1
|
Facchini J, Rastoldo G, Xerri C, Péricat D, El Ahmadi A, Tighilet B, Zennou-Azogui Y. Unilateral vestibular neurectomy induces a remodeling of somatosensory cortical maps. Prog Neurobiol 2021; 205:102119. [PMID: 34246703 DOI: 10.1016/j.pneurobio.2021.102119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Unilateral Vestibular Neurectomy (UVN) induces a postural syndrome whose compensation over time is underpinned by multimodal sensory substitution processes. However, at a chronic stage of compensation, UVN rats exhibit an enduring postural asymmetry expressed by an increase in the body weight on the ipsilesional paws. Given the anatomo-functional links between the vestibular nuclei and the primary somatosensory cortex (S1), we explored the interplay of vestibular and somatosensory cortical inputs following acute and chronic UVN. We determined whether the enduring imbalance in tactilo-plantar inputs impacts response properties of S1 cortical neurons and organizational features of somatotopic maps. We performed electrophysiological mapping of the hindpaw cutaneous representations in S1, immediately and one month after UVN. In parallel, we assessed the posturo-locomotor imbalance during the compensation process. UVN immediately induces an expansion of the cortical neuron cutaneous receptive fields (RFs) leading to a partial dedifferentiation of somatotopic maps. This effect was demonstrated for the ventral skin surface representations and was greater on the contralesional hindpaw for which the neuronal threshold to skin pressure strongly decreased. The RF enlargement was amplified for the representation of the ipsilesional hindpaw in relation to persistent postural asymmetries, but was transitory for the contralesional one. Our study shows, for the first time, that vestibular inputs exert a modulatory influence on S1 neuron's cutaneous responses. The lesion-induced cortical malleability highlights the influence of vestibular inputs on tactile processing related to postural control.
Collapse
Affiliation(s)
- Justine Facchini
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives (LNC), UMR 7291, Marseille, France
| | - Guillaume Rastoldo
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives (LNC), UMR 7291, Marseille, France
| | - Christian Xerri
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives (LNC), UMR 7291, Marseille, France
| | - David Péricat
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives (LNC), UMR 7291, Marseille, France
| | - Abdessadek El Ahmadi
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives (LNC), UMR 7291, Marseille, France
| | - Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives (LNC), UMR 7291, Marseille, France.
| | - Yoh'i Zennou-Azogui
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives (LNC), UMR 7291, Marseille, France.
| |
Collapse
|
2
|
Sun B, Zhang XY, Liu LZ, Chen ZH, Dai ZQ, Huang XS. Effects of Head-down Tilt on Nerve Conduction in Rhesus Monkeys. Chin Med J (Engl) 2017; 130:323-327. [PMID: 28139516 PMCID: PMC5308015 DOI: 10.4103/0366-6999.198925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Few studies have focused on peripheral nerve conduction during exposure to microgravity. The -6° head-down tilt (HDT) comprises an experimental model used to simulate the space flight environment. This study investigated nerve conduction characteristics of rhesus monkeys before and after prolonged exposure to HDT. METHODS Six rhesus monkeys (3-4 years old) were tilted backward 6° from the horizontal. Nerve conduction studies (NCSs) were performed on the median, ulnar, tibial, and fibular motor nerves. Analysis of variance with a randomized block design was conducted to compare the differences in the NCS before and 7, 21, and 42 days after the -6° HDT. RESULTS The proximal amplitude of the CMAP of the median nerve was significantly decreased at 21 and 42 days of HDT compared with the amplitude before HDT (4.38 ± 2.83 vs. 8.40 ± 2.66 mV, F = 4.85, P = 0.013 and 3.30 ± 2.70 vs. 8.40 ± 2.66 mV, F = 5.93, P = 0.004, respectively). The distal amplitude of the CMAP of the median nerve was significantly decreased at 7, 21, and 42 days of HDT compared with the amplitude before HDT (7.28 ± 1.27 vs. 10.25 ± 3.40 mV, F = 4.03, P = 0.039; 5.05 ± 2.01 vs. 10.25 ± 3.40 mV, F = 6.25, P = 0.04; and 3.95 ± 2.79 vs. 10.25 ± 3.40 mV, F = 7.35, P = 0.01; respectively). The proximal amplitude of the CMAP of the tibial nerve was significantly decreased at 42 days of HDT compared with the amplitude before HDT (6.14 ± 1.94 vs. 11.87 ± 3.19 mV, F = 5.02, P = 0.039). CONCLUSIONS This study demonstrates that the compound muscle action potential amplitudes of nerves are decreased under simulated microgravity in rhesus monkeys. Moreover, rhesus monkeys exposed to HDT might be served as an experimental model for the study of NCS under microgravity.
Collapse
Affiliation(s)
- Bo Sun
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Xiao-Yun Zhang
- Department of Neurology, 306 Hospital of People's Liberation Army, Beijing 100101, China
| | - Li-Zhi Liu
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Zhao-Hui Chen
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Zhong-Quan Dai
- Department of Biomedical Engineering, China Astronaut Research and Training Center, Beijing 100101, China
| | - Xu-Sheng Huang
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
3
|
Intermittent application of hypergravity by centrifugation attenuates disruption of rat gait induced by 2 weeks of simulated microgravity. Behav Brain Res 2015; 287:276-84. [PMID: 25819803 DOI: 10.1016/j.bbr.2015.03.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/14/2015] [Accepted: 03/14/2015] [Indexed: 11/23/2022]
Abstract
The effects of intermittent hypergravity on gait alterations and hindlimb muscle atrophy in rats induced by 2 weeks of simulated microgravity were investigated. Rats were submitted to hindlimb unloading for 2 weeks (unloading period), followed by 2 weeks of reloading (recovery period). During the unloading period, animals were subjected to the following treatments: (1) free in cages (Control); (2) continuous unloading (UL); (3) released from unloading for 1 hour per day (UL+1G); (4) hypergravity for 1h per day using a centrifuge for small animals (UL+2G). The relative weights of muscles to the whole body weight and kinematics properties of hindlimbs during gait were evaluated. UL rats walked with their hindlimbs overextended, and the oscillation of their limb motion had become narrowed and forward-shifted after the unloading period, and this persisted for at least 2 weeks after the termination of unloading. However, these locomotor alterations were attenuated in rats subjected to UL+2G centrifugation despite minor systematic changes in muscle recovery. These findings indicate hypergravity application could counteract the adverse effects of simulated or actual microgravity environments.
Collapse
|
4
|
Gok DK, Akpinar D, Hidisoglu E, Ozen S, Agar A, Yargicoglu P. The developmental effects of extremely low frequency electric fields on visual and somatosensory evoked potentials in adult rats. Electromagn Biol Med 2014; 35:65-74. [PMID: 25496054 DOI: 10.3109/15368378.2014.987923] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The purpose of our study was to investigate the developmental effects of extremely low frequency electric fields (ELF-EFs) on visual evoked potentials (VEPs) and somatosensory-evoked potentials (SEPs) and to examine the relationship between lipid peroxidation and changes of these potentials. In this context, thiobarbituric acid reactive substances (TBARS) levels were determined as an indicator of lipid peroxidation. Wistar albino female rats were divided into four groups; Control (C), gestational (prenatal) exposure (Pr), gestational+ postnatal exposure (PP) and postnatal exposure (Po) groups. Pregnant rats of Pr and PP groups were exposed to 50 Hz electric field (EF) (12 kV/m; 1 h/day), while those of C and Po groups were placed in an inactive system during pregnancy. Following parturition, rats of PP and Po groups were exposed to ELF-EFs whereas rats of C and Pr groups were kept under the same experimental conditions without being exposed to any EF during 68 days. On postnatal day 90, rats were prepared for VEP and SEP recordings. The latencies of VEP components in all experimental groups were significantly prolonged versus C group. For SEPs, all components of PP group, P2, N2 components of Pr group and P1, P2, N2 components of Po group were delayed versus C group. As brain TBARS levels were significantly increased in Pr and Po groups, retina TBARS levels were significantly elevated in all experimental groups versus C group. In conclusion, alterations seen in evoked potentials, at least partly, could be explained by lipid peroxidation in the retina and brain.
Collapse
Affiliation(s)
- Deniz Kantar Gok
- a Department of Biophysics , Faculty of Medicine, Akdeniz University , Antalya , Turkey
| | - Deniz Akpinar
- a Department of Biophysics , Faculty of Medicine, Akdeniz University , Antalya , Turkey
| | - Enis Hidisoglu
- a Department of Biophysics , Faculty of Medicine, Akdeniz University , Antalya , Turkey
| | - Sukru Ozen
- b Department of Electrical and Electronics Engineering , Engineering Faculty, Akdeniz University , Antalya , Turkey , and
| | - Aysel Agar
- c Department of Physiology , Faculty of Medicine, Akdeniz University , Antalya , Turkey
| | - Piraye Yargicoglu
- a Department of Biophysics , Faculty of Medicine, Akdeniz University , Antalya , Turkey
| |
Collapse
|
5
|
Dendritic spine remodeling induced by hindlimb unloading in adult rat sensorimotor cortex. Behav Brain Res 2013; 249:1-7. [DOI: 10.1016/j.bbr.2013.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/10/2013] [Accepted: 04/13/2013] [Indexed: 01/21/2023]
|
6
|
Comparison of the beneficial effect of melatonin on recovery after cut and crush sciatic nerve injury: a combined study using functional, electrophysiological, biochemical, and electron microscopic analyses. Childs Nerv Syst 2013; 29:389-401. [PMID: 23053363 DOI: 10.1007/s00381-012-1936-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/25/2012] [Indexed: 01/24/2023]
Abstract
PURPOSE Following tissue injury, melatonin is known to reduce detrimental effects of free radicals by stimulating antioxidant enzymes and also to inhibit posttraumatic polymorphonuclear infiltration. Beneficial effects after peripheral nerve injury have been suggested, but not studied in detail. Therefore, we aimed to elucidate the effects of melatonin on the recovery of the lesioned rat sciatic nerve by means of combined analysis. METHODS A total number of 90 rats were randomly distributed into six groups: control (group 1), sham-operated (group 2), sciatic nerve cut (group 3), sciatic nerve cut + melatonin treatment (group 4), sciatic nerve crush (group 5), and sciatic nerve crush + melatonin treatment (group 6). Melatonin was administered intraperitoneally at a dose of 50 mg/kg/day for 6 weeks. Recovery of function was analyzed by assessment of the sciatic functional index based on walking track analysis, somatosensory evoked potentials, biochemical quantification of malondialdehyde, antioxidant enzymes levels, and ultrastructural analysis. RESULTS Our data showed the beneficial effect of melatonin on sciatic nerve recovery. Rats treated with melatonin demonstrated better structural preservation of the myelin sheaths compared to the nontreated group. The biochemical analysis confirmed the beneficial effects of melatonin displaying lower lipid peroxidation and higher superoxide dismutase, catalase, and glutathione peroxidase activities in sciatic nerve samples in comparison to nontreated groups. CONCLUSIONS The beneficial effects of melatonin administration on the recovery of the cut and crush injured sciatic nerve may be attributed to its antioxidant properties. Based on these investigations, we think that our data would be helpful for clinicians who deal with peripheral nerve injuries.
Collapse
|
7
|
Kencebay C, Derin N, Ozsoy O, Kipmen-Korgun D, Tanriover G, Ozturk N, Basaranlar G, Yargicoglu-Akkiraz P, Sozen B, Agar A. Merit of quinacrine in the decrease of ingested sulfite-induced toxic action in rat brain. Food Chem Toxicol 2013; 52:129-36. [DOI: 10.1016/j.fct.2012.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
|
8
|
Langlet C, Bastide B, Canu MH. Hindlimb unloading affects cortical motor maps and decreases corticospinal excitability. Exp Neurol 2012; 237:211-7. [DOI: 10.1016/j.expneurol.2012.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 06/18/2012] [Accepted: 06/20/2012] [Indexed: 10/28/2022]
|
9
|
Prolonged hindlimb unloading leads to changes in electrophysiological properties of L5 dorsal root ganglion neurons in rats after 14 days. Muscle Nerve 2011; 45:65-9. [DOI: 10.1002/mus.22234] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Dupont E, Stevens L, Cochon L, Falempin M, Bastide B, Canu MH. ERK is involved in the reorganization of somatosensory cortical maps in adult rats submitted to hindlimb unloading. PLoS One 2011; 6:e17564. [PMID: 21408155 PMCID: PMC3050880 DOI: 10.1371/journal.pone.0017564] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 02/03/2011] [Indexed: 01/05/2023] Open
Abstract
Sensorimotor restriction by a 14-day period of hindlimb unloading (HU) in the adult rat induces a reorganization of topographic maps and receptive fields. However, the underlying mechanisms are still unclear. Interest was turned towards a possible implication of intracellular MAPK signaling pathway since Extracellular-signal-Regulated Kinase 1/2 (ERK1/2) is known to play a significant role in the control of synaptic plasticity. In order to better understand the mechanisms underlying cortical plasticity in adult rats submitted to a sensorimotor restriction, we analyzed the time-course of ERK1/2 activation by immunoblot and of cortical reorganization by electrophysiological recordings, on rats submitted to hindlimb unloading over four weeks. Immunohistochemistry analysis provided evidence that ERK1/2 phosphorylation was increased in layer III neurons of the somatosensory cortex. This increase was transient, and parallel to the changes in hindpaw cortical map area (layer IV). By contrast, receptive fields were progressively enlarged from 7 to 28 days of hindlimb unloading. To determine whether ERK1/2 was involved in cortical remapping, we administered a specific ERK1/2 inhibitor (PD-98059) through osmotic mini-pump in rats hindlimb unloaded for 14 days. Results demonstrate that focal inhibition of ERK1/2 pathway prevents cortical reorganization, but had no effect on receptive fields. These results suggest that ERK1/2 plays a role in the induction of cortical plasticity during hindlimb unloading.
Collapse
|
11
|
Activity-dependent changes in the electrophysiological properties of regular spiking neurons in the sensorimotor cortex of the rat in vitro. Behav Brain Res 2010; 209:289-94. [PMID: 20144900 DOI: 10.1016/j.bbr.2010.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 01/29/2010] [Accepted: 02/02/2010] [Indexed: 11/23/2022]
Abstract
Sensorimotor performance is highly dependent on the level of physical activity. For instance, a period of disuse induces an impairment of motor performance, which is the result of combined muscular, spinal and supraspinal mechanisms. Concerning this latter origin, our hypothesis was that intrinsic properties and input/output coupling of cells within the sensorimotor cortex might participate to the alteration in cortical motor control. The aim of the present study was thus to examine the basic electrophysiological characteristics of cortical cells in control rats and in animals submitted to 14 days of hindlimb unloading, a model of sensorimotor deprivation. Intracellular recordings were obtained in vitro from coronal slices from cortical hindpaw representation area. We have also made an attempt to determine the morphological characteristics as well as the location of the investigated neurons by biocytin labelling. Passive properties of neurons were affected by hindlimb unloading: input resistance and time constant were decreased (-20%), the rheobase was increased (+34%), whereas the resting potential was unchanged. The frequency-current relationships were also modified, the curve being shifted towards right. The size of body area of recorded neurons was unchanged in unloaded rats. Taken together, these data reflect a decrease in excitability of cortical cells in response to a decreased cortical activation.
Collapse
|
12
|
Canu MH, Carnaud M, Picquet F, Goutebroze L. Activity-dependent regulation of myelin maintenance in the adult rat. Brain Res 2008; 1252:45-51. [PMID: 19041295 DOI: 10.1016/j.brainres.2008.10.079] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 10/29/2008] [Accepted: 10/30/2008] [Indexed: 11/24/2022]
Abstract
Hindlimb unloading (HU) is known to induce changes in the neuromuscular system. However, no data describing the effects of HU on morphological characteristics of peripheral nerve have been reported so far. Therefore, we used soleus and radial nerves obtained from control and rats submitted to 14 days of HU to study the consequences of a decrease (soleus) or an increase (radial) in neural activity on its morphology. The mean number of fibers was not changed after HU. The soleus nerve axon diameter was weakly affected after HU, whereas the myelin thickness was reduced. For the radial nerve, both axon and fiber diameter were increased, and the myelin thickness and internodal distance were higher in HU rats. These results suggest that regulation of myelin maintenance undergoes plastic mechanisms. Neural activity and/or neural pattern might be essential in the maintenance of myelin sheath in adults.
Collapse
Affiliation(s)
- Marie-Hélène Canu
- Laboratoire de Plasticité Neuromusculaire, EA 4345, IFR 147, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq cedex, France.
| | | | | | | |
Collapse
|
13
|
Canu MH, Treffort N, Picquet F, Dubreucq G, Guerardel Y, Falempin M. Concentration of amino acid neurotransmitters in the somatosensory cortex of the rat after surgical or functional deafferentation. Exp Brain Res 2006; 173:623-8. [PMID: 16544137 DOI: 10.1007/s00221-006-0401-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 02/06/2006] [Indexed: 11/29/2022]
Abstract
Hindlimb unloading is considered as a model of functional deafferentation, since in this situation the tactile information from the paw and the proprioceptive input from the limb are dramatically reduced. Unloading induces a shrinkage of the cortical representation of the affected body part associated to a reorganization of topographic maps and to an expansion of receptive fields. Previous studies have suggested that cortical plasticity was the result of a change in the balance of excitation and inhibition in the cortex. The aim of the present study was thus to determine whether deafferentation of the hindlimb representation in the somatosensory cortex, by 14 days of unloading or by surgical means (selective dorsal rhizotomy during 17 days), can change the concentration in various amino acid neurotransmitters in the deprived cortex. The present findings indicate that both types of deafferentation result in a decrease in inhibitory amino acids (GABA, taurine) without significant changes in the main excitatory amino acid (glutamate). In conclusion, the present results support the idea that cortical changes are more likely due to a release from inhibition than to an increased excitation.
Collapse
Affiliation(s)
- Marie-Hélène Canu
- Unité de Neurosciences et Physiologie Adaptative, Groupe Plasticité Neuromusculaire, Université des Sciences et Technologies de Lille, 59655, Villeneuve d'Ascq Cedex, France.
| | | | | | | | | | | |
Collapse
|
14
|
Picquet F, Bouet V, Cochon L, Lacour M, Falempin M. Changes in rat soleus muscle phenotype consecutive to a growth in hypergravity followed by normogravity. Am J Physiol Regul Integr Comp Physiol 2005; 289:R217-24. [PMID: 15774767 DOI: 10.1152/ajpregu.00596.2004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been demonstrated that a long-term stay in hypergravity (HG: 2G) modified the phenotype and the contractile properties of rat soleus muscle. The ability of this muscle to contract was drastically reduced, which is a sign of anticipated aging. Consequently, our aim was to determine whether rats conceived, born, and reared in hypergravity showed adaptative capacities in normogravity (NG: 1G). This study was performed on rats divided into two series: the first was reared in HG until 100 days and was submitted to normogravity until 115 to 220 postnatal days (HG-NG rats); the second was made up of age paired groups reared in normogravity (NG rats). The contractile, morphological, and phenotypical properties of soleus muscle were studied. Our results showed that the NG rats were characterized by coexpressions of slow and fast myosin, respectively, 76.5 and 23.5% at 115 days. During their postnatal maturation, the fast isoform was gradually replaced by slow myosin. At 220 days, the relative proportions were respectively 91.05% and 8.95%. From 115 to 220 days, the HG-NG rats expressed 100% of slow myosin isoform and they presented a slower contractile behavior compared with their age-matched groups; at 115 days, the whole muscle contraction time was increased by 35%, and by 15%, at 220 days. Our study underlined the importance of gravity in the muscular development and suggested the existence of critical periods in muscle phenotype installation.
Collapse
Affiliation(s)
- F Picquet
- Laboratoire de Plasticité Neuromusculaire, UPRES EA 1032, IFR 118, Université des Sciences et Technologies de Lille, Bat SN4, 59655 Villeneuve d'Ascq cedex, France.
| | | | | | | | | |
Collapse
|
15
|
Abstract
Spastic paresis follows chronic disruption of the central execution of volitional command. Motor function in patients with spastic paresis is subjected over time to three fundamental insults, of which the last two are avoidable: (1) the neural insult itself, which causes paresis, i.e., reduced voluntary motor unit recruitment; (2) the relative immobilization of the paretic body part, commonly imposed by the current care environment, which causes adaptive shortening of the muscles left in a shortened position and joint contracture; and (3) the chronic disuse of the paretic body part, which is typically self-imposed in most patients. Chronic disuse causes plastic rearrangements in the higher centers that further reduce the ability to voluntarily recruit motor units, i.e., that aggravate baseline paresis. Part I of this review focuses on the pathophysiology of the first two factors causing motor impairment in spastic paresis: the vicious cycle of paresis-disuse-paresis and the contracture in soft tissues.
Collapse
Affiliation(s)
- Jean-Michel Gracies
- Department of Neurology, Mount Sinai Medical Center, One Gustave L Levy Place, Annenberg 2/Box 1052, New York, New York 10029-6574, USA.
| |
Collapse
|
16
|
Dupont E, Canu MH, Stevens L, Falempin M. Effects of a 14-day period of hindpaw sensory restriction on mRNA and protein levels of NGF and BDNF in the hindpaw primary somatosensory cortex. ACTA ACUST UNITED AC 2005; 133:78-86. [PMID: 15661367 DOI: 10.1016/j.molbrainres.2004.09.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2004] [Indexed: 10/26/2022]
Abstract
Neurotrophins have been reported to play an important role in neuronal plasticity and to be regulated by neuronal activity and/or neurotransmitters. Recently, we have shown that hindpaw sensory restriction induces a cortical reorganisation in the hindpaw primary somatosensory cortex, and that acetylcholine plays a significant role in this process. Sensory restriction was obtained by hindlimb suspension for 14 days. In this study, we examined the effects of a long period of hindpaw sensory restriction on the NGF and BDNF mRNA and protein expressions in the hindpaw somatosensory cortex. mRNA and protein levels were assessed by RT-PCR and ELISA, respectively. First, we found that NGF and BDNF mRNA relative levels increased after hindpaw sensory restriction. Second, the level of NGF protein increased, whereas that of BDNF remained unchanged. This differential response of NGF and BDNF proteins to sensory restriction suggested different levels of gene regulation, i.e., at pretranslational or posttranslational states. Moreover, inasmuch as our results differ from other models of sensory restriction (dark rearing, whisker removal, etc.), we hypothesized that the regulation of neurotrophin expression is dependent on the type and duration of the sensory restriction. In conclusion, we argue that neuronal plasticity induced by hindpaw sensory restriction requires neurotrophin expression.
Collapse
Affiliation(s)
- Erwan Dupont
- Laboratoire de Plasticité Neuromusculaire, EA 1032, IFR 118 Université des Sciences et Technologies de Lille, Bâtiment SN4 F-59655 Villeneuve d'Ascq Cedex, France
| | | | | | | |
Collapse
|
17
|
Dupont E, Canu MH, Falempin M. A 14-day period of hindpaw sensory deprivation enhances the responsiveness of rat cortical neurons. Neuroscience 2003; 121:433-9. [PMID: 14522001 DOI: 10.1016/s0306-4522(03)00494-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hypodynamia-hypokinesia (HH) is a model of hindpaw sensory deprivation. It is obtained by unloading of the hindquarters during 14 days. In this situation, the feet are not in contact with the ground and as a consequence, the cutaneous receptors are not activated; the sensory input to the primary somatosensory cortex (SmI) is thus reduced. In a previous study, we have shown that HH induced a cortical reorganisation of the hindlimb representation. The understanding of the mechanisms involved in cortical map plasticity requires a close examination of the changes in response properties of cortical neurons during HH. The aim of the present study was thus to study the characteristics of neurons recorded from granular and infragranular layers in hindlimb representation of SmI. A total of 289 cortical neurons were recorded (158 from control rats and 131 from HH rats) in pentobarbital-anaesthetized rats. Cutaneous threshold, cutaneous receptive fields, spontaneous activity (discharge rate and instantaneous frequency) and activity evoked by air-jet stimulation (response latency and duration, amplitude) were analysed. The present study suggests that activity-dependent changes occur in the cortex. The duration of the spike waveform presented two populations of spikes: thin-spike cells (<1 ms, supposed to be inhibitory interneurons) and regular cells (>1 ms). Thin-spike cells were less frequently encountered in HH than in control rats. The analysis of regular cells revealed that after HH (1) spontaneous activity was unchanged and (2) cortical somatosensory neurons were more responsive: the cutaneous threshold was reduced and the response magnitude increased. Taken together, these results suggest a down-regulation of GABAergic function.
Collapse
Affiliation(s)
- E Dupont
- Laboratoire de Plasticité Neuromusculaire, EA 1032, IFR 118, Université des Sciences et Technologies de Lille, Bâtiment SN4, F-59655, Villeneuve d'Ascq Cedex, France
| | | | | |
Collapse
|