1
|
Nurten A, Gören MZ, Tekin N, Kaşkal M, Enginar N. Assessing effects of tamoxifen on tolerance, dependence, and glutamate and glutamine levels in frontal cortex and hippocampus in chronic morphine treatment. Behav Brain Res 2024; 463:114897. [PMID: 38331101 DOI: 10.1016/j.bbr.2024.114897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Tamoxifen has been shown to reduce glutamate release from presynaptic glutamatergic nerves and reverse tolerance to morphine-induced respiratory depression. Changes in glutamatergic neurotransmission in the central nervous system contribute to morphine tolerance, dependence, and withdrawal. This study, therefore, evaluated effects of tamoxifen on development of analgesic tolerance and dependence, and brain glutamate and glutamine levels in chronic morphine administration. Mice implanted with placebo or morphine pellets were injected with tamoxifen (0.6-2 mg/kg) or vehicle twice daily for 3 days. Nociceptive response was evaluated in the hot plate and tail immersion tests, 4, 48 and 72 h post-implant, and following a challenge dose of morphine (10 mg/kg). Withdrawal signs were determined after naloxone (1 mg/kg) administration. Morphine increased nociceptive threshold which declined over time. At 72 h, acute morphine elicited tolerance to the analgesic effect in the hot plate test in vehicle or tamoxifen administered animals. In the tail immersion test, however, tolerance to morphine analgesia was observed in tamoxifen, but not vehicle, co-administration. Tamoxifen did not reduce withdrawal signs. In contrast to previous reports, glutamate and glutamine levels in the hippocampus and frontal cortex did not change in the morphine-vehicle group. Confirming previous findings, tamoxifen (2 mg/kg) decreased glutamate and glutamine concentrations in the hippocampus in animals with placebo pellets. Both doses of tamoxifen significantly changed glutamate and/or glutamine concentrations in both regions in morphine pellet implanted animals. These results suggest that tamoxifen has no effect on dependence but may facilitate tolerance development to the antinociception, possibly mediated at the spinal level, in chronic morphine administration.
Collapse
Affiliation(s)
- Asiye Nurten
- Department of Physiology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - M Zafer Gören
- Department of Medical Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Nurdan Tekin
- Department of Medical Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Mert Kaşkal
- Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nurhan Enginar
- Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
2
|
Balkaya M, Dohare P, Chen S, Schober AL, Fidaleo AM, Nalwalk JW, Sah R, Mongin AA. Conditional deletion of LRRC8A in the brain reduces stroke damage independently of swelling-activated glutamate release. iScience 2023; 26:106669. [PMID: 37182109 PMCID: PMC10173736 DOI: 10.1016/j.isci.2023.106669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/03/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
The ubiquitous volume-regulated anion channels (VRACs) facilitate cell volume control and contribute to many other physiological processes. Treatment with non-specific VRAC blockers or brain-specific deletion of the essential VRAC subunit LRRC8A is highly protective in rodent models of stroke. Here, we tested the widely accepted idea that the harmful effects of VRACs are mediated by release of the excitatory neurotransmitter glutamate. We produced conditional LRRC8A knockout either exclusively in astrocytes or in the majority of brain cells. Genetically modified mice were subjected to an experimental stroke (middle cerebral artery occlusion). The astrocytic LRRC8A knockout yielded no protection. Conversely, the brain-wide LRRC8A deletion strongly reduced cerebral infarction in both heterozygous (Het) and full KO mice. Yet, despite identical protection, Het mice had full swelling-activated glutamate release, whereas KO animals showed its virtual absence. These findings suggest that LRRC8A contributes to ischemic brain injury via a mechanism other than VRAC-mediated glutamate release.
Collapse
Affiliation(s)
- Mustafa Balkaya
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Preeti Dohare
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Sophie Chen
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Alexandra L. Schober
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Antonio M. Fidaleo
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Julia W. Nalwalk
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Rajan Sah
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexander A. Mongin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
- Corresponding author
| |
Collapse
|
3
|
Okada Y, Sabirov RZ, Sato-Numata K, Numata T. Cell Death Induction and Protection by Activation of Ubiquitously Expressed Anion/Cation Channels. Part 1: Roles of VSOR/VRAC in Cell Volume Regulation, Release of Double-Edged Signals and Apoptotic/Necrotic Cell Death. Front Cell Dev Biol 2021; 8:614040. [PMID: 33511120 PMCID: PMC7835517 DOI: 10.3389/fcell.2020.614040] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022] Open
Abstract
Cell volume regulation (CVR) is essential for survival and functions of animal cells. Actually, normotonic cell shrinkage and swelling are coupled to apoptotic and necrotic cell death and thus called the apoptotic volume decrease (AVD) and the necrotic volume increase (NVI), respectively. A number of ubiquitously expressed anion and cation channels are involved not only in CVD but also in cell death induction. This series of review articles address the question how cell death is induced or protected with using ubiquitously expressed ion channels such as swelling-activated anion channels, acid-activated anion channels and several types of TRP cation channels including TRPM2 and TRPM7. The Part 1 focuses on the roles of the volume-sensitive outwardly rectifying anion channels (VSOR), also called the volume-regulated anion channel (VRAC), which is activated by cell swelling or reactive oxygen species (ROS) in a manner dependent on intracellular ATP. First we describe phenotypical properties, the molecular identity, and physical pore dimensions of VSOR/VRAC. Second, we highlight the roles of VSOR/VRAC in the release of organic signaling molecules, such as glutamate, glutathione, ATP and cGAMP, that play roles as double-edged swords in cell survival. Third, we discuss how VSOR/VRAC is involved in CVR and cell volume dysregulation as well as in the induction of or protection from apoptosis, necrosis and regulated necrosis under pathophysiological conditions.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan
- Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ravshan Z. Sabirov
- Laboratory of Molecular Physiology, Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Kaori Sato-Numata
- Japan Society for the Promotion of Science, Tokyo, Japan
- Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Tomohiro Numata
- Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
4
|
Griffin M, Khan R, Basu S, Smith S. Ion Channels as Therapeutic Targets in High Grade Gliomas. Cancers (Basel) 2020; 12:cancers12103068. [PMID: 33096667 PMCID: PMC7589494 DOI: 10.3390/cancers12103068] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Glioblastoma multiforme is an aggressive grade IV lethal brain tumour with a median survival of 14 months. Despite surgery to remove the tumour, and subsequent concurrent chemotherapy and radiotherapy, there is little in terms of effective treatment options. Because of this, exploring new treatment avenues is vital. Brain tumours are intrinsically electrically active; expressing unique patterns of ion channels, and this is a characteristic we can exploit. Ion channels are specialised proteins in the cell’s membrane that allow for the passage of positive and negatively charged ions in and out of the cell, controlling membrane potential. Membrane potential is a crucial biophysical signal in normal and cancerous cells. Research has identified that specific classes of ion channels not only move the cell through its cell cycle, thus encouraging growth and proliferation, but may also be essential in the development of brain tumours. Inhibition of sodium, potassium, calcium, and chloride channels has been shown to reduce the capacity of glioblastoma cells to grow and invade. Therefore, we propose that targeting ion channels and repurposing commercially available ion channel inhibitors may hold the key to new therapeutic avenues in high grade gliomas. Abstract Glioblastoma multiforme (GBM) is a lethal brain cancer with an average survival of 14–15 months even with exhaustive treatment. High grade gliomas (HGG) represent the leading cause of CNS cancer-related death in children and adults due to the aggressive nature of the tumour and limited treatment options. The scarcity of treatment available for GBM has opened the field to new modalities such as electrotherapy. Previous studies have identified the clinical benefit of electrotherapy in combination with chemotherapeutics, however the mechanistic action is unclear. Increasing evidence indicates that not only are ion channels key in regulating electrical signaling and membrane potential of excitable cells, they perform a crucial role in the development and neoplastic progression of brain tumours. Unlike other tissue types, neural tissue is intrinsically electrically active and reliant on ion channels and their function. Ion channels are essential in cell cycle control, invasion and migration of cancer cells and therefore present as valuable therapeutic targets. This review aims to discuss the role that ion channels hold in gliomagenesis and whether we can target and exploit these channels to provide new therapeutic targets and whether ion channels hold the mechanistic key to the newfound success of electrotherapies.
Collapse
Affiliation(s)
- Michaela Griffin
- Children’s Brain Tumour Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Raheela Khan
- Division of Medical Sciences and Graduate Entry Medicine, Royal Derby Hospital, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Surajit Basu
- Department of Neurosurgery, Queen’s Medical Centre, Nottingham University Hospitals, Nottingham NG7 2RD, UK;
| | - Stuart Smith
- Children’s Brain Tumour Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
- Correspondence:
| |
Collapse
|
5
|
Vahidinia Z, Karimian M, Joghataei MT. Neurosteroids and their receptors in ischemic stroke: From molecular mechanisms to therapeutic opportunities. Pharmacol Res 2020; 160:105163. [DOI: 10.1016/j.phrs.2020.105163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 01/09/2023]
|
6
|
Tamoxifen promotes white matter recovery and cognitive functions in male mice after chronic hypoperfusion. Neurochem Int 2019; 131:104566. [PMID: 31593788 DOI: 10.1016/j.neuint.2019.104566] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 12/18/2022]
Abstract
Cerebral white matter lesions (WMLs) induced by chronic cerebral hypoperfusion are one of the major components of stroke pathology and closely associated with cognitive impairment. However, the repair and related pathophysiology of white matter after brain injury remains relatively elusive and underexplored. Successful neuroregeneration is a method for the potential treatment of central nervous system (CNS) disorders. A non-steroidal estrogen receptor modulator, Tamoxifen, is an effective inhibitor of cell-swelling-activated anion channels and can mimic neuroprotective effects of estrogen in experimental ischemic stroke. However, its remains unclear whether Tamoxifen has beneficial effects in the pathological process after WMLs. In the present study, we investigated the efficacy of Tamoxifen on multiple elements of oligovascular niche of the male C57BL/6 mice brain after bilateral carotid artery stenosis (BCAS) - induced WMLs. Tamoxifen was injected intraperitoneally once daily from 1 day after BCAS until 1 day before sacrificed. Following chronic hypoperfusion, BCAS mice presented white matter demyelination, loss of axon-glia integrity, activated inflammatory response, and cognitive impairments. Tamoxifen treatment significantly facilitated functional restoration of working memory impairment in mice after white matter injury, thus indicating a translational potential for this estrogen receptor modulator given its clinical safety and applicability for WMLs, which lack of currently available treatments. Furthermore, Tamoxifen treatment reduced microglia activation and inflammatory response, favored microglial polarization toward to the M2 phenotype, enhanced oligodendrocyte precursor cells proliferation and differentiation, and promoted remyelination after chronic hypoperfusion. Together, our data indicate that Tamoxifen could alleviate white matter injury and play multiple targets protective effects following chronic hypoperfusion, which is a promising candidate for the therapeutic target for ischemic WMLs and other demyelination diseases associated cognitive impairment.
Collapse
|
7
|
Figueroa EE, Kramer M, Strange K, Denton JS. CysLT1 receptor antagonists pranlukast and zafirlukast inhibit LRRC8-mediated volume regulated anion channels independently of the receptor. Am J Physiol Cell Physiol 2019; 317:C857-C866. [PMID: 31390227 PMCID: PMC6850990 DOI: 10.1152/ajpcell.00281.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Volume-regulated anion channels (VRACs) encoded by the leucine-rich repeat containing 8 (LRRC8) gene family play critical roles in myriad cellular processes and might represent druggable targets. The dearth of pharmacological compounds available for studying VRAC physiology led us to perform a high-throughput screen of 1,184 of US Food and Drug Administration-approved drugs for novel VRAC modulators. We discovered the cysteinyl leukotriene receptor 1 (CysLT1R) antagonist, pranlukast, as a novel inhibitor of endogenous VRAC expressed in human embryonic kidney 293 (HEK293) cells. Pranlukast inhibits VRAC voltage-independently, reversibly, and dose-dependently with a maximal efficacy of only ~50%. The CysLT1R pathway has been implicated in activation of VRAC in other cell types, prompting us to test whether pranlukast requires the CysLT1R for inhibition of VRAC. Quantitative PCR analysis demonstrated that CYSLTR1 mRNA is virtually undetectable in HEK293 cells. Furthermore, the CysLT1R agonist leukotriene D4 had no effect on VRAC activity and failed to stimulate Gq-coupled receptor signaling. Heterologous expression of the CysLT1R reconstituted LTD4-CysLT1R- Gq-calcium signaling in HEK293 cells but had no effect on VRAC inhibition by pranlukast. Finally, we show the CysLT1R antagonist zafirlukast inhibits VRAC with an IC50 of ~17 µM and does so with full efficacy. Our data suggest that both pranlukast and zafirlukast are likely direct channel inhibitors that work independently of the CysLT1R. This study provides clarifying insights into the putative role of leukotriene signaling in modulation of VRAC and identifies two new chemical scaffolds that can be used for development of more potent and specific VRAC inhibitors.
Collapse
Affiliation(s)
- Eric E. Figueroa
- 1Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Meghan Kramer
- 2Department of Anesthesiology, Vanderbilt University Medical Center; Nashville, Tennessee
| | - Kevin Strange
- 2Department of Anesthesiology, Vanderbilt University Medical Center; Nashville, Tennessee,3Novo Biosciences, Inc., Bar Harbor, Maine
| | - Jerod S. Denton
- 1Department of Pharmacology, Vanderbilt University, Nashville, Tennessee,2Department of Anesthesiology, Vanderbilt University Medical Center; Nashville, Tennessee
| |
Collapse
|
8
|
Wilson CS, Mongin AA. Cell Volume Control in Healthy Brain and Neuropathologies. CURRENT TOPICS IN MEMBRANES 2018; 81:385-455. [PMID: 30243438 DOI: 10.1016/bs.ctm.2018.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Regulation of cellular volume is a critical homeostatic process that is intimately linked to ionic and osmotic balance in the brain tissue. Because the brain is encased in the rigid skull and has a very complex cellular architecture, even minute changes in the volume of extracellular and intracellular compartments have a very strong impact on tissue excitability and function. The failure of cell volume control is a major feature of several neuropathologies, such as hyponatremia, stroke, epilepsy, hyperammonemia, and others. There is strong evidence that such dysregulation, especially uncontrolled cell swelling, plays a major role in adverse pathological outcomes. To protect themselves, brain cells utilize a variety of mechanisms to maintain their optimal volume, primarily by releasing or taking in ions and small organic molecules through diverse volume-sensitive ion channels and transporters. In principle, the mechanisms of cell volume regulation are not unique to the brain and share many commonalities with other tissues. However, because ions and some organic osmolytes (e.g., major amino acid neurotransmitters) have a strong impact on neuronal excitability, cell volume regulation in the brain is a surprisingly treacherous process, which may cause more harm than good. This topical review covers the established and emerging information in this rapidly developing area of physiology.
Collapse
Affiliation(s)
- Corinne S Wilson
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Alexander A Mongin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States; Department of Biophysics and Functional Diagnostics, Siberian State Medical University, Tomsk, Russian Federation
| |
Collapse
|
9
|
Formaggio F, Saracino E, Mola MG, Rao SB, Amiry-Moghaddam M, Muccini M, Zamboni R, Nicchia GP, Caprini M, Benfenati V. LRRC8A is essential for swelling-activated chloride current and for regulatory volume decrease in astrocytes. FASEB J 2018; 33:101-113. [PMID: 29957062 DOI: 10.1096/fj.201701397rr] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Consolidated evidence indicates that astroglial cells are critical in the homeostatic regulation of cellular volume by means of ion channels and aquaporin-4. Volume-regulated anion channel (VRAC) is the chloride channel that is activated upon cell swelling and critically contributes to cell volume regulation in astrocytes. The molecular identity of VRAC has been recently defined, revealing that it belongs to the leucine-rich repeat-containing 8 (LRRC8) protein family. However, there is a lack of evidence demonstrating that LRRC8A underpins VRAC currents in astrocyte. Nonetheless, direct evidence of the role of LRRC8A in astrocytic regulatory volume decrease remains to be proved. Here, we aim to bridge this gap in knowledge by combining RNA interference specific for LRRC8A with patch-clamp analyses and a water-permeability assay. We demonstrated that LRRC8A molecular expression is essential for swelling-activated chloride current via VRAC in primary-cultured cortical astrocytes. The knockdown of LRRC8A with a specific short interference RNA abolished the recovery of the cell volume after swelling induced by hypotonic challenge. In addition, immunoblotting, immunofluorescence, confocal imaging, and immunogold electron microscopy demonstrated that LRRC8A is expressed in the plasma membrane of primary cortical astrocytes and in situ in astrocytes at the perivascular interface with endothelial cells. Collectively, our results suggest that LRRC8A is an essential subunit of VRAC and a key factor for astroglial volume homeostasis.-Formaggio, F., Saracino, E., Mola, M. G., Rao, S. B., Amiry-Moghaddam, M., Muccini, M., Zamboni, R., Nicchia, G. P., Caprini, M., Benfenati, V. LRRC8A is essential for swelling-activated chloride current and for regulatory volume decrease in astrocytes.
Collapse
Affiliation(s)
- Francesco Formaggio
- Laboratory of Human and General Physiology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,Institute for the Study of Nanostructured Materials, National Research Council of Italy, Bologna, Italy
| | - Emanuela Saracino
- Institute for the Organic Synthesis and Photoreactivity, National Research Council of Italy, Bologna, Italy
| | - Maria Grazia Mola
- Department of Bioscience, Biotechnologies, and Biopharmaceutics, Centre of Excellence in Comparative Genomics, University of Bari Aldo Moro, Bari, Italy
| | - Shreyas Balachandra Rao
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Mahmood Amiry-Moghaddam
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Michele Muccini
- Institute for the Study of Nanostructured Materials, National Research Council of Italy, Bologna, Italy
| | - Roberto Zamboni
- Institute for the Organic Synthesis and Photoreactivity, National Research Council of Italy, Bologna, Italy
| | - Grazia Paola Nicchia
- Department of Bioscience, Biotechnologies, and Biopharmaceutics, Centre of Excellence in Comparative Genomics, University of Bari Aldo Moro, Bari, Italy.,Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, USA
| | - Marco Caprini
- Laboratory of Human and General Physiology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,Institute for the Study of Nanostructured Materials, National Research Council of Italy, Bologna, Italy
| | - Valentina Benfenati
- Institute for the Study of Nanostructured Materials, National Research Council of Italy, Bologna, Italy.,Institute for the Organic Synthesis and Photoreactivity, National Research Council of Italy, Bologna, Italy
| |
Collapse
|
10
|
Jover-Mengual T, Castelló-Ruiz M, Burguete MC, Jorques M, López-Morales MA, Aliena-Valero A, Jurado-Rodríguez A, Pérez S, Centeno JM, Miranda FJ, Alborch E, Torregrosa G, Salom JB. Molecular mechanisms mediating the neuroprotective role of the selective estrogen receptor modulator, bazedoxifene, in acute ischemic stroke: A comparative study with 17β-estradiol. J Steroid Biochem Mol Biol 2017; 171:296-304. [PMID: 28479229 DOI: 10.1016/j.jsbmb.2017.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/26/2017] [Accepted: 05/03/2017] [Indexed: 12/11/2022]
Abstract
As the knowledge on the estrogenic system in the brain grows, the possibilities to modulate it in order to afford further neuroprotection in brain damaging disorders so do it. We have previously demonstrated the ability of the selective estrogen receptor modulator, bazedoxifene (BZA), to reduce experimental ischemic brain damage. The present study has been designed to gain insight into the molecular mechanisms involved in such a neuroprotective action by investigating: 1) stroke-induced apoptotic cell death; 2) expression of estrogen receptors (ER) ERα, ERβ and the G-protein coupled estrogen receptor (GPER); and 3) modulation of MAPK/ERK1/2 and PI3K/Akt signaling pathways. For comparison, a parallel study was done with 17β-estradiol (E2)-treated animals. Male Wistar rats subject to transient right middle cerebral artery occlusion (tMCAO, intraluminal thread technique, 60min), were distributed in vehicle-, BZA- (20.7±2.1ng/mL in plasma) and E2- (45.6±7.8pg/mL in plasma) treated groups. At 24h from the onset of tMCAO, RT-PCR, Western blot and histochemical analysis were performed on brain tissue samples. Ischemia-reperfusion per se increased apoptosis as assessed by both caspase-3 activity and TUNEL-positive cell counts, which were reversed by both BZA and E2. ERα and ERβ expression, but not that of GPER, was reduced by the ischemic insult. BZA and E2 had different effects: while BZA increased both ERα and ERβ expression, E2 increased ERα expression but did not change that of ERβ. Both MAPK/ERK1/2 and PI3K/Akt pathways were stimulated under ischemic conditions. While BZA strongly reduced the increased p-ERK1/2 levels, E2 did not. Neither BZA nor E2 modified ischemia-induced increase in p-Akt levels. These results show that modulation of ERα and ERβ expression, as well as of the ERK1/2 signaling pathway accounts, at least in part, for the inhibitory effect of BZA on the stroke-induced apoptotic cell death. This lends mechanistic support to the consideration of BZA as a potential neuroprotective drug in acute ischemic stroke treatment.
Collapse
Affiliation(s)
- Teresa Jover-Mengual
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - María Castelló-Ruiz
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Valencia Spain
| | - María C Burguete
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - María Jorques
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Mikahela A López-Morales
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Alicia Aliena-Valero
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Andrés Jurado-Rodríguez
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Salvador Pérez
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - José M Centeno
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Francisco J Miranda
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Enrique Alborch
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Germán Torregrosa
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Valencia Spain.
| | - Juan B Salom
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Valencia Spain
| |
Collapse
|
11
|
Mongin AA. Volume-regulated anion channel--a frenemy within the brain. Pflugers Arch 2015; 468:421-41. [PMID: 26620797 DOI: 10.1007/s00424-015-1765-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/16/2015] [Accepted: 11/20/2015] [Indexed: 10/22/2022]
Abstract
The volume-regulated anion channel (VRAC) is a ubiquitously expressed yet highly enigmatic member of the superfamily of chloride/anion channels. It is activated by cellular swelling and mediates regulatory cell volume decrease in a majority of vertebrate cells, including those in the central nervous system (CNS). In the brain, besides its crucial role in cellular volume regulation, VRAC is thought to play a part in cell proliferation, apoptosis, migration, and release of physiologically active molecules. Although these roles are not exclusive to the CNS, the relative significance of VRAC in the brain is amplified by several unique aspects of its physiology. One important example is the contribution of VRAC to the release of the excitatory amino acid neurotransmitters glutamate and aspartate. This latter process is thought to have impact on both normal brain functioning (such as astrocyte-neuron signaling) and neuropathology (via promoting the excitotoxic death of neuronal cells in stroke and traumatic brain injury). In spite of much work in the field, the molecular nature of VRAC remained unknown until less than 2 years ago. Two pioneer publications identified VRAC as the heterohexamer formed by the leucine-rich repeat-containing 8 (LRRC8) proteins. These findings galvanized the field and are likely to result in dramatic revisions to our understanding of the place and role of VRAC in the brain, as well as other organs and tissues. The present review briefly recapitulates critical findings in the CNS and focuses on anticipated impact on the LRRC8 discovery on further progress in neuroscience research.
Collapse
Affiliation(s)
- Alexander A Mongin
- Center for Neuropharmacology and Neuroscience, Albany Medical College, 47 New Scotland Ave., Albany, NY, 12208, USA.
| |
Collapse
|
12
|
Gogos A, Sbisa AM, Sun J, Gibbons A, Udawela M, Dean B. A Role for Estrogen in Schizophrenia: Clinical and Preclinical Findings. Int J Endocrinol 2015; 2015:615356. [PMID: 26491441 PMCID: PMC4600562 DOI: 10.1155/2015/615356] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/21/2015] [Accepted: 08/23/2015] [Indexed: 12/30/2022] Open
Abstract
Gender differences in schizophrenia have been extensively researched and it is being increasingly accepted that gonadal steroids are strongly attributed to this phenomenon. Of the various hormones implicated, the estrogen hypothesis has been the most widely researched one and it postulates that estrogen exerts a protective effect by buffering females against the development and severity of the illness. In this review, we comprehensively analyse studies that have investigated the effects of estrogen, in particular 17β-estradiol, in clinical, animal, and molecular research with relevance to schizophrenia. Specifically, we discuss the current evidence on estrogen dysfunction in schizophrenia patients and review the clinical findings on the use of estradiol as an adjunctive treatment in schizophrenia patients. Preclinical research that has used animal models and molecular probes to investigate estradiol's underlying protective mechanisms is also substantially discussed, with particular focus on estradiol's impact on the major neurotransmitter systems implicated in schizophrenia, namely, the dopamine, serotonin, and glutamate systems.
Collapse
Affiliation(s)
- Andrea Gogos
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alyssa M. Sbisa
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- School of Psychology and Public Health, La Trobe University, Bundoora, VIC 3086, Australia
| | - Jeehae Sun
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- School of Psychology and Public Health, La Trobe University, Bundoora, VIC 3086, Australia
| | - Andrew Gibbons
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Madhara Udawela
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Brian Dean
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
13
|
Wu H, Guan S, Sun M, Yu Z, Zhao L, He M, Zhao H, Yao W, Wang E, Jin F, Xiao Q, Wei M. Ano1/TMEM16A Overexpression Is Associated with Good Prognosis in PR-Positive or HER2-Negative Breast Cancer Patients following Tamoxifen Treatment. PLoS One 2015; 10:e0126128. [PMID: 25961581 PMCID: PMC4427473 DOI: 10.1371/journal.pone.0126128] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 03/29/2015] [Indexed: 12/31/2022] Open
Abstract
The calcium-activated chloride channel Ano1 (TMEM16A) is overexpressed in many tumors. Although Ano1 overexpression is found in breast cancer due to 11q13 amplification, it remains unclear whether signaling pathways are involved in Ano1 overexpression during breast cancer tumorigenesis in vivo. Estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) have been known to contribute to breast cancer progression. It is unclear whether Ano1 is associated with clinical outcomes in breast cancer patients with different ER, PR and HER2 status. In the present study, we investigated the Ano1 expression in 431 patients with invasive ductal breast carcinoma and 46 patients with fibroadenoma, using immunohistochemistry, and analyzed the association between Ano1 expression and clinical characteristics and outcomes of breast cancer patients with different ER, PR, and HER2 status. Ano1 was overexpressed in breast cancer compared with fibroadenoma. Ano1 was significantly more associated with breast cancer with the lower clinical stage (stage I or II), or triple-negative status. Mostly importantly, Ano1 overexpression was associated with good prognosis in patients with the PR-positive or HER2-negative status, and in patients following tamoxifen treatment. Multivariate Cox regression analysis showed that Ano1 overexpression was a prognostic factor for longer overall survival in PR-positive or HER2-negative patients, and a predictive factor for longer overall survival in patients following tamoxifen treatment. Our findings suggest that Ano1 may be a potential marker for good prognosis in PR-positive or HER2-negative patients following tamoxifen treatment. The PR and HER2 status defines a subtype of breast cancer in which Ano1 overexpression is associated with good prognosis following tamoxifen treatment.
Collapse
Affiliation(s)
- Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, P. R. China
| | - Shu Guan
- Department of Breast Surgery, First Hospital of China Medical University, Shenyang, Liaoning, P. R. China
| | - Mingli Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, P. R. China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, P. R. China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, P. R. China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, P. R. China
| | - Haishan Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, P. R. China
| | - Weifan Yao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, P. R. China
| | - Enhua Wang
- Institute of Pathology and Pathophysiology, First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning, P. R. China
| | - Feng Jin
- Department of Breast Surgery, First Hospital of China Medical University, Shenyang, Liaoning, P. R. China
- * E-mail: (MW); (QX); (FJ)
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, P. R. China
- * E-mail: (MW); (QX); (FJ)
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, P. R. China
- * E-mail: (MW); (QX); (FJ)
| |
Collapse
|
14
|
Dohare P, Hyzinski-García MC, Vipani A, Bowens NH, Nalwalk JW, Feustel PJ, Keller RW, Jourd'heuil D, Mongin AA. The neuroprotective properties of the superoxide dismutase mimetic tempol correlate with its ability to reduce pathological glutamate release in a rodent model of stroke. Free Radic Biol Med 2014; 77:168-82. [PMID: 25224033 PMCID: PMC4258548 DOI: 10.1016/j.freeradbiomed.2014.08.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/02/2014] [Accepted: 08/26/2014] [Indexed: 12/13/2022]
Abstract
The contribution of oxidative stress to ischemic brain damage is well established. Nevertheless, for unknown reasons, several clinically tested antioxidant therapies have failed to show benefits in human stroke. Based on our previous in vitro work, we hypothesized that the neuroprotective potency of antioxidants is related to their ability to limit the release of the excitotoxic amino acids glutamate and aspartate. We explored the effects of two antioxidants, tempol and edaravone, on amino acid release in the brain cortex, in a rat model of transient occlusion of the middle cerebral artery (MCAo). Amino acid levels were quantified using a microdialysis approach, with the probe positioned in the ischemic penumbra as verified by a laser Doppler technique. Two-hour MCAo triggered a dramatic increase in the levels of glutamate, aspartate, taurine, and alanine. Microdialysate delivery of 10mM tempol reduced the amino acid release by 60-80%, whereas matching levels of edaravone had no effect. In line with these data, an intracerebroventricular injection of tempol but not edaravone (500 nmol each, 15 min before MCAo) reduced infarction volumes by ~50% and improved neurobehavioral outcomes. In vitro assays showed that tempol was superior at removing superoxide anion, whereas edaravone was more potent at scavenging hydrogen peroxide, hydroxyl radical, and peroxynitrite. Overall, our data suggest that the neuroprotective properties of tempol are probably related to its ability to reduce tissue levels of the superoxide anion and pathological glutamate release and, in such a way, limit progression of brain infarction within ischemic penumbra. These new findings may be instrumental in developing new antioxidant therapies for treatment of stroke.
Collapse
Affiliation(s)
- Preeti Dohare
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - María C Hyzinski-García
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - Aarshi Vipani
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - Nicole H Bowens
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - Julia W Nalwalk
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - Paul J Feustel
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - Richard W Keller
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - David Jourd'heuil
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | - Alexander A Mongin
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
15
|
Zheng K, Chen M, Xiang Y, Ma K, Jin F, Wang X, Wang X, Wang S, Wang Y. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB. Biochem Biophys Res Commun 2014; 446:990-6. [PMID: 24657267 DOI: 10.1016/j.bbrc.2014.03.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 11/26/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections.
Collapse
Affiliation(s)
- Kai Zheng
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China; College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Maoyun Chen
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China; College of pharmacy, Jinan University, Guangzhou, China
| | - Yangfei Xiang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Kaiqi Ma
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Fujun Jin
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China; College of pharmacy, Jinan University, Guangzhou, China
| | - Xiao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoyan Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Shaoxiang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
16
|
Teixeira MDA, Nascimento NRF, Fonteles MC, Vale OC. Uroguanylin induces electroencephalographic spikes in rats. BRAZ J BIOL 2013; 73:623-7. [PMID: 24212704 DOI: 10.1590/s1519-69842013000300021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 03/21/2013] [Indexed: 11/21/2022] Open
Abstract
Uroguanylin (UGN) is an endogenous peptide that acts on membrane-bound guanylate cyclase receptors of intestinal and renal cells increasing cGMP production and regulating electrolyte and water epithelial transport. Recent research works demonstrate the expression of this peptide and its receptor in the central nervous system. The current work was undertaken in order to evaluate modifications of electroencephalographic spectra (EEG) in anesthetized Wistar rats, submitted to intracisternal infusion of uroguanylin (0.0125 nmoles/min or 0.04 nmoles/min). The current observations demonstrate that 0.0125 nmoles/min and 0.04 nmoles/min intracisternal infusion of UGN significantly enhances amplitude and frequency of sharp waves and evoked spikes (p = 0.03). No statistical significance was observed on absolute alpha and theta spectra amplitude. The present data suggest that UGN acts on bioelectrogenesis of cortical cells by inducing hypersynchronic firing of neurons. This effect is blocked by nedocromil, suggesting that UGN acts by increasing the activity of chloride channels.
Collapse
Affiliation(s)
- M D A Teixeira
- Pharmacology and Physiology Department, Biomedicine Institute, Clinical Research Unit, Federal University of Ceará, FortalezaCE, Brazil
| | | | | | | |
Collapse
|
17
|
Morland C, Nordengen K, Larsson M, Prolo LM, Farzampour Z, Reimer RJ, Gundersen V. Vesicular uptake and exocytosis of L-aspartate is independent of sialin. FASEB J 2012; 27:1264-74. [PMID: 23221336 DOI: 10.1096/fj.12-206300] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mechanism of release and the role of l-aspartate as a central neurotransmitter are controversial. A vesicular release mechanism for l-aspartate has been difficult to prove, as no vesicular l-aspartate transporter was identified until it was found that sialin could transport l-aspartate and l-glutamate when reconstituted into liposomes. We sought to clarify the release mechanism of l-aspartate and the role of sialin in this process by combining l-aspartate uptake studies in isolated synaptic vesicles with immunocyotchemical investigations of hippocampal slices. We found that radiolabeled l-aspartate was taken up into synaptic vesicles. The vesicular l-aspartate uptake, relative to the l-glutamate uptake, was twice as high in the hippocampus as in the whole brain, the striatum, and the entorhinal and frontal cortices and was not inhibited by l-glutamate. We further show that sialin is not essential for exocytosis of l-aspartate, as there was no difference in ATP-dependent l-aspartate uptake in synaptic vesicles from sialin-knockout and wild-type mice. In addition, expression of sialin in PC12 cells did not result in significant vesicle uptake of l-aspartate, and depolarization-induced depletion of l-aspartate from hippocampal nerve terminals was similar in hippocampal slices from sialin-knockout and wild-type mice. Further, there was no evidence for nonvesicular release of l-aspartate via volume-regulated anion channels or plasma membrane excitatory amino acid transporters. This suggests that l-aspartate is exocytotically released from nerve terminals after vesicular accumulation by a transporter other than sialin.
Collapse
Affiliation(s)
- Cecilie Morland
- Department of Anatomy, University of Oslo, POB 1105 Blindern, 0317 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
18
|
Xu S, Zhuo J, Racz J, Shi D, Roys S, Fiskum G, Gullapalli R. Early microstructural and metabolic changes following controlled cortical impact injury in rat: a magnetic resonance imaging and spectroscopy study. J Neurotrauma 2011; 28:2091-102. [PMID: 21761962 DOI: 10.1089/neu.2010.1739] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Understanding tissue alterations at an early stage following traumatic brain injury (TBI) is critical for injury management and limiting severe consequences from secondary injury. We investigated the early microstructural and metabolic profiles using in vivo diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy ((1)H MRS) at 2 and 4 h following a controlled cortical impact injury in the rat brain using a 7.0 Tesla animal MRI system and compared profiles to baseline. Significant decrease in mean diffusivity (MD) and increased fractional anisotropy (FA) was found near the impact site (hippocampus and bilateral thalamus; p<0.05) immediately following TBI, suggesting cytotoxic edema. Although the DTI parameters largely normalized on the contralateral side by 4 h, a large inter-individual variation was observed with a trend towards recovery of MD and FA in the ipsilateral hippocampus and a sustained elevation of FA in the ipsilateral thalamus (p<0.05). Significant reduction in metabolite to total creatine ratios of N-acetylaspartate (NAA, p=0.0002), glutamate (p=0.0006), myo-inositol (Ins, p=0.04), phosphocholine and glycerophosphocholine (PCh+GPC, p=0.03), and taurine (Tau, p=0.009) were observed ipsilateral to the injury as early as 2 h, while glutamine concentration increased marginally (p=0.07). These metabolic alterations remained sustained over 4 h after TBI. Significant reductions of Ins (p=0.024) and Tau (p=0.013) and marginal reduction of NAA (p=0.06) were also observed on the contralateral side at 4 h after TBI. Overall our findings suggest significant microstructural and metabolic alterations as early as 2 h following injury. The tendency towards normalization at 4 h from the DTI data and no further metabolic changes at 4 h from MRS suggest an optimal temporal window of about 3 h for interventions that might limit secondary damage to the brain. Results indicate that early assessment of TBI patients using DTI and MRS may provide valuable information on the available treatment window to limit secondary brain damage.
Collapse
Affiliation(s)
- Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Zhang H, Cao HJ, Kimelberg HK, Zhou M. Volume regulated anion channel currents of rat hippocampal neurons and their contribution to oxygen-and-glucose deprivation induced neuronal death. PLoS One 2011; 6:e16803. [PMID: 21347298 PMCID: PMC3037944 DOI: 10.1371/journal.pone.0016803] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 12/30/2010] [Indexed: 01/29/2023] Open
Abstract
Volume-regulated anion channels (VRAC) are widely expressed chloride channels that are critical for the cell volume regulation. In the mammalian central nervous system, the physiological expression of neuronal VRAC and its role in cerebral ischemia are issues largely unknown. We show that hypoosmotic medium induce an outwardly rectifying chloride conductance in CA1 pyramidal neurons in rat hippocampal slices. The induced chloride conductance was sensitive to some of the VRAC inhibitors, namely, IAA-94 (300 µM) and NPPB (100 µM), but not to tamoxifen (10 µM). Using oxygen-and-glucose deprivation (OGD) to simulate ischemic conditions in slices, VRAC activation appeared after OGD induced anoxic depolarization (AD) that showed a progressive increase in current amplitude over the period of post-OGD reperfusion. The OGD induced VRAC currents were significantly inhibited by inhibitors for glutamate AMPA (30 µM NBQX) and NMDA (40 µM AP-5) receptors in the OGD solution, supporting the view that induction of AD requires an excessive Na+-loading via these receptors that in turn to activate neuronal VRAC. In the presence of NPPB and DCPIB in the post-OGD reperfusion solution, the OGD induced CA1 pyramidal neuron death, as measured by TO-PRO-3-I staining, was significantly reduced, although DCPIB did not appear to be an effective neuronal VRAC blocker. Altogether, we show that rat hippocampal pyramidal neurons express functional VRAC, and ischemic conditions can initial neuronal VRAC activation that may contribute to ischemic neuronal damage.
Collapse
Affiliation(s)
- Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People‚s Republic of China
- * E-mail: (HZ); (MZ)
| | - H. James Cao
- Ordway Research Institute, Albany, New York, United States of America
| | | | - Min Zhou
- Ordway Research Institute, Albany, New York, United States of America
- * E-mail: (HZ); (MZ)
| |
Collapse
|
20
|
Benfenati V, Ferroni S. Water transport between CNS compartments: functional and molecular interactions between aquaporins and ion channels. Neuroscience 2009; 168:926-40. [PMID: 20026249 DOI: 10.1016/j.neuroscience.2009.12.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Revised: 12/04/2009] [Accepted: 12/05/2009] [Indexed: 12/16/2022]
Abstract
The physiological ability of the mammalian CNS to integrate peripheral stimuli and to convey information to the body is tightly regulated by its capacity to preserve the ion composition and volume of the perineuronal milieu. It is well known that astroglial syncytium plays a crucial role in such process by controlling the homeostasis of ions and water through the selective transmembrane movement of inorganic and organic molecules and the equilibration of osmotic gradients. Astrocytes, in fact, by contacting neurons and cells lining the fluid-filled compartments, are in a strategic position to fulfill this role. They are endowed with ion and water channel proteins that are localized in specific plasma membrane domains facing diverse liquid spaces. Recent data in rodents have demonstrated that the precise dynamics of the astroglia-mediated homeostatic regulation of the CNS is dependent on the interactions between water channels and ion channels, and their anchoring with proteins that allow the formation of macromolecular complexes in specific cellular domains. Interplay can occur with or without direct molecular interactions suggesting the existence of different regulatory mechanisms. The importance of molecular and functional interactions is pinpointed by the numerous observations that as consequence of pathological insults leading to the derangement of ion and volume homeostasis the cell surface expression and/or polarized localization of these proteins is perturbed. Here, we critically discuss the experimental evidence concerning: (1) molecular and functional interplay of aquaporin 4, the major aquaporin protein in astroglial cells, with potassium and gap-junctional channels that are involved in extracellular potassium buffering. (2) the interactions of aquaporin 4 with chloride and calcium channels regulating cell volume homeostasis. The relevance of the crosstalk between water channels and ion channels in the pathogenesis of astroglia-related acute and chronic diseases of the CNS is also briefly discussed.
Collapse
Affiliation(s)
- V Benfenati
- Istituto per lo Studio dei Materiali Nanostrutturati, ISMN, National Research Council, Via Gobetti 101, 40129 Bologna, Italy
| | | |
Collapse
|
21
|
Abstract
Evidence exists for the potential protective effects of circulating ovarian hormones in stroke, and oestrogen reduces brain damage in animal ischaemia models. However, a recent clinical trial indicated that HRT (hormone-replacement therapy) increased the incidence of stroke in post-menopausal women, and detrimental effects of oestrogen on stroke outcome have been identified in a meta-analysis of HRT trials and in pre-clinical research studies. Therefore oestrogen is not an agent that can be promoted as a potential stroke therapy. Many published reviews have reported the neuroprotective effects of oestrogen in stroke, but have failed to include information on the detrimental effects. This issue is addressed in the present review, along with potential mechanisms of action, and the translational capacity of pre-clinical research.
Collapse
|
22
|
Tian DS, Liu JL, Xie MJ, Zhan Y, Qu WS, Yu ZY, Tang ZP, Pan DJ, Wang W. Tamoxifen attenuates inflammatory-mediated damage and improves functional outcome after spinal cord injury in rats. J Neurochem 2009; 109:1658-67. [PMID: 19457130 DOI: 10.1111/j.1471-4159.2009.06077.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Tamoxifen has been found to be neuroprotective in both transient and permanent experimental ischemic stroke. However, it remains unknown whether this agent shows a similar beneficial effect after spinal cord injury (SCI), and what are its underlying mechanisms. In this study, we investigated the efficacy of tamoxifen treatment in attenuating SCI-induced pathology. Blood-spinal cord barrier (BSCB) permeability, tissue edema formation, microglial activation, neuronal cell death and myelin loss were determined in rats subjected to spinal cord contusion. The results showed that tamoxifen, administered at 30 min post-injury, significantly decreased interleukin-1beta (IL-1beta) production induced by microglial activation, alleviated the amount of Evans blue leakage and edema formation. In addition, tamoxifen treatment clearly reduced the number of apoptotic neurons post-SCI. The myelin loss and the increase in production of myelin-associated axonal growth inhibitors were also found to be significantly attenuated at day 3 post-injury. Furthermore, rats treated with tamoxifen scored much higher on the locomotor rating scale after SCI than did vehicle-treated rats, suggesting improved functional outcome after SCI. Together, these results demonstrate that tamoxifen provides neuroprotective effects for treatment of SCI-related pathology and disability, and is therefore a potential neuroprotectant for human spinal cord injury therapy.
Collapse
Affiliation(s)
- Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Haskew-Layton RE, Rudkouskaya A, Jin Y, Feustel PJ, Kimelberg HK, Mongin AA. Two distinct modes of hypoosmotic medium-induced release of excitatory amino acids and taurine in the rat brain in vivo. PLoS One 2008; 3:e3543. [PMID: 18958155 PMCID: PMC2568819 DOI: 10.1371/journal.pone.0003543] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 10/03/2008] [Indexed: 11/19/2022] Open
Abstract
A variety of physiological and pathological factors induce cellular swelling in the brain. Changes in cell volume activate several types of ion channels, which mediate the release of inorganic and organic osmolytes and allow for compensatory cell volume decrease. Volume-regulated anion channels (VRAC) are thought to be responsible for the release of some of organic osmolytes, including the excitatory neurotransmitters glutamate and aspartate. In the present study, we compared the in vivo properties of the swelling-activated release of glutamate, aspartate, and another major brain osmolyte taurine. Cell swelling was induced by perfusion of hypoosmotic (low [NaCl]) medium via a microdialysis probe placed in the rat cortex. The hypoosmotic medium produced several-fold increases in the extracellular levels of glutamate, aspartate and taurine. However, the release of the excitatory amino acids differed from the release of taurine in several respects including: (i) kinetic properties, (ii) sensitivity to isoosmotic changes in [NaCl], and (iii) sensitivity to hydrogen peroxide, which is known to modulate VRAC. Consistent with the involvement of VRAC, hypoosmotic medium-induced release of the excitatory amino acids was inhibited by the anion channel blocker DNDS, but not by the glutamate transporter inhibitor TBOA or Cd2+, which inhibits exocytosis. In order to elucidate the mechanisms contributing to taurine release, we studied its release properties in cultured astrocytes and cortical synaptosomes. Similarities between the results obtained in vivo and in synaptosomes suggest that the swelling-activated release of taurine in vivo may be of neuronal origin. Taken together, our findings indicate that different transport mechanisms and/or distinct cellular sources mediate hypoosmotic medium-induced release of the excitatory amino acids and taurine in vivo.
Collapse
Affiliation(s)
- Renée E. Haskew-Layton
- Center of Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York, United States of America
- Burke Medical Research Institute of Cornell University, White Plains, New York, United States of America
| | - Alena Rudkouskaya
- Center of Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York, United States of America
| | - Yiqiang Jin
- Ordway Research Institute, Albany, New York, United States of America
| | - Paul J. Feustel
- Center of Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York, United States of America
| | | | - Alexander A. Mongin
- Center of Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
24
|
Fisher SK, Cheema TA, Foster DJ, Heacock AM. Volume-dependent osmolyte efflux from neural tissues: regulation by G-protein-coupled receptors. J Neurochem 2008; 106:1998-2014. [PMID: 18518929 DOI: 10.1111/j.1471-4159.2008.05510.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The CNS is particularly vulnerable to reductions in plasma osmolarity, such as occur during hyponatremia, the most commonly encountered electrolyte disorder in clinical practice. In response to a lowered plasma osmolarity, neural cells initially swell but then are able to restore their original volume through the release of osmolytes, both inorganic and organic, and the exit of osmotically obligated water. Given the importance of the maintenance of cell volume within the CNS, mechanisms underlying the release of osmolytes assume major significance. In this context, we review recent evidence obtained from our laboratory and others that indicates that the activation of specific G-protein-coupled receptors can markedly enhance the volume-dependent release of osmolytes from neural cells. Of particular significance is the observation that receptor activation significantly lowers the osmotic threshold at which osmolyte release occurs, thereby facilitating the ability of the cells to respond to small, more physiologically relevant, reductions in osmolarity. The mechanisms underlying G-protein-coupled receptor-mediated osmolyte release and the possibility that this efflux can result in both physiologically beneficial and potentially harmful pathophysiological consequences are discussed.
Collapse
Affiliation(s)
- Stephen K Fisher
- Molecular and Behavioral Neuroscience Institute; and Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA.
| | | | | | | |
Collapse
|
25
|
Sharma K, Mehra RD. Long-term administration of estrogen or tamoxifen to ovariectomized rats affords neuroprotection to hippocampal neurons by modulating the expression of Bcl-2 and Bax. Brain Res 2008; 1204:1-15. [DOI: 10.1016/j.brainres.2008.01.080] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 01/17/2008] [Accepted: 01/23/2008] [Indexed: 10/22/2022]
|
26
|
Farr TD, Carswell HVO, McCann DJ, Sato M, Bryant HU, Dodge JA, Macrae IM. The selective oestrogen receptor modulator, LY362321, is not neuroprotective in a rat model of transient focal ischaemia. J Neuroendocrinol 2008; 20:366-74. [PMID: 18208545 DOI: 10.1111/j.1365-2826.2008.01648.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Selective oestrogen receptor modulators (SERMs) may offer improved alternatives to oestrogen as neuroprotectants in experimental stroke. The present study investigated the role of a novel SERM, LY362321, in a rat model of transient middle cerebral artery occlusion (MCAO). Female Sprague-Dawley rats were ovariectomised and began receiving daily s.c. injections of either 1 mg/kg (n = 13), 10 mg/kg (n = 14) of LY362321, or vehicle (n = 13). The left MCA was temporarily occluded (90 min), with cortical blood flow monitoring, at 12 days post ovariectomy. Sensorimotor function was assessed using a neurological score prior to the MCAO and daily for 3 days following the MCAO. Tissue was processed for infarct volume assessment using 2,3,5-triphenyltetra-zolium chloride staining. The results indicated that there were no significant differences amongst groups in cortical blood flow during the MCAO. Furthermore, there was no significant difference in infarct size amongst vehicle, 1, and 10 mg/kg treated animals: 22.9 +/- 5.0, 16.7 +/- 4.2, and 21.1 +/- 4.1, respectively, one-way anova [F(2,32) = 0.542, P = 0.587]. The MCAO induced a significant decline in neurological score in the vehicle group (from 14 to 7 at 24 h post-MCAO) but this was not significantly affected by LY362321 at either dose. In conclusion, pretreatment with a low or high dose of the novel SERM LY362321 did not significantly influence cerebral blood flow, infarct volume, or sensorimotor function in rats exposed to transient MCAO.
Collapse
Affiliation(s)
- T D Farr
- Wellcome Surgical Institute and 7T MRI Facility, Division of Clinical Neuroscience, University of Glasgow, Glasgow, UK.
| | | | | | | | | | | | | |
Collapse
|
27
|
Mongin AA. Disruption of ionic and cell volume homeostasis in cerebral ischemia: The perfect storm. ACTA ACUST UNITED AC 2007; 14:183-93. [PMID: 17961999 DOI: 10.1016/j.pathophys.2007.09.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The mechanisms of brain tissue damage in stroke are strongly linked to the phenomenon of excitotoxicity, which is defined as damage or death of neural cells due to excessive activation of receptors for the excitatory neurotransmitters glutamate and aspartate. Under physiological conditions, ionotropic glutamate receptors mediate the processes of excitatory neurotransmission and synaptic plasticity. In ischemia, sustained pathological release of glutamate from neurons and glial cells causes prolonged activation of these receptors, resulting in massive depolarization and cytoplasmic Ca(2+) overload. High cytoplasmic levels of Ca(2+) activate many degradative processes that, depending on the metabolic status, cause immediate or delayed death of neural cells. This traditional view has been expanded by a number of observations that implicate Cl(-) channels and several types of non-channel transporter proteins, such as the Na(+),K(+),2Cl(-) cotransporter, Na(+)/H(+) exchanger, and Na(+)/Ca(2+) exchanger, in the development of glutamate toxicity. Some of these ion transporters increase tissue damage by promoting pathological cell swelling and necrotic cell death, while others contribute to a long-term accumulation of cytoplasmic Ca(2+). This brief review is aimed at illustrating how the dysregulation of various ion transport processes combine in a 'perfect storm' that disrupts neural ionic homeostasis and culminates in the irreversible damage and death of neural cells. The clinical relevance of individual transporters as targets for therapeutic intervention in stroke is also briefly discussed.
Collapse
Affiliation(s)
- Alexander A Mongin
- Center for Neuropharmacology and Neuroscience, Albany Medical College, 47 New Scotland Avenue (MC-136), Albany, NY 12208, USA
| |
Collapse
|
28
|
Camacho A, Montiel T, Massieu L. The anion channel blocker, 4,4′-dinitrostilbene-2,2′-disulfonic acid prevents neuronal death and excitatory amino acid release during glycolysis inhibition in the hippocampus in vivo. Neuroscience 2006; 142:1005-17. [PMID: 16920271 DOI: 10.1016/j.neuroscience.2006.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 06/29/2006] [Accepted: 07/11/2006] [Indexed: 12/14/2022]
Abstract
Neuronal death associated with cerebral ischemia and hypoglycemia is related to increased release of excitatory amino acids (EAA) and energy failure. The intrahippocampal administration of the glycolysis inhibitor, iodoacetate (IOA), induces the accumulation of EAA and neuronal death. We have investigated by microdialysis the role of exocytosis, glutamate transporters and volume-sensitive organic anion channel (VSOAC) on IOA-induced EAA release. Results show that the early component of EAA release is inhibited by riluzole, a voltage-dependent sodium channel blocker, and by the VSOAC blocker, tamoxifen, while the early and late components are blocked by the glutamate transport inhibitors, L-trans-pyrrolidine 2,4-dicarboxylate (PDC) and DL-threo-beta-benzyloxyaspartate (DL-TBOA); and by the VSOAC blocker 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS). Riluzole, DL-TBOA and tamoxifen did not prevent IOA-induced neuronal death, while PDC and DNDS did. The VSOAC blockers 5-nitro-2-(3-phenylpropyl-amino) benzoic acid (NPPB) and phloretin had no effect either on EAA efflux or neuronal damage. Results suggest that acute inhibition of glycolytic metabolism promotes the accumulation of EAA by exocytosis, impairment or reverse action of glutamate transporters and activation of a DNDS-sensitive mechanism. The latest is substantially involved in the triggering of neuronal death. To our knowledge, this is the first study to show protection of neuronal death by DNDS in an in vivo model of neuronal damage, associated with deficient energy metabolism and EAA release, two conditions involved in some pathological states such as ischemia and hypoglycemia.
Collapse
Affiliation(s)
- A Camacho
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México AP 70-253, México DF CP 04510, Mexico
| | | | | |
Collapse
|
29
|
Benfenati V, Nicchia GP, Svelto M, Rapisarda C, Frigeri A, Ferroni S. Functional down-regulation of volume-regulated anion channels in AQP4 knockdown cultured rat cortical astrocytes. J Neurochem 2006; 100:87-104. [PMID: 17064359 DOI: 10.1111/j.1471-4159.2006.04164.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the brain, the astroglial syncytium is crucially involved in the regulation of water homeostasis. Accumulating evidence indicates that a dysregulation of the astrocytic processes controlling water homeostasis has a pathogenetic role in several brain injuries. Here, we have analysed by RNA interference technology the functional interactions occurring between the most abundant water channel in the brain, aquaporin-4 (AQP4), and the swelling-activated Cl(-) current expressed by cultured rat cortical astrocytes. We show that in primary cultured rat cortical astrocytes transfected with control small interfering RNA (siRNA), hypotonic shock promotes an increase in cellular volume accompanied by augmented membrane conductance mediated by volume-regulated anion channels (VRAC). Conversely, astroglia in which AQP4 was knocked down (AQP4 KD) by transfection with AQP4 siRNA changed their morphology from polygonal to process-bearing, and displayed normal cell swelling but reduced VRAC activity. Pharmacological manipulations of actin cytoskeleton in rat astrocytes, and functional analysis in mouse astroglial cells, which retain their morphology upon knockdown of AQP4, suggest that stellation of AQP4 KD rat cortical astrocytes was not causally linked to reduction of VRAC current. Molecular analysis of possible candidates of swelling-activated Cl(-) current provided evidence that in AQP4 KD astrocytes, there was a down-regulation of chloride channel-2 (CIC-2), which, however, was not involved in VRAC conductance. Inclusion of ATP in the intracellular saline restored VRAC activity upon hypotonicity. Collectively, these results support the view that in cultured astroglial cells, plasma membrane proteins involved in cell volume homeostasis are assembled in a functional platform.
Collapse
Affiliation(s)
- Valentina Benfenati
- Department of Human and General Physiology, University of Bologna, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Abdullaev IF, Rudkouskaya A, Schools GP, Kimelberg HK, Mongin AA. Pharmacological comparison of swelling-activated excitatory amino acid release and Cl- currents in cultured rat astrocytes. J Physiol 2006; 572:677-89. [PMID: 16527858 PMCID: PMC1780004 DOI: 10.1113/jphysiol.2005.103820] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ubiquitously expressed volume-regulated anion channels (VRACs) are chloride channels which are permeable to a variety of small organic anions, including the excitatory amino acids (EAAs) glutamate and aspartate. Broad spectrum anion channel blockers strongly reduce EAA release in cerebral ischaemia and other pathological states associated with prominent astrocytic swelling. However, it is uncertain whether VRAC serves as a major pathway for EAA release from swollen cells. In the present study, we measured swelling-activated release of EAAs as D-[3H]aspartate efflux, and VRAC-mediated Cl- currents by whole-cell patch clamp in cultured rat astrocytes. We compared the pharmacological profiles of the swelling-activated EAA release pathway and Cl- currents. The expression of candidate Cl- channels was confirmed by RT-PCR. The maxi Cl- channel (p-VDAC) blocker Gd3+, the ClC-2 inhibitor Cd2+, and the MDR-1 blocker verapamil did not affect EAA release or VRAC currents. An antagonist of calcium-sensitive Cl- channels (CaCC), niflumic acid, had little effect on EAA release and only partially inhibited swelling-activated Cl- currents. The phorbol ester PDBu, which blocks ClC-3-mediated Cl- currents, had no effect on VRAC currents and up-regulated EAA release. In contrast, DCPIB, which selectively inhibits VRACs, potently suppressed both EAA release and VRAC currents. Two other relatively selective VRAC inhibitors, tamoxifen and phloretin, also blocked the VRAC currents and strongly reduced EAA release. Taken together, our data suggest that (i) astrocytic volume-dependent EAA release is largely mediated by the VRAC, and (ii) the ClC-2, ClC-3, ClC-4, ClC-5, VDAC, CaCC, MDR-1 and CFTR gene products do not contribute to EAA permeability.
Collapse
|
31
|
Abstract
Maturing spermatozoa passing through the epididymis experience increasing osmolality in the luminal environment and mature cells are stored in fluids hyper-osmotic to serum. When ejaculated into the female tract, they encounter a hypo-osmotic challenge which initiates the process of regulatory volume decrease (RVD). Defects in RVD result in hindrance of mucus penetration in man and failure of utero-tubal passage in mice. Epididymal sperm from the mouse and cynomolgus monkey and ejaculated sperm from man and monkey have been isolated and dispersed in media with osmolalities mimicking those of uterine fluid or cervical mucus. The effects of specific and broad-spectrum ion channel blockers indicate the involvement of separate K+ and Cl- channels as well as organic osmolytes in physiological sperm RVD, with mechanisms developed during epididymal maturation. Western blotting and immuno-cytochemistry identify and localise some of these channels which play a crucial role in fertilisation in vivo and could be targets for post-testicular contraception.
Collapse
Affiliation(s)
- C H Yeung
- Institute of Reproductive Medicine of the University, D-48129 Münster, Germany.
| | | | | |
Collapse
|
32
|
Liu HT, Tashmukhamedov BA, Inoue H, Okada Y, Sabirov RZ. Roles of two types of anion channels in glutamate release from mouse astrocytes under ischemic or osmotic stress. Glia 2006; 54:343-57. [PMID: 16883573 DOI: 10.1002/glia.20400] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Astrocytes release glutamate upon hyperexcitation in the normal brain, and in response to pathologic insults such as ischemia and trauma. In our experiments, both hypotonic and ischemic stimuli caused the release of glutamate from cultured mouse astrocytes, which occurred with little or no contribution of gap junction hemichannels, vesicle-mediated exocytosis, or reversed operation of the Na-dependent glutamate transporter. Cell swelling and chemical ischemia activated, in cell-attached membrane patches, anionic channels with large unitary conductance (approximately 400 pS) and inactivation kinetics at potentials more positive than +20 mV or more negative than -20 mV. These properties are different from those of volume-sensitive outwardly rectifying (VSOR) Cl- channels, which were also expressed in these cells and exhibited intermediate unitary conductance (approximately 80 pS) and inactivation kinetics at large positive potentials of more than +40 mV. Both maxi-anion channels and VSOR Cl- channels were permeable to glutamate with permeability ratios of glutamate to chloride of 0.21 +/- 0.07 and 0.15 +/- 0.01, respectively. However, the release of glutamate was significantly more sensitive to Gd3+, a blocker of maxi-anion channels, than to phloretin, a blocker of VSOR Cl- channels. We conclude that these two channels jointly represent a major conductive pathway for the release of glutamate from swollen and ischemia-challenged astrocytes, with the contribution of maxi-anion channels being predominant.
Collapse
Affiliation(s)
- Hong-Tao Liu
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | | | | | | | | |
Collapse
|
33
|
Marcaggi P, Hirji N, Attwell D. Release of L-aspartate by reversal of glutamate transporters. Neuropharmacology 2005; 49:843-9. [PMID: 16150467 DOI: 10.1016/j.neuropharm.2005.07.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 07/16/2005] [Accepted: 07/20/2005] [Indexed: 11/15/2022]
Abstract
Aspartate is released in the brain during metabolic inhibition and can activate NMDA receptors. We compared the characteristics of aspartate and glutamate release mediated by reversed operation of GLAST glutamate transporters in salamander retinal glial cells, when high [K(+)](o) solution was applied to mimic the ionic conditions of stroke or glaucoma. In the absence of Cl(-), to isolate the transport-associated current of the transporters, reversed uptake of aspartate and glutamate had similar characteristics. Both were increased strongly by depolarisation, inhibited by the transport inhibitor TBOA (DL-threo-beta-benzyloxyaspartate), and activated in a first order manner by intracellular amino acid (in the presence of 20mM [Na(+)](i)) with an EC(50) of 0.8mM for aspartate and 2.3mM for glutamate. In stroke the extracellular pH shifts acid by around a pH unit: this reduced the release of aspartate and glutamate by reversed uptake by a factor of 8-20. The external Cl(-) concentration had only a small effect on the current associated with reversed uptake of aspartate and glutamate. Tamoxifen, which reduces amino acid release through swelling-activated anion channels in glial cells, was found to inhibit reversed uptake with an IC(50) which was >100 microM. Part of the activation of NMDA receptors which occurs in ischaemia is likely to reflect the release of aspartate by reversed uptake.
Collapse
Affiliation(s)
- Païkan Marcaggi
- Department of Physiology, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | |
Collapse
|
34
|
Yeung CH, Barfield JP, Cooper TG. The role of anion channels and Ca2+ in addition to K+ channels in the physiological volume regulation of murine spermatozoa. Mol Reprod Dev 2005; 71:368-79. [PMID: 15803461 DOI: 10.1002/mrd.20261] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Studies in the human, transgenic mice, and cattle indicate that sperm cell volume regulation plays an important role in male fertility as spermatozoa encounter a hypo-osmotic challenge upon ejaculation into the female tract. Physiological regulatory volume decrease (RVD) was examined using flow cytometry in murine sperm released into incubation medium mimicking uterine osmolality and including putative channel inhibitors. The involvement of K+ channels was indicated by the recovery of volume regulation by the K+ ionophore valinomycin in defective sperm from infertile transgenic mice, and from blockage of RVD by quinine in normal sperm. However, in neither case was the recovery complete. The involvement of volume-sensitive osmolyte and anion channels (VSOAC) were investigated using blockers effective in other cell types. NPPB (5-nitro-2(3-phenylpropylamino) benzoic acid) and tamoxifen inhibited RVD but SITS (4-acetamido-4'-isothiocyanato-stilbene-2,2'-disulphonic acid) at 0.4 and 1 mM had no effect whereas DIDS (di-isothiocyanato-stilbene-2,2'-disulphonic acid) at 1 mM enhanced RVD. Verapamil, but not another P-glycoprotein antagonist cyclosporin, caused sperm swelling which persisted in the presence of valinomycin, in Ca2+-free medium and in the presence of thapsigargin, but swelling was abolished by the Ca2+ ionophore A23187. Nifedipine was slightly effective in blocking RVD. Analysis by Western blotting failed to reveal ClC-2 and ClC-3 members of the chloride channel family in murine or rat sperm proteins despite signal bands in positive tissue controls. These findings implicate the involvement of some unidentified VSOAC in sperm volume regulation, which is probably Ca+-dependent.
Collapse
Affiliation(s)
- Ching-Hei Yeung
- Institute of Reproductive Medicine of the University Clinic, Münster, Germany.
| | | | | |
Collapse
|
35
|
Willett MC, Dluzen DE. Tamoxifen increases methamphetamine-evoked dopamine output from superfused striatal tissue fragments of male mice. Brain Res 2004; 1029:186-94. [PMID: 15542073 DOI: 10.1016/j.brainres.2004.09.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2004] [Indexed: 11/16/2022]
Abstract
The antiestrogen, tamoxifen (TMX), has been shown to function as a neuroprotectant against the nigrostriatal dopaminergic (NSDA) neurotoxin, methamphetamine (MA), within male mice. In the present report, we examined the effects of a combined infusion of TMX and MA within superfused striatal tissue fragments of male mice as an approach to understand some of the bases for TMX to function as a NSDA neuroprotectant within male mice. In Experiment 1, a coinfusion of TMX at 1, 10, or 100 pg/ml were all equally effective in increasing MA-evoked dopamine (DA) output as compared with a 0 pg/ml (control) dose. In Experiment 2, we tested whether this effect of TMX was specific for MA-evoked DA output by coinfusing TMX with a depolarizing concentration of potassium chloride (K+ -30 mM). No statistically significant differences were obtained between superfusions of striatal tissue fragments stimulated with K+ in the presence or absence of TMX (100 pg/ml). In Experiment 3, we assessed whether these effects of TMX may be exerted upon the dopamine transporter (DAT) by coinfusing DA (1 microM) in the presence or absence of TMX (100 pg/ml). No differences in DA recovery rates were obtained between superfusions performed in the presence or absence of TMX. Taken together, these results show that the striatum of male mice is very sensitive to the modulatory effects of TMX upon MA-evoked DA output. These effects of TMX appear to be relatively specific for MA-evoked DA output, as K+ -stimulated DA was not altered by TMX, and do not appear to exert these effects by altering dopamine transporter function.
Collapse
Affiliation(s)
- Matthew C Willett
- Department of Anatomy, Northeastern Ohio Universities College of Medicine (NEOUCOM), 4209 State Route 44, PO Box 95, Rootstown, OH 44272-0095, USA
| | | |
Collapse
|
36
|
Haskew-Layton RE, Mongin AA, Kimelberg HK. Hydrogen peroxide potentiates volume-sensitive excitatory amino acid release via a mechanism involving Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 2004; 280:3548-54. [PMID: 15569671 DOI: 10.1074/jbc.m409803200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Excessive excitatory amino acid (EAA) release in cerebral ischemia is a major mechanism responsible for neuronal damage and death. A substantial fraction of ischemic EAA release occurs via volume-regulated anion channels (VRACs). Hydrogen peroxide (H2O2), which is abundantly produced during ischemia and reperfusion, activates a number of protein kinases critical for VRAC functioning and has recently been reported to activate VRACs. In the present study, we explored the effects of H2O2 on volume-dependent EAA release in cultured astrocytes, measured as the release of preloaded D-[3H]aspartate. 100-1,000 microm H2O2 enhanced swelling-induced EAA release by approximately 2.5-3-fold (EC50 approximately 10 microM). The VRAC blockers ATP, phloretin, and 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB) potently inhibited both control swelling-induced and the H2O2-potentiated release, suggesting a role for VRACs. The H2O2-induced component of EAA release was attenuated by the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM) and completely eliminated by the calmodulin antagonists trifluoperazine and W-7 and the Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN-93. Inhibitors of tyrosine kinases, protein kinase C, and the myosin light chain kinase were ineffective in blocking the H2O2 response. H2O2 treatment of swollen astrocytes, but not swelling alone, resulted in CaMKII activation that was inhibited by KN-93, as determined by a phospho-Thr286 CaMKII antibody. These data demonstrate that H2O2 strongly up-regulates astrocytic volume-sensitive EAA release via a CaMKII-dependent mechanism and in this way may potently promote pathological EAA release and brain damage in ischemia.
Collapse
Affiliation(s)
- Renée E Haskew-Layton
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York 12208, USA
| | | | | |
Collapse
|
37
|
Feustel PJ, Jin Y, Kimelberg HK. Volume-Regulated Anion Channels Are the Predominant Contributors to Release of Excitatory Amino Acids in the Ischemic Cortical Penumbra. Stroke 2004; 35:1164-8. [PMID: 15017010 DOI: 10.1161/01.str.0000124127.57946.a1] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Release of excitatory amino acids (EAA) is considered a cause of neuronal damage in ischemia. We investigated the sources and mechanisms of EAA release using microdialysis in regions of incomplete ischemia where perfusion was reduced by 50% to 80%, by applying inhibitors of volume-regulated anion channels (VRACs) and the GLT-1 glutamate transporter. METHODS Reversible middle cerebral artery occlusion (rMCAo) was induced in anesthetized rats using the intraluminal suture technique. Microdialysate concentrations of glutamate, aspartate, and taurine were measured before, during 2 hours of rMCAo, and for 2 hours after rMCAo. Vehicle, dihydrokainate (DHK, 1 mmol/L), a GLT-1 inhibitor, or tamoxifen (50 micromol/L), a VRAC inhibitor, were administered continuously via the dialysis probes starting one hour prior to ischemia. RESULTS During incomplete ischemia, dialysate glutamate levels averaged 1.74+/-0.31 micromol/L (SEM) in the control group (n=8), 2.08+/-0.33 micromol/L in the DHK group (n=7), and were significantly lower at 0.88+/-0.30 micromol/L in the tamoxifen group (n=9; P<0.05). As perfusion returned toward baseline levels, EAA levels declined in the vehicle and tamoxifen-treated animals but they remained elevated in the DHK-treated animals. CONCLUSIONS In contrast to previous results in severely ischemic regions, DHK did not reduce EAA release in less severely ischemic brain, suggesting a diminished role for transporter reversal in these areas. These findings also support the hypothesis that in regions of incomplete ischemia, release of EAAs via VRACs may play a larger role than reversal of the GLT-1 transporter.
Collapse
Affiliation(s)
- Paul J Feustel
- Center for Neuropharmacology and Neuroscience, MC136, Albany Medical College, Albany, New York, USA.
| | | | | |
Collapse
|
38
|
Pearson T, Currie AJ, Etherington LAV, Gadalla AE, Damian K, Llaudet E, Dale N, Frenguelli BG. Plasticity of purine release during cerebral ischemia: clinical implications? J Cell Mol Med 2004; 7:362-75. [PMID: 14754505 PMCID: PMC6740112 DOI: 10.1111/j.1582-4934.2003.tb00239.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adenosine is a powerful modulator of neuronal function in the mammalian central nervous system. During a variety of insults to the brain, adenosine is released in large quantities and exerts a neuroprotective influence largely via the A(1) receptor, which inhibits glutamate release and neuronal activity. Using novel enzyme-based adenosine sensors, which allow high spatial and temporal resolution recordings of adenosine release in real time, we have investigated the release of adenosine during hypoxia/ischemia in the in vitro hippocampus. Our data reveal that during the early stages of hypoxia adenosine is likely released per se and not as a precursor such as cAMP or an adenine nucleotide. In addition, repeated hypoxia results in reduced production of extracellular adenosine and this may underlie the increased vulnerability of the mammalian brain to repetitive or secondary hypoxia/ischemia.
Collapse
Affiliation(s)
- T Pearson
- Department of Pharmacology & Neuroscience, University of Dundee, Ninewells Hospital & Medical School, Dundee, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Influence of estrogen on acetylcholinesterase activity in primary cultures of cerebral cells from neonatal rats. Anim Sci J 2004. [DOI: 10.1111/j.1740-0929.2004.00155.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Borg JJ, Hancox JC, Hogg DS, James AF, Kozlowski RZ. Actions of the anti-oestrogen agent clomiphene on outward K+ currents in rat ventricular myocytes. Clin Exp Pharmacol Physiol 2004; 31:86-95. [PMID: 14756690 DOI: 10.1111/j.1440-1681.2004.03956.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
1. The effects of clomiphene (CLM) on cardiac outward K+ current components from rat isolated ventricular myocytes were investigated using the whole-cell patch-clamp technique. Clomiphene (10 micromol/L) significantly inhibited both peak (Ipeak) and end-pulse (Ilate) outward currents (elicited by a 500 msec voltage step from -40 to +50 mV in the presence of K+-containing intracellular and extracellular solutions) by approximately 37% (n = 6; P < 0.01) and 49% (n = 6; P < 0.01), respectively. In contrast, CLM had no effect on outward currents when K+-free solutions were used. 2. A double-pulse protocol and Boltzmann fitting were used to separate individual K+ current components on the basis of their voltage-dependent inactivation properties. At potentials positive to -80 mV, two inactivating transient outward components (Ito) and (IKx) and a non-inactivating steady state component (Iss) could be distinguished. 3. Clomiphene inhibited both Ito and Iss. The maximal block of Ito and Iss induced by CLM (100 micromol/L) was approximately 61% (n = 5) and 43% (n = 5) with IC50 values of 1.54 +/- 0.39 and 2.2 +/- 0.4 micromol/L, respectively. In contrast, the peak magnitude of IKx was unaltered by CLM, although its time-course of inactivation was accelerated. 4. Further experiments whereby myocytes were superfused with the vasoactive peptide endothelin (ET)-1 (20 nmol/L) revealed that CLM (10 micro mol/L) completely abolished the ET-1-sensitive component of Iss. 5. Our findings demonstrate, for the first time, the effects of CLM on distinct cardiac K+ current components and show that CLM modulates the voltage-gated K+ current components Ito and IKx and inhibits the steady state outward current Iss in rat ventricular myocytes.
Collapse
Affiliation(s)
- John J Borg
- Department of Pharmacology, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | | | | | |
Collapse
|
41
|
Feng Y, Fratkins JD, LeBlanc MH. Treatment with tamoxifen reduces hypoxic–ischemic brain injury in neonatal rats. Eur J Pharmacol 2004; 484:65-74. [PMID: 14729383 DOI: 10.1016/j.ejphar.2003.10.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tamoxifen, an estrogen receptor modulator, is neuroprotective in adult rats. Does tamoxifen reduce brain injury in the rat pup? Seven-day-old rat pups had the right carotid artery permanently ligated followed by 2.5 h of hypoxia (8% oxygen). Tamoxifen (10 mg/kg) or vehicle was given i.p. 5 min prior to hypoxia, or 5 min after reoxygenation, with a second dose given 6 h after the first. Brain damage was evaluated by weight deficit of the right hemisphere 22 days following hypoxia and gross and microscopic morphology. Tamoxifen pre-treatment reduced brain weight loss from 21.5+/-4.0% in vehicle pups (n=27) to 2.6+/-2.5% in the treated pups (n=22, P<0.05). Treatment 5 min after reoxygenation reduced brain weight loss from 27.5+/-4.0% in vehicle pups (n=42) to 12.0+/-3.9% in the treated pups (n=30, P<0.05). Tamoxifen reduces brain injury in the neonatal rat.
Collapse
Affiliation(s)
- Yangzheng Feng
- Department of Pediatrics, University of Mississippi Medical Center, 2500 North State Street, 39216-4505, Jackson, MS, USA.
| | | | | |
Collapse
|
42
|
Williams JP, Thames AM, McKenna MA, McDonald JM. Differential effects of calmodulin and protein kinase C antagonists on bone resorption and acid transport activity. Calcif Tissue Int 2003; 73:290-6. [PMID: 14667143 DOI: 10.1007/s00223-002-0012-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tamoxifen inhibits bone resorption by disrupting calmodulin-dependent processes. Since tamoxifen inhibits protein kinase C in other cells, we compared the effects of tamoxifen and the PKC inhibitor, bis indolylmaleimide II (bIM), on bone resorption and acid transport activity in isolated membrane vesicles. Bis indolylmaleimide inhibited bone resorption 50% with an IC50 approximately 3 microM, as well as acid transport activity in a concentration -dependent manner with an IC50 of approximately 0.4 IM. The IC50 of bIM for inhibiting acid transport activity was similar to that of calmodulin antagonists. The potassium ionophore, valinomycin, failed to restore bIM or tamoxifen-dependent inhibition of acid transport, suggesting that bIM and tamoxifen both inhibit H(+)-ATPase activity. Half maximal inhibitory concentrations of tamoxifen and bIM were not additive in acid transport assays, suggesting different sites of action. Furthermore, exogenous calmodulin blocked tamoxifen, but not bIM, -dependent inhibition of acid transport. We also compared the effects of tamoxifen and bIM on phosphorylation of proteins in isolated membrane fractions as determined by 32P incorporation and autoradiography. Tamoxifen had no effect on protein phosphorylation in contrast to bIM, which inhibited phosphorylation of eight proteins with different apparent kinetics. The data suggest that, while tamoxifen and bIM both affect H(+)-ATPase activity, the mechanisms of action are different.
Collapse
Affiliation(s)
- J P Williams
- Departament of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA.
| | | | | | | |
Collapse
|
43
|
Phillis JW, O'Regan MH. Characterization of modes of release of amino acids in the ischemic/reperfused rat cerebral cortex. Neurochem Int 2003; 43:461-7. [PMID: 12742092 DOI: 10.1016/s0197-0186(03)00035-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brain extracellular levels of glutamate, aspartate, GABA and glycine increase rapidly following the onset of ischemia, remain at an elevated level during the ischemia, and then decline over 20-30 min following reperfusion. The elevated levels of the excitotoxic amino acids, glutamate and aspartate, are thought to contribute to ischemia-evoked neuronal injury and death. Calcium-evoked exocytotic release appears to account for the initial (1-2 min) efflux of neurotransmitter-type amino acids following the onset of ischemia, with non-vesicular release responsible for much of the subsequent efflux of these and other amino acids, including taurine and phosphoethanolamine. Extracellular Ca(2+)-independent release is mediated, in part by Na(+)-dependent amino acid transporters in the plasma membrane operating in a reversed mode, and by the opening of swelling-induced chloride channels, which allow the passage of amino acids down their concentration gradients. Experiments on cultured neurons and astrocytes have suggested that it is the astrocytes which make the primary contribution to this amino acid efflux. Inhibition of phospholipase A(2) attenuates ischemia-evoked release of both amino and free fatty acids from the rat cerebral cortex indicating that this group of enzymes is involved in amino acid efflux, and also accounting for the consistent ischemia-evoked release of phosphoethanolamine. It is, therefore, possible that disruption of membrane integrity by phospholipases plays a role in amino acid release. Recovery of amino acid levels to preischemic levels requires their uptake by high affinity Na(+)-dependent transporters, operating in their normal mode, following restoration of energy metabolism, cell resting potentials and ionic gradients.
Collapse
Affiliation(s)
- J W Phillis
- Department of Physiology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA.
| | | |
Collapse
|
44
|
He J, Kargacin ME, Kargacin GJ, Ward CA. Tamoxifen inhibits Na+ and K+ currents in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 2003; 285:H661-8. [PMID: 12702490 DOI: 10.1152/ajpheart.00686.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tamoxifen is an estrogen receptor antagonist used in the treatment of breast cancer. However, tamoxifen has been shown to induce QT prolongation of the electrocardiogram, thereby potentially causing life-threatening polymorphic ventricular arrhythmias. The purpose of the present study was to elucidate the electrophysiological mechanism(s) that underlie the arrhythmogenic effects of tamoxifen. We used standard ruptured whole cell and perforated patch-clamping techniques on rat ventricular myocytes to investigate the effects of tamoxifen on cardiac action potential (AP) waveforms and the underlying K+ currents. Tamoxifen (3 micromol/l) markedly prolonged AP duration, decreased maximal rate of depolarization, and decreased resting membrane potential. At this concentration, tamoxifen significantly depressed the Ca2+-independent transient outward K+ current (Ito), sustained outward delayed rectifier K+ current (Isus), inward rectifier K+ current (IK1), and Na+ current (INa) in the myocytes. Lower concentrations of tamoxifen (1 micromol/l) also decreased the resting membrane potential and significantly depressed IK1 to 79 +/- 5% (n = 5; at -120 mV) of pretreatment values. The results of this study indicate that inhibition of Ito, Isus, and IK1 by tamoxifen may underlie AP prolongation in cardiac myocytes and thereby contribute to prolonged QT interval observed in patients.
Collapse
Affiliation(s)
- Jianying He
- Department of Physiology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | |
Collapse
|
45
|
Kimelberg HK, Jin Y, Charniga C, Feustel PJ. Neuroprotective activity of tamoxifen in permanent focal ischemia. J Neurosurg 2003; 99:138-42. [PMID: 12854756 DOI: 10.3171/jns.2003.99.1.0138] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The authors have previously shown that tamoxifen is effective in protecting brain tissue from ischemic injury in a rat model of reversible focal ischemia. In this study the authors tested whether similar protective effects are found in a rat model of permanent focal ischemia (permanent middle cerebral artery [MCA] occlusion). METHODS Tamoxifen (20 mg/kg) was given either before or at 1, 3, or 6 hours after permanent MCA occlusion in rats, with sustaining doses given every 12 hours thereafter. The median infarct volume measured after 72 hours was 113 mm3 for the vehicle (dimethyl sulfoxide) groups, compared with 31 mm3 for pretreatment, and 14, 27, and 98 mm3 for treatment beginning at 1, 3, and 6 hours, respectively, after permanent MCA occlusion. The infarct reductions in the pretreated and 1- and 3-hour post-MCA occlusion treatment groups were statistically significant (p < 0.05). At 3 hours after permanent MCA occlusion, tamoxifen also significantly reduced the infarct size at a lower dose of 5 mg/kg but not at 1 mg/kg; the same sustaining doses of 5 and 1 mg/kg were given every 12 hours. CONCLUSIONS Tamoxifen is as effective in a permanent model of focal ischemia as it is in the reversible model, and the therapeutic window of 3 hours after initiation of ischemia is identical. This effectiveness is likely due to several properties of the drug, including its known ability to cross the blood-brain barrier. Because tamoxifen has been administered safely in humans for treatment of gliomas at similarly high doses to those used in this study, it may be clinically useful as a treatment for ischemic stroke.
Collapse
Affiliation(s)
- Harold K Kimelberg
- Center for Neuropharmacology and Neuroscience, and Division of Neurosurgery, Albany Medical College, Albany, New York 12208, USA.
| | | | | | | |
Collapse
|
46
|
Murphy S, McCullough L, Littleton-Kearney M, Hurn P. Estrogen and selective estrogen receptor modulators: neuroprotection in the Women's Health Initiative era. Endocrine 2003; 21:17-26. [PMID: 12777699 DOI: 10.1385/endo:21:1:17] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2003] [Revised: 02/04/2003] [Accepted: 02/11/2003] [Indexed: 11/11/2022]
Abstract
Estrogen has been comprehensively studied as a neuroprotective agent in women, animals, and a variety of in vitro models of neural injury and degeneration. Most data suggest that estrogen can benefit the ischemic brain and reduce cell death. However, recent data from the Women's Health Initiative have raised concerns about the utility and safety of chronic estrogen use in women. While estrogen is a potent and reproducible neuroprotectant in animals and in vitro, its current administration in women has had unanticipated and paradoxical effects. Nonetheless, estrogen's diverse actions make it an ideal prototype for developing new neuroprotectants such as selective estrogen receptor modulators (SERMs). SERMs represent a class of drugs with mixed estrogen agonistic and antagonistic activity. Experimental and clinical data suggest a neuroprotective role for SERMs in normal and injured brain. The discrepancy among observational studies, preclinical data, and clinical trials emphasizes the need for further study of the mechanisms leading to the increased incidence of stroke observed in postmenopausal women. Research is still needed to optimize combined or estrogen alone hormone replacement therapy options as well as the prevention/management of cerebrovascular/ central nervous system disorders. This review critiques estrogen and SERMs' neuroprotective potential in experimental and clinical studies of stroke and cerebrovascular disease.
Collapse
Affiliation(s)
- Stephanie Murphy
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
47
|
Phillis JW, O'Regan MH. Energy utilization in the ischemic/reperfused brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 51:377-414. [PMID: 12420365 DOI: 10.1016/s0074-7742(02)51011-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- John W Phillis
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
48
|
Chesnoy-Marchais D. Potentiation of glycine responses by dideoxyforskolin and tamoxifen in rat spinal neurons. Eur J Neurosci 2003; 17:681-91. [PMID: 12603258 DOI: 10.1046/j.1460-9568.2003.02481.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dideoxyforskolin, a forskolin analogue unable to stimulate adenylate cyclase, and tamoxifen, an antioestrogen widely used against breast cancer, are both known to block some Cl- channels. Their effects on Cl- responses to glycine or GABA have been tested here by using whole-cell recording from cultured spinal neurons. Dideoxyforskolin (4 or 16 microm) and tamoxifen (0.2-5 microm) both potentiate responses to low glycine concentrations. They also induce blocking effects, predominant at high glycine concentrations. At 5 microm, tamoxifen increased responses to 15 microm glycine by a factor >4.5, reaching 20 in some neurons. Potentiation by extracellular dideoxyforskolin or tamoxifen persisted after intracellular application of the modulator and was not due to Zn2+ contamination. Potentiation by tamoxifen also persisted in a Ca2+-free extracellular solution, after intracellular Ca2+ buffering and protein kinase C blockade. Thus, the critical sites of action are not intracellular. The EC50 for glycine was lowered 6.6-fold by 5 microm tamoxifen. The kinetics and voltage-dependence of the effects of tamoxifen on glycine responses support the idea that this hydrophobic drug may act from a site located within the membrane. Tamoxifen (5 micro m) also increased responses to 2 micro m GABA by a factor of 3.5, but barely affected peak responses to 20 microm GABA. The demonstration that tamoxifen affects some of the main inhibitory receptors should be useful for better evaluating its neurological effects. Furthermore, the results identify a new class of molecules that potentiate glycine receptor function.
Collapse
Affiliation(s)
- Dominique Chesnoy-Marchais
- Laboratoire de Neurobiologie Moléculaire et Cellulaire, CNRS UMR-8544, Ecole Normale Supérieure, 46 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
49
|
Studies on Taurine Efflux from the Rat Cerebral Cortex During Exposure to Hyposmotic, High K+ and OuabainContaining aCSF. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003. [DOI: 10.1007/978-1-4615-0077-3_52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
50
|
Mäenpää H, Mannerström M, Toimela T, Salminen L, Saransaari P, Tähti H. Glutamate uptake is inhibited by tamoxifen and toremifene in cultured retinal pigment epithelial cells. PHARMACOLOGY & TOXICOLOGY 2002; 91:116-22. [PMID: 12427111 DOI: 10.1034/j.1600-0773.2002.910305.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The systemic drugs chloroquine and tamoxifen have caused retinal defects in human eye. The aim of our study was to investigate the effects of the amphiphilic drug tamoxifen, of its homologue toremifene, and of chloroquine on the glutamate uptake in retinal pigment epithelial (RPE) cells. Cultured human RPE cell line D407 and pig RPE cells were used in the study. Glutamate uptake was characterised and the glutamate transporters of pig RPE cells and the human RPE cell line D407 were compared to each other. The uptake of glutamate was studied using L-[3H]glutamate as a tracer. The radioactivity in the solubilised RPE was measured with a liquid scintillation counter. In the uptake experiments, the cells were exposed to the test drugs, to the selected glutamate receptor antagonists, and to the glutamate transporter inhibitors. Both RPE cell types exhibited a high-affinity transport system for glutamate. The glutamate transporter in RPE exhibited features characteristic of the uptake systems of neurotransmitters. The transport was Na+-dependent, and L- and D-aspartate were transported into the cell by the same transporter. Chloroquine had no effect on glutamate uptake, but tamoxifen and toremifene decreased the glutamate uptake of RPE cells dose-dependently both in pig RPE cells and in human RPE cell line. The IC50 values of tamoxifen and toremifene were lower for pig RPE cells, compared to the human RPE cell line D407. The glutamate uptake was a sensitive target for the effects of tamoxifen and toremifene, and disturbances in this function could be considered as one of the possible mechanisms of retinal defects.
Collapse
|