1
|
Nakamura Y, Iriarte-Diaz J, Arce-McShane F, Orsbon CP, Brown KA, Eastment M, Avivi-Arber L, Sessle BJ, Inoue M, Hatsopoulos NG, Ross CF, Takahashi K. Sagittal Plane Kinematics of the Jaw and Hyolingual Apparatus During Swallowing in Macaca mulatta. Dysphagia 2017; 32:663-677. [PMID: 28528492 PMCID: PMC5767546 DOI: 10.1007/s00455-017-9812-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 05/11/2017] [Indexed: 11/28/2022]
Abstract
Studies of mechanisms of feeding behavior are important in a society where aging- and disease-related feeding disorders are increasingly prevalent. It is important to evaluate the clinical relevance of animal models of the disease and the control. Our present study quantifies macaque hyolingual and jaw kinematics around swallowing cycles to determine the extent to which macaque swallowing resembles that of humans. One female and one male adult Macaca mulatta were trained to feed in a primate chair. Videofluoroscopy was used to record kinematics in a sagittal view during natural feeding on solid food, and the kinematics of the hyoid bone, thyroid cartilage, mandibular jaw, and anterior-, middle-, and posterior-tongue. Jaw gape cycles were defined by consecutive maximum gapes, and the kinematics of the swallow cycles were compared with those of the two consecutive non-swallow cycles preceding and succeeding the swallow cycles. Although there are size differences between macaques and humans, and macaques have shorter durations of jaw gape cycles and hyoid and thyroid upward movements, there are several important similarities between our macaque data and human data reported in the literature: (1) The durations of jaw gape cycles during swallow cycles are longer than those of non-swallow cycles as a result of an increased duration of the jaw-opening phase; (2) Hyoid and thyroid upward movement is linked with a posterior tongue movement and is faster during swallow than non-swallow cycles; (3) Tongue elevation propagates from anterior to posterior during swallow and non-swallow cycles. These findings suggest that macaques can be a useful experimental model for human swallowing studies.
Collapse
Affiliation(s)
- Yuki Nakamura
- Department of Organismal Biology and Anatomy, University of Chicago, 1025 E 57th St. Culver Rm 206, Chicago, IL, 60637, USA.
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Jose Iriarte-Diaz
- Department of Oral Biology, University of Illinois at Chicago College of Dentistry, Chicago, IL, USA
| | - Fritzie Arce-McShane
- Department of Organismal Biology and Anatomy, University of Chicago, 1025 E 57th St. Culver Rm 206, Chicago, IL, 60637, USA
| | - Courtney P Orsbon
- Department of Organismal Biology and Anatomy, University of Chicago, 1025 E 57th St. Culver Rm 206, Chicago, IL, 60637, USA
| | - Kevin A Brown
- Center for Neural Science, New York University, New York, NY, USA
| | - McKenna Eastment
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | | | - Barry J Sessle
- Department of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Makoto Inoue
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nicholas G Hatsopoulos
- Department of Organismal Biology and Anatomy, University of Chicago, 1025 E 57th St. Culver Rm 206, Chicago, IL, 60637, USA
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA
| | - Callum F Ross
- Department of Organismal Biology and Anatomy, University of Chicago, 1025 E 57th St. Culver Rm 206, Chicago, IL, 60637, USA
| | - Kazutaka Takahashi
- Department of Organismal Biology and Anatomy, University of Chicago, 1025 E 57th St. Culver Rm 206, Chicago, IL, 60637, USA.
| |
Collapse
|
2
|
Modification of Hypoxic Respiratory Response by Protein Tyrosine Kinase in Brainstem Ventral Respiratory Neuron Group. PLoS One 2016; 11:e0165895. [PMID: 27798679 PMCID: PMC5087851 DOI: 10.1371/journal.pone.0165895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 10/19/2016] [Indexed: 12/04/2022] Open
Abstract
Protein tyrosine kinase (PTK) mediated the tyrosine phosphorylation modification of neuronal receptors and ion channels. Whether such modification resulted in changes of physiological functions was not sufficiently studied. In this study we examined whether the hypoxic respiratory response—which is the enhancement of breathing in hypoxic environment could be affected by the inhibition of PTK at brainstem ventral respiratory neuron column (VRC). Experiments were performed on urethane anesthetized adult rabbits. Phrenic nerve discharge was recorded as the central respiratory motor output. Hypoxic respiratory response was produced by ventilating the rabbit with 10% O2-balance 90% N2 for 5 minutes. The responses of phrenic nerve discharge to hypoxia were observed before and after microinjecting PTK inhibitor genistein, AMPA receptor antagonist CNQX, or inactive PTK inhibitor analogue daidzein at the region of ambiguus nucleus (NA) at levels 0–2 mm rostral to obex where the inspiratory subgroup of VRC were recorded. Results were as follows: 1. the hypoxic respiratory response was significantly attenuated after microinjection of genistein and/or CNQX, and no additive effect (i.e., further attenuation of hypoxic respiratory response) was observed when genistein and CNQX were microinjected one after another at the same injection site. Microinjection of daidzein had no effect on hypoxic respiratory response. 2. Fluorescent immunostaining showed that hypoxia significantly increased the number of phosphotyrosine immunopositive neurons in areas surrounding NA and most of these neurons were also immunopositive to glutamate AMPA receptor subunit GluR1. These results suggested that PTK played an important role in regulating the hypoxic respiratory response, possibly through the tyrosine phosphorylation modification of glutamate AMPA receptors on the respiratory neurons of ventral respiratory neuron column.
Collapse
|
3
|
Panneton WM, Anch AM, Panneton WM, Gan Q. Parasympathetic preganglionic cardiac motoneurons labeled after voluntary diving. Front Physiol 2014; 5:8. [PMID: 24478721 PMCID: PMC3904087 DOI: 10.3389/fphys.2014.00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/06/2014] [Indexed: 12/24/2022] Open
Abstract
A dramatic bradycardia is induced by underwater submersion in vertebrates. The location of parasympathetic preganglionic cardiac motor neurons driving this aspect of the diving response was investigated using cFos immunohistochemistry combined with retrograde transport of cholera toxin subunit B (CTB) to double-label neurons. After pericardial injections of CTB, trained rats voluntarily dove underwater, and their heart rates (HR) dropped immediately to 95 ± 2 bpm, an 80% reduction. After immunohistochemical processing, the vast majority of CTB labeled neurons were located in the reticular formation from the rostral cervical spinal cord to the facial motor nucleus, confirming previous studies. Labeled neurons caudal to the rostral ventrolateral medulla were usually spindle-shaped aligned along an oblique line running from the dorsal vagal nucleus to the ventrolateral reticular formation, while those more rostrally were multipolar with extended dendrites. Nine percent of retrogradely-labeled neurons were positive for both cFos and CTB after diving and 74% of these were found rostral to the obex. CTB also was transported transganglionically in primary afferent fibers, resulting in large granular deposits in dorsolateral, ventrolateral, and commissural subnuclei of the nucleus tractus solitarii (NTS) and finer deposits in lamina I and IV-V of the trigeminocervical complex. The overlap of parasympathetic preganglionic cardiac motor neurons activated by diving with those activated by baro- and chemoreceptors in the rostral ventrolateral medulla is discussed. Thus, the profound bradycardia seen with underwater submersion reinforces the notion that the mammalian diving response is the most powerful autonomic reflex known.
Collapse
Affiliation(s)
- W Michael Panneton
- Department of Pharmacological and Physiological Science, St. Louis University St. Louis, MO, USA
| | - A Michael Anch
- Department of Psychology, St. Louis University St. Louis, MO, USA
| | - Whitney M Panneton
- Department of Pharmacological and Physiological Science, St. Louis University St. Louis, MO, USA
| | - Qi Gan
- Department of Pharmacological and Physiological Science, St. Louis University St. Louis, MO, USA
| |
Collapse
|
4
|
Abstract
Pontine respiratory nuclei provide synaptic input to medullary rhythmogenic circuits to shape and adapt the breathing pattern. An understanding of this statement depends on appreciating breathing as a behavior, rather than a stereotypic rhythm. In this review, we focus on the pontine-mediated inspiratory off-switch (IOS) associated with postinspiratory glottal constriction. Further, IOS is examined in the context of pontine regulation of glottal resistance in response to multimodal sensory inputs and higher commands, which in turn rules timing, duration, and patterning of respiratory airflow. In addition, network plasticity in respiratory control emerges during the development of the pons. Synaptic plasticity is required for dynamic and efficient modulation of the expiratory breathing pattern to cope with rapid changes from eupneic to adaptive breathing linked to exploratory (foraging and sniffing) and expulsive (vocalizing, coughing, sneezing, and retching) behaviors, as well as conveyance of basic emotions. The speed and complexity of changes in the breathing pattern of behaving animals implies that "learning to breathe" is necessary to adjust to changing internal and external states to maintain homeostasis and survival.
Collapse
Affiliation(s)
- Mathias Dutschmann
- Florey Neurosciences Institutes, University of Melbourne, Victoria, Australia.
| | | |
Collapse
|
5
|
Benarroch EE, Schmeichel AM, Low PA, Parisi JE. Parabrachial nucleus involvement in multiple system atrophy. Auton Neurosci 2013; 177:170-4. [PMID: 23665165 DOI: 10.1016/j.autneu.2013.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/19/2013] [Accepted: 04/11/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED Multiple system atrophy (MSA) is associated with respiratory dysfunction, including sleep apnea, respiratory dysrhythmia, and laryngeal stridor. Neurons of the parabrachial nucleus (PBN) control respiratory rhythmogenesis and airway resistance. OBJECTIVES The objective of this study is to determine whether there was involvement of putative respiratory regions of the PBN in MSA. METHODS We examined the pons at autopsy in 10 cases with neuropathologically confirmed MSA and 8 age-matched controls. Sections obtained throughout the pons were processed for calcitonin-gene related peptide (CGRP) and Nissl staining to identify the lateral crescent of the lateral PBN (LPB) and the Kölliker-Fuse nucleus (K-F), which are involved in respiratory control. Cell counts were performed using stereology. RESULTS There was loss of CGRP neurons in the PBN in MSA (total estimated cell counts for the external LPB cluster was 12,584 ± 1146 in controls and 5917 ± 389 in MSA, p<0.0001); for the external medial PBN (MPB) cluster it was 15,081 ± 1758 in controls and 7842 ± 466 in MSA, p<0.001. There was also neuronal loss in putative respiratory regions of the PBN, including the lateral crescent of the LPB (13,039 ± 1326 in controls and 4164 ± 872 in MSA, p<0.0001); and K-F (5120 ± 495 in controls and 999 ± 308 in MSA, p<0.0001). CONCLUSIONS There is involvement of both CGRP and putative respiratory cell groups in the PBN in MSA. Whereas the clinical implications of CGRP cell loss are still undetermined, involvement of the LPB and K-F may contribute to respiratory dysfunction in this disorder.
Collapse
Affiliation(s)
- E E Benarroch
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| | | | | | | |
Collapse
|
6
|
Cinelli E, Bongianni F, Pantaleo T, Mutolo D. Modulation of the cough reflex by GABA(A) receptors in the caudal ventral respiratory group of the rabbit. Front Physiol 2012; 3:403. [PMID: 23087651 PMCID: PMC3475209 DOI: 10.3389/fphys.2012.00403] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/01/2012] [Indexed: 11/16/2022] Open
Abstract
We have previously shown that the caudal ventral respiratory group (cVRG) is a possible site of action of some antitussive drugs and plays a crucial role in determining both the expiratory and inspiratory components of the cough motor pattern. In addition, it has been reported that medullary expiratory neurons of the cVRG are subject to potent GABAergic gain modulation. This study was devoted to investigate the role of cVRG GABAA receptors in the control of baseline respiratory activity and cough responses to mechanical and chemical (citric acid) stimulation of the tracheobronchial tree. To this purpose, bilateral microinjections (30–50 nl) of bicuculline or muscimol were performed into the cVRG of pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Bicuculline (1 mM) increased peak abdominal activity and respiratory frequency due to decreases in TE. Cough responses were potentiated mainly owing to increases in the cough number. The recovery was observed within ~2 h. On the contrary, muscimol (0.3 mM) abolished abdominal activity and decreased respiratory frequency due to increases in TE. In addition, cough responses were progressively reduced and completely suppressed within ~20 min. Partial recovery of cough responses was achieved after ~3 h or within ~5 min following bicuculline microinjections at the same locations. The sneeze reflex induced by mechanical stimulation of the nasal mucosa persisted following bicuculline and muscimol microinjections. However, the number and intensity of expiratory thrusts were enhanced by bicuculline and suppressed by muscimol. The results provide evidence that a potent GABAA-mediated inhibitory modulation is exerted at the level of the cVRG not only on respiratory activity, but also on cough and sneeze reflex responses.
Collapse
Affiliation(s)
- Elenia Cinelli
- Dipartimento di Scienze Fisiologiche, Università degli Studi di Firenze Firenze, Italy
| | | | | | | |
Collapse
|
7
|
Zhang J, Luo P, Ro JY, Xiong H. Jaw muscle spindle afferents coordinate multiple orofacial motoneurons via common premotor neurons in rats: an electrophysiological and anatomical study. Brain Res 2012; 1489:37-47. [PMID: 23085474 DOI: 10.1016/j.brainres.2012.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/28/2012] [Accepted: 10/09/2012] [Indexed: 10/27/2022]
Abstract
Jaw muscle spindle afferents (JMSA) in the mesencephalic trigeminal nucleus (Vme) project to the parvocellular reticular nucleus (PCRt) and dorsomedial spinal trigeminal nucleus (dm-Vsp). A number of premotor neurons that project to the trigeminal motor nucleus (Vmo), facial nucleus (VII) and hypoglossal nucleus (XII) are also located in the PCRt and dm-Vsp. In this study, we examined whether these premotor neurons serve as common relay pool for relaying JMSA to multiple orofacial motoneurons. JMSA inputs to the PCRt and dm-Vsp neurons were verified by recording extracellular responses to electrical stimulation of the caudal Vme or masseter nerve, mechanical stimulation of jaw muscles and jaw opening. After recording, biocytin in recording electrode was inotophorized into recording sites. Biocytin-Iabeled fibers traveled to the Vmo, VII, XII, and the nucleus ambiguus (Amb). Labeled boutons were seen in close apposition with Nissl-stained motoneurons in the Vmo, VII, XII and Amb. In addition, an anterograde tracer (biotinylated dextran amine) was iontophorized into the caudal Vme, and a retrograde tracer (Cholera toxin B subunit) was delivered into either the VII or Xll to identify VII and XII premotor neurons that receive JMSA input. Contacts between labeled Vme neuronal boutons and premotor neurons were observed in the PCRt and adjacent dm-Vsp. Confocal microscopic observations confirmed close contacts between Vme boutons and VII and XII premotor neurons. This study provides evidence that JMSA may coordinate activities of multiple orofacial motor nuclei, including Vmo, VII, XII and Amb in the brainstem via a common premotor neuron pool.
Collapse
Affiliation(s)
- Jingdong Zhang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | | | | | | |
Collapse
|
8
|
Kunibe I, Nonaka S, Katada A, Adachi M, Arakawa T, Harabuchi Y. Fos expression in the brainstem nuclei evoked by nasal air-jet stimulation in rats. ACTA ACUST UNITED AC 2007; 21:128-32. [PMID: 17283575 DOI: 10.2500/ajr.2007.21.2910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Noxious stimulation of the nasal mucosa may induce protective reflexes in the upper airway in rats. Previously, we have reported that nasal air-jet stimulation increases the activities of the laryngeal muscles in decerebrate cats; however, the neuronal mechanism of this phenomenon still is not clarified. METHODS After the application of nasal air-jet stimulation for 2 hours, we investigated the distribution of Fos-positive cells (FPCs) throughout the medulla compared with sham-operated rats using Fos immunoreactivity. RESULTS FPCs in the spinal trigeminal nucleus, the parvocellular reticular nucleus, and the nucleus of the solitary tract were more frequent than the sham-operated rats. CONCLUSION These results suggest that the afferents induced by air-jet stimulation were conveyed to these FPCs and that some of these cells might participate in the augmentation of laryngeal muscle activities during nasal air-jet stimulation.
Collapse
Affiliation(s)
- Isamu Kunibe
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical College, Asahikawa, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Ludlow CL. Recent advances in laryngeal sensorimotor control for voice, speech and swallowing. Curr Opin Otolaryngol Head Neck Surg 2004; 12:160-5. [PMID: 15167023 DOI: 10.1097/01.moo.0000120302.58882.13] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This article reviews advances in knowledge on laryngeal sensorimotor control affecting the assessment, understanding, and treatment of laryngeal motor control disorders in voice, speech, and swallowing. Three topics are covered: new knowledge on laryngeal innervation and central nervous system control from basic research studies, the role of laryngeal sensation in normal swallowing and dysphagia in patients, and new approaches to the restoration of laryngeal motor control after recurrent laryngeal nerve disorders. RECENT FINDINGS A significant advance this year was tracing the efferent pathways from the cortex to the brainstem in monkeys. This provided new information on subcortical and brainstem connections in the laryngeal efferent pathways. Laryngeal sensory feedback continued to receive attention, and the role of sensory feedback in the control of the pharyngeal phase of swallowing is now well established. Further developments in neuromotor monitoring of the recurrent laryngeal nerve during thyroidectomy were seen, and a large case series recommended that these techniques become standard practice for surgery for thyroid benign recurrence or malignancy. Finally, the first tissue engineering papers in the field of vocal fold tissue and nerve restoration were published this year, beginning an exciting new approach to restoration of laryngeal motor control. SUMMARY Considerable attention has been given to laryngeal muscle physiology, denervation, and sensation in neurolaryngology. Relatively limited understanding is available regarding the central nervous system integrative control of laryngeal function for speech, respiration, and swallowing.
Collapse
Affiliation(s)
- Christy L Ludlow
- Laryngeal and Speech Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892-1416, USA.
| |
Collapse
|