidant, on the convulsions and oxidative damage induced by two convulsant agents with different mechanisms of action: methylmalonic acid (MMA), which induces convulsions through energy depletion and secondary activation of glutamatergic mechanisms and ROS production and pentylenetetrazol (PTZ), which is a chemical convulsant that causes convulsions by blocking the GABAA receptor-coupled chloride ionophore. Adult male Wistar rats (270-300 g) were injected with vehicle (5% Tween 80 in 0.9% NaCl; 1 ml/kg, i.p.) or alpha-tocopherol (25, 75 or 225 mg/kg, i.p.), once a day for 7 days. On the seventh day of antioxidant treatment, the animals were injected with the antioxidant (or vehicle) and, 30 min later, they were intrastriatally injected with NaCl (9 micromol/2 microl) or with MMA (6 micromol/2 microl) or PTZ (3.26 mmicromol/2 microl). The animals were observed for the appearance of convulsive behavior and the striatal content of thiobarbituric acid-reactive substances (TBARS) and total protein carbonylation were determined. Intrastriatal injection of increasing amounts of PTZ and of MMA caused the appearance of convulsive behavior. PTZ- and MMA-induced convulsions, TBARS production and total protein carbonylation were attenuated by alpha-tocopherol in a dose-dependent manner.
Collapse
Affiliation(s)
- Marinei Cristina Pereira Ribeiro
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bavaresco CS, Chiarani F, Matté C, Wajner M, Netto CA, de Souza Wyse AT. Effect of hypoxanthine on Na+,K+-ATPase activity and some parameters of oxidative stress in rat striatum. Brain Res 2005; 1041:198-204. [PMID: 15829228 DOI: 10.1016/j.brainres.2005.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Revised: 02/01/2005] [Accepted: 02/04/2005] [Indexed: 11/23/2022]
Abstract
The main objective of this study was to investigate the effects of preincubation of rat striatum homogenate in the presence of hypoxanthine, a metabolite accumulated in Lesch-Nyhan disease, on Na+,K+-ATPase activity and on some parameters of oxidative stress namely thiobarbituric acid-reactive substances (TBA-RS), total radical-trapping antioxidant parameter (TRAP) and membrane protein thiol content. Results showed that hypoxanthine significantly increased TBA-RS and reduced Na+,K+-ATPase activity, TRAP and membrane protein thiol content. In addition, we also evaluated the effect of glutathione, trolox, allopurinol and Nvarpi-nitro-L-arginine methyl ester (L-NAME) on the inhibitory effect of hypoxanthine on Na+,K+-ATPase activity in the same rat cerebral structure. All tested compounds per se did not alter Na+,K+-ATPase activity, but only glutathione and trolox prevented the effect of hypoxanthine on the enzyme activity. The effect of glutathione and trolox on hypoxanthine-induced increase of TBA-RS levels was also investigated. These antioxidants alone or combined with hypoxanthine reduced TBA-RS levels. Our present findings show that hypoxanthine induces oxidative stress in rat striatum and that the inhibition of Na+,K+-ATPase activity caused by this oxypurine was probably mediated by reactive oxygen species. It is presumed that these results might be associated with the neuronal dysfunction of patients affected by Lesch-Nyhan disease.
Collapse
Affiliation(s)
- Caren Serra Bavaresco
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Torres RL, Torres ILS, Gamaro GD, Fontella FU, Silveira PP, Moreira JSR, Lacerda M, Amoretti JR, Rech D, Dalmaz C, Belló AA. Lipid peroxidation and total radical-trapping potential of the lungs of rats submitted to chronic and sub-chronic stress. Braz J Med Biol Res 2004; 37:185-92. [PMID: 14762572 DOI: 10.1590/s0100-879x2004000200004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exposure to stress induces a cluster of physiological and behavioral changes in an effort to maintain the homeostasis of the organism. Long-term exposure to stress, however, has detrimental effects on several cell functions such as the impairment of antioxidant defenses leading to oxidative damage. Oxidative stress is a central feature of many diseases. The lungs are particularly susceptible to lesions by free radicals and pulmonary antioxidant defenses are extensively distributed and include both enzymatic and non-enzymatic systems. The aim of the present study was to determine lipid peroxidation and total radical-trapping potential (TRAP) changes in lungs of rats submitted to different models of chronic stress. Adult male Wistar rats weighing 180-230 g were submitted to different stressors (variable stress, N = 7) or repeated restraint stress for 15 (N = 10) or 40 days (N = 6) and compared to control groups (N = 10 each). Lipid peroxidation levels were assessed by thiobarbituric acid reactive substances (TBARS), and TRAP was measured by the decrease in luminescence using the 2-2'-azo-bis(2-amidinopropane)-luminol system. Chronic variable stress induced a 51% increase in oxidative stress in lungs (control group: 0.037 +/- 0.002; variable stress: 0.056 +/- 0.007, P < 0.01). No difference in TBARS was observed after chronic restraint stress, but a significant 57% increase in TRAP was presented by the group repeatedly restrained for 15 days (control group: 2.48 +/- 0.42; stressed: 3.65 +/- 0.16, P < 0.05). We conclude that different stressors induce different effects on the oxidative status of the organism.
Collapse
Affiliation(s)
- R L Torres
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 90035-003 Porto Alegre, RS, Brasil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wajner M, Latini A, Wyse ATS, Dutra-Filho CS. The role of oxidative damage in the neuropathology of organic acidurias: insights from animal studies. J Inherit Metab Dis 2004; 27:427-48. [PMID: 15303000 DOI: 10.1023/b:boli.0000037353.13085.e2] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Organic acidurias represent a group of inherited disorders resulting from deficient activity of specific enzymes of the catabolism of amino acids, carbohydrates or lipids, leading to tissue accumulation of one or more carboxylic (organic) acids. Patients affected by organic acidurias predominantly present neurological symptoms and structural brain abnormalities, of which the aetiopathogenesis is poorly understood. However, in recent years increasing evidence has emerged suggesting that oxidative stress is possibly involved in the pathology of some organic acidurias and other inborn errors of metabolism. This review addresses some of the recent developments obtained mainly from animal studies indicating oxidative damage as an important determinant of the neuropathophysiology of some organic acidurias. Recent data showing that various organic acids are capable of inducing free radical generation and decreasing brain antioxidant defences is presented. The discussion focuses on the relatively low antioxidant defences of the brain and the vulnerability of this tissue to reactive species. This offers new perspectives for potential therapeutic strategies for these disorders, which may include the early use of appropriate antioxidants as a novel adjuvant therapy, besides the usual treatment based on removing toxic compounds and using special diets and pharmacological agents, such as cofactors and L-carnitine.
Collapse
Affiliation(s)
- M Wajner
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, 90035-003 Porto Alegre, RS, Brazil.
| | | | | | | |
Collapse
|
28
|
Pettenuzzo LF, Wyse ATS, Wannmacher CMD, Dutra-Filho CS, Netto CA, Wajner M. Evaluation of the effect of chronic administration of drugs on rat behavior in the water maze task. ACTA ACUST UNITED AC 2003; 12:109-15. [PMID: 14613813 DOI: 10.1016/j.brainresprot.2003.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tissue accumulation of intermediates of the metabolism occurs in various inherited neurodegenerative disorders, including methylmalonic acidemia (MA). Animal cognition is usually tested by measuring learning/memory of rats in behavioral tasks. A procedure in which rats are chronically injected with the metabolites accumulating in the neurometabolic disorder methylmalonic acidemia from the 5th to the 28th day of life is described. The animals were allowed to recover for approximately 30 days, after which they were submitted to the Morris water maze task. This behavioral task consisted of two steps. The first one is called the acquisition phase, where rats were trained for 5 consecutive days performing four trials per day to find the submerged platform. On each trial, the rat was placed in the water in one of four start locations (N, S, W and E). The animal was then allowed to search for the platform for 60 s. Once the rat located the platform, it was permitted to remain on it for 10 s. The acquisition phase was followed by the probe trial 24 h later, in which the platform is not present. The time spent in the quadrant of the former platform position and the correct annulus crossings were obtained as a measure for spatial memory. The next step was the reversal learning (reversal phase) performed 2 weeks later. Animals were trained for 4 days (four trials per day) to find the hidden platform, which had now been moved to a position diagonally opposite (reversed) from its location in the acquisition phase. On the next day, all animals were submitted to a second probe trial, similar to the first one. We observed that rats chronically injected with methylmalonic acid (MA), although presenting no alterations in the acquisition phase, showed a long lasting reversal learning impairment. Moreover, motor activity, evaluated by the swim speed in the maze, was not altered by MA administration. These results are consistent with perseverative behavior.
Collapse
Affiliation(s)
- Leticia F Pettenuzzo
- Departamento de Bioqui;mica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Av. Ramiro Barcelos, 2600-Anexo, CEP 90035003, Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | | | |
Collapse
|