1
|
Beck R, Günther L, Xiong G, Potschka H, Böning G, Bartenstein P, Brandt T, Jahn K, Dieterich M, Strupp M, la Fougère C, Zwergal A. The mixed blessing of treating symptoms in acute vestibular failure — Evidence from a 4-aminopyridine experiment. Exp Neurol 2014; 261:638-45. [DOI: 10.1016/j.expneurol.2014.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/07/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
|
2
|
Bose P, Hou J, Nelson R, Nissim N, Parmer R, Keener J, Wacnik PW, Thompson FJ. Effects of Acute Intrathecal Baclofen in an Animal Model of TBI-Induced Spasticity, Cognitive, and Balance Disabilities. J Neurotrauma 2013; 30:1177-91. [DOI: 10.1089/neu.2012.2740] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Prodip Bose
- Brain Rehabilitation Research Center (151), North Florida/South Georgia VA Health System, Gainesville, Florida
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
- Department of Neurology, University of Florida, Gainesville, Florida
| | - Jiamei Hou
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - Rachel Nelson
- Brain Rehabilitation Research Center (151), North Florida/South Georgia VA Health System, Gainesville, Florida
| | - Nicole Nissim
- Brain Rehabilitation Research Center (151), North Florida/South Georgia VA Health System, Gainesville, Florida
| | - Ron Parmer
- Brain Rehabilitation Research Center (151), North Florida/South Georgia VA Health System, Gainesville, Florida
| | - Jonathon Keener
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - Paul W. Wacnik
- Neuromodulation Targeted Drug Delivery, Medtronic Inc., Minneapolis, Minnesota
| | - Floyd J. Thompson
- Brain Rehabilitation Research Center (151), North Florida/South Georgia VA Health System, Gainesville, Florida
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
| |
Collapse
|
3
|
Presynaptic GABA(B) receptors decrease neurotransmitter release in vestibular nuclei neurons during vestibular compensation. Neuroscience 2012; 223:333-54. [PMID: 22871524 DOI: 10.1016/j.neuroscience.2012.07.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/18/2012] [Accepted: 07/30/2012] [Indexed: 01/25/2023]
Abstract
Unilateral damage to the peripheral vestibular receptors precipitates a debilitating syndrome of oculomotor and balance deficits at rest, which extensively normalize during the first week after the lesion due to vestibular compensation. In vivo studies suggest that GABA(B) receptor activation facilitates recovery. However, the presynaptic or postsynaptic sites of action of GABA(B) receptors in vestibular nuclei neurons after lesions have not been determined. Accordingly, here presynaptic and postsynaptic GABA(B) receptor activity in principal cells of the tangential nucleus, a major avian vestibular nucleus, was investigated using patch-clamp recordings correlated with immunolabeling and confocal imaging of the GABA(B) receptor subunit-2 (GABA(B)R2) in controls and operated chickens shortly after unilateral vestibular ganglionectomy (UVG). Baclofen, a GABA(B) agonist, generated no postsynaptic currents in principal cells in controls, which correlated with weak GABA(B)R2 immunolabeling on principal cell surfaces. However, baclofen decreased miniature excitatory postsynaptic current (mEPSC) and GABAergic miniature inhibitory postsynaptic current (mIPSC) events in principal cells in controls, compensating and uncompensated chickens three days after UVG, indicating the presence of functional GABA(B) receptors on presynaptic terminals. Baclofen decreased GABAergic mIPSC frequency to the greatest extent in principal cells on the intact side of compensating chickens, with concurrent increases in GABA(B)R2 pixel brightness and percentage overlap in synaptotagmin 2-labeled terminals. In uncompensated chickens, baclofen decreased mEPSC frequency to the greatest extent in principal cells on the intact side, with concurrent increases in GABA(B)R2 pixel brightness and percentage overlap in synaptotagmin 1-labeled terminals. Altogether, these results revealed changes in presynaptic GABA(B) receptor function and expression which differed in compensating and uncompensated chickens shortly after UVG. This work supports an important role for GABA(B) autoreceptor-mediated inhibition in vestibular nuclei neurons on the intact side during early stages of vestibular compensation, and a role for GABA(B) heteroreceptor-mediated inhibition of glutamatergic terminals on the intact side in the failure to recover function.
Collapse
|
4
|
No effects of anti-motion sickness drugs on vestibular evoked myogenic potentials outcome parameters. Otol Neurotol 2011; 32:497-503. [PMID: 21307816 DOI: 10.1097/mao.0b013e31820d94d0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the effects of meclizine (50 mg), baclofen (10 mg), cinnarizine (20 mg) + dimenhydrinate (40 mg), and promethazine (25 mg) + dextro-amphetamine (5 mg) on the parameters of the vestibular evoked myogenic potential (VEMP) test. STUDY DESIGN Double-blind placebo-controlled prospective randomized trial. SETTING University hospital. SUBJECTS Twenty-four (first block: baclofen versus placebo) and 20 healthy male subjects (second block: meclizine, cinnarizine + dimenhydrinate and promethazine + dextro-amphetamine versus placebo). INTERVENTIONS VEMP test. MAIN OUTCOME MEASURES Threshold, p13 and n23 latencies, p13-n23 latency difference, p13-n23 peak-to-peak amplitude, mean rectified voltage of the sternocleidomastoid muscle contraction and the corrected amplitude. RESULTS There were no clinically significant pharmacologic effects on the VEMP outcome parameters. However, there was a statistically significant left-right asymmetry after intake of the combination promethazine + d-amphetamine for the parameters p13 and latency difference. CONCLUSION The absence of clinically significant effects can be explained by the predominant presence of the target receptors for the applied drugs in the medial vestibular nucleus, which receives the lowest grade of saccular projections. It also can be hypothesized that the VEMP methodology and techniques in general do not allow determining pharmacologic effects in a healthy group of subjects because of a too small discriminative power. The left-right asymmetry can be explained by a depressive action of the drugs on the central compensation mechanisms. Because there were no significant differences between the VEMP parameters obtained after intake of the placebos of both blocks, we concluded that there were no training effects.
Collapse
|
5
|
Heskin-Sweezie R, Titley HK, Baizer JS, Broussard DM. Type B GABA receptors contribute to the restoration of balance during vestibular compensation in mice. Neuroscience 2010; 169:302-14. [PMID: 20394801 PMCID: PMC2910079 DOI: 10.1016/j.neuroscience.2010.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 03/23/2010] [Accepted: 04/05/2010] [Indexed: 10/19/2022]
Abstract
Following unilateral vestibular damage (UVD), vestibular compensation restores both static and dynamic vestibular reflexes. The cerebellar cortex provides powerful GABAergic inhibitory input to the vestibular nuclei which is necessary for compensation. Metabotropic GABA type B (GABA(B)) receptors in the vestibular nuclei are thought to be involved. However, the contribution of GABA(B) receptors may differ between static and dynamic compensation. We tested static and dynamic postural reflexes and gait in young mice, while they compensated for UVD caused by injection of air into the vestibular labyrinth. The effects of an agonist (baclofen), an antagonist (CGP56433A) and a positive allosteric modulator (CGP7930) of the GABA(B) receptor were evaluated during compensation. Static postural reflexes recovered very rapidly in our model, and baclofen slightly accelerated recovery. However, CGP56433A significantly impaired static compensation. Dynamic reflexes were evaluated by balance-beam performance and by gait; both showed significant decrements following UVD and performance improved over the next 2 days. Both CGP56433A and baclofen temporarily impaired the ability to walk on a balance beam after UVD. Two days later, there were no longer any significant effects of drug treatments on balance-beam performance. Baclofen slightly accelerated the recovery of stride length on a flat surface, but CGP7930 worsened the gait impairment following UVD. Using immunohistochemistry, we confirmed that GABA(B) receptors are abundantly expressed on the vestibulospinal neurons of Deiters in mice. Our results suggest that GABA(B) receptors contribute to the compensation of static vestibular reflexes following unilateral peripheral damage. We also conclude that impairment of the first stage of compensation, static recovery, does not necessarily result in an impairment of dynamic recovery in the long term.
Collapse
Affiliation(s)
| | | | - Joan S. Baizer
- Department of Physiology and Biophysics, University at Buffalo
| | - Dianne M. Broussard
- Department of Physiology, University of Toronto
- Division of Neurology, Department of Medicine, University of Toronto
- Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network, Toronto
| |
Collapse
|
6
|
Yu D, Yin S, Chen Z. Effect of baclofen on neuronal activity in the medial vestibular nucleus after unilateral surgical labyrinthectomy in rats. Acta Otolaryngol 2009; 129:735-40. [PMID: 18728918 DOI: 10.1080/00016480802369286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
CONCLUSIONS Ipsilateral and contralateral medial vestibular nuclei (MVN) neurons respond differently to systemic injection of baclofen (4-amino-3-(4-chlorophenyl)-butanoic acid), illustrating the plastic changes of the type B gamma-aminobutyric acid (GABA(B)) receptor during vestibular compensation. OBJECTIVES To investigate the responsiveness of MVN neurons to baclofen during the early, partially compensated period after unilateral surgical labyrinthectomy. MATERIALS AND METHODS MVN were localized using field potentials evoked by electrical stimulation, along with a stereotaxic atlas of rat brain. Neuronal activity in MVN was recorded and analyzed in rats that had undergone labyrinthectomy with and without administration of baclofen. RESULTS After left labyrinthectomy the mean discharge rate in ipsilesional MVN decreased, but it was nearly restored by postoperative day 8. Baclofen (3 mg/kg) reversed the mean discharge rates between bilateral MVN at days 4 and 8 after surgical labyrinthectomy. In addition, the reduction ratio of the right MVN neurons was higher than that of the left MVN neurons.
Collapse
|
7
|
Failure of gamma-aminobutyrate acid-beta agonist baclofen to improve balance, gait, and postural control after vestibular schwannoma resection. Otol Neurotol 2009; 30:350-5. [PMID: 19174711 DOI: 10.1097/mao.0b013e31819678a7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Incomplete postural control often occurs after vestibular schwannoma (VS) surgery. Customized vestibular rehabilitation in man improves and speeds up this process. Animal experiments have shown an improved and faster vestibular compensation after administration of the gamma-aminobutyrate acid (GABA)-beta agonist baclofen. OBJECTIVE To examine whether medical treatment with baclofen provides an improvement of the compensation process after VS surgery. DESIGN A time-series study with historical control. SETTING Tertiary referral center. METHODS Thirteen patients who underwent VS resection were included and compared with a matched group of patients. In addition to an individualized vestibular rehabilitation protocol, the study group received medical treatment with 30 mg baclofen (a GABA-beta agonist) daily during the first 6 weeks after surgery. MAIN OUTCOME MEASURES Clinical gait and balance tests (Romberg maneuver, standing on foam, tandem Romberg, single-leg stance, Timed Up & Go test, tandem gait, Dynamic Gait Index) and Dizziness Handicap Inventory. Follow-up until 24 weeks after surgery. RESULTS When examining the postoperative test results, the group treated with baclofen did not perform better when compared with the matched (historical control) group. Repeated-measures analysis of variance revealed no significant group effect, but a significant time effect for almost all balance tests during the acute recovery period was found. An interaction effect between time and intervention was seen concerning single-leg stance and Dizziness Handicap Inventory scores for the acute recovery period. CONCLUSION Medical therapy with baclofen did not seem to be beneficial in the process of central vestibular compensation.
Collapse
|
8
|
Zhang R, Ashton J, Horii A, Darlington CL, Smith PF. Immunocytochemical and stereological analysis of GABA(B) receptor subunit expression in the rat vestibular nucleus following unilateral vestibular deafferentation. Brain Res 2005; 1037:107-13. [PMID: 15777758 DOI: 10.1016/j.brainres.2005.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 12/18/2004] [Accepted: 01/01/2005] [Indexed: 11/20/2022]
Abstract
The process of behavioral recovery that occurs following damage to one vestibular labyrinth, vestibular compensation, has been attributed in part to a down-regulation of GABA(B) receptors in the vestibular nucleus complex (VNC) ipsilateral to the lesion, which could potentially reduce commissural inhibition from the contralateral VNC. In this study, we tested the possibility that this occurs through a decrease in the expression of either the GABA(B1) or GABA(B2) subunits of the GABA(B) receptor. We used Western blotting to quantify the expression of these subunits in the VNC at 10 h and 50 h following unilateral vestibular deafferentation (UVD) or sham surgery in rats. We then used immunocytochemistry and stereological counting methods to estimate the number of neurons expressing these subunits in the MVN at 10 h and 2 weeks following UVD or sham surgery. Compared to sham controls, we found no significant changes in either the expression of the two GABA(B) receptor subunits in the VNC or in the number of MVN neurons expressing these GABA(B) receptor subunits post-UVD. These results suggest that GABA(B) receptor expression does not change substantially in the VNC during the process of vestibular compensation.
Collapse
Affiliation(s)
- Rong Zhang
- Vestibular Research Group, Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago Medical School, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
9
|
Eleore L, Vassias I, Bernat I, Vidal PP, de Waele C. An in situ hybridization and immunofluorescence study of GABAA and GABAB receptors in the vestibular nuclei of the intact and unilaterally labyrinthectomized rat. Exp Brain Res 2004; 160:166-79. [PMID: 15452674 DOI: 10.1007/s00221-004-1997-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Accepted: 05/25/2004] [Indexed: 11/25/2022]
Abstract
We investigated whether the production of the sixteen subunits of the GABA(A) receptors and of the different variants of GABA Breceptors are modulated in rat medial vestibular nuclei (MVN) following unilateral labyrinthectomy. Specific alpha1-6, beta1-3, gamma1-3 and delta GABA(A) and GABA(B) B1 and B2receptor radioactive oligonucleotides were used for in situ hybridization to probe sections of rat vestibular nuclei. Specific antibodies against alpha1, beta2, beta3 and gamma2 subunits of GABA(A) receptors and against GABA( B)receptors were also used to detect a potential protein expression modulation. No asymmetry was observed by autoradiography in the intact and deafferented MVN at any time (5 h to 8 days) following the lesion and for any of the oligonucleotide probes used. Also, no difference in the alpha1, beta2, beta3 and gamma2 of the GABA(A) and in the GABA(B) receptor immunohistochemical signal could be detected between the intact and deafferented vestibular nuclei at any time following the lesion. Our data suggest that GABA(A) and GABA Breceptor density changes most probably were not involved in the early stage of the vestibular compensation process, i.e., in the restoration of a normal resting discharge of the deafferented vestibular neurons and consequently in the recovery of a normal posture and eye position.
Collapse
MESH Headings
- Adaptation, Physiological/physiology
- Animals
- Antibody Specificity/physiology
- Denervation
- Ear, Inner/physiology
- Ear, Inner/surgery
- Fluorescent Antibody Technique
- Functional Laterality/physiology
- In Situ Hybridization
- Male
- Neuronal Plasticity/physiology
- Protein Subunits/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Long-Evans
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Receptors, GABA-B/genetics
- Receptors, GABA-B/metabolism
- Vestibular Nerve/metabolism
- Vestibular Nerve/physiopathology
- Vestibular Nuclei/metabolism
- Vestibular Nuclei/physiopathology
- Vestibule, Labyrinth/injuries
Collapse
Affiliation(s)
- Lyndell Eleore
- LNRS, CNRS-Paris 5, Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, 75270, Paris Cedex 06, France
| | | | | | | | | |
Collapse
|
10
|
Magnusson AK, Tham R. Vestibulo-oculomotor behaviour in rats following a transient unilateral vestibular loss induced by lidocaine. Neuroscience 2003; 120:1105-14. [PMID: 12927215 DOI: 10.1016/s0306-4522(03)00407-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of a transient vestibular nerve blockade, achieved by intra-tympanic instillation of lidocaine, were studied in rats by recording horizontal eye movements in darkness. Evaluation of the dose-response relationship showed that a maximal effect was attained with a concentration of 4% lidocaine. Within 15 min of lidocaine instillation, a vigorous spontaneous nystagmus was observed which reached maximal frequency and velocity of the slow phase after about 20 min. Subsequently, the nystagmus failed for approximately half an hour before it reappeared. This could be avoided by providing visual feedback in between the recordings in darkness or by a contralateral instillation of 2.5% lidocaine. It is suggested that the failure reflects an overload of the vestibulo-oculomotor circuits. After recovery from the nerve blockade, when the gaze was stable, dynamic vestibular tests were performed. They revealed that a decrease of the slow phase velocity gain and the dominant time constant during, respectively, sinusoidal- and step stimulation toward the unanaesthetised side, had developed with the nerve blockade. These modulations were impaired by a nodulo-uvulectomy but not by bilateral flocculectomy, which is consistent with the concept of vestibular habituation. A GABA(B) receptor antagonist, CGP 56433A, given systemically during the nerve blockade, aggravated the vestibular asymmetry. The same effect has previously been demonstrated in both short- (days) and long-term (months) compensated rats, by antagonising the GABA(B) receptor. In summary, this study provides the first observations of vestibulo-oculomotor disturbances during the first hour after a rapid and transient unilateral vestibular loss in the rat. By using this method, it is possible to study immediate behavioural consequences and possible neural changes that might outlast the nerve blockade.
Collapse
MESH Headings
- Adaptation, Physiological
- Anesthetics, Local/pharmacology
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Benzoates/pharmacology
- Denervation
- Dose-Response Relationship, Drug
- Eye Movements/drug effects
- Eye Movements/physiology
- Functional Laterality
- GABA Antagonists/pharmacology
- Lidocaine/pharmacology
- Male
- Nystagmus, Physiologic
- Phosphinic Acids/pharmacology
- Posture
- Rats
- Rats, Inbred Strains
- Reflex, Vestibulo-Ocular/drug effects
- Reflex, Vestibulo-Ocular/physiology
- Saccades/drug effects
- Saccades/physiology
- Time Factors
- Vestibule, Labyrinth/drug effects
- Vestibule, Labyrinth/physiology
- Vestibule, Labyrinth/surgery
Collapse
Affiliation(s)
- A K Magnusson
- Department of Biomedicine and Surgery, Faculty of Health Sciences, SE-581 85, Linköping, Sweden.
| | | |
Collapse
|
11
|
Magnusson AK, Ulfendahl M, Tham R. Early compensation of vestibulo-oculomotor symptoms after unilateral vestibular loss in rats is related to GABA(B) receptor function. Neuroscience 2002; 111:625-34. [PMID: 12031349 DOI: 10.1016/s0306-4522(01)00618-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The horizontal vestibulo-oculomotor reflex was studied in pigmented rats during the first 5 days after a unilateral chemical or surgical vestibular deafferentation. Spontaneous eye movements in darkness and slow phase velocity gain of compensatory eye movements during horizontal sinusoidal rotation were evaluated. The most evident vestibulo-oculomotor symptom immediately after a unilateral vestibular loss was a spontaneous nystagmus, which gradually abated during the following days. Further, an asymmetry between ipsi- and contra-lesional gains was evident during sinusoidal vestibular stimulation. Single systemic doses of the GABA(B) receptor antagonist [3-[1-(S)-[[3-(cyclohexylmethyl)-hydroxyphosphinoyl]-2-(S)-hydroxypropyl]amino]ethyl]-benzoic acid (CGP 56433A), the agonist baclofen, or the GABA(A) receptor agonist (4,5,6,7-tetrahydroisoxazolo-[5,4-c]-pyridin-3-ol (THIP) were given at different intervals after unilateral vestibular deafferentation. CGP 56433A highly aggravated the vestibulo-oculomotor symptoms, observed as an increase in spontaneous nystagmus and slow phase velocity gain asymmetry. This effect was most pronounced during the first 2 days after unilateral vestibular loss, when CGP 56433A even decompensated the vestibular system to the extent that all vestibular responses were abolished. Baclofen caused no effect during the first days after unilateral vestibular loss, but in parallel with the abatement of spontaneous nystagmus, the drug equilibrated or even reversed the remaining spontaneous nystagmus with corresponding effects on the slow-phase velocity gain asymmetry. The effects of baclofen were very similar after both chemical and surgical deafferentation. THIP caused a slight depression of all vestibular responses. All single dose effects of the drugs were transient. Altogether these results reveal that endogenous stimulation of GABA(B) receptors in GABA-ergic vestibulo-oculomotor circuits are important for reducing the vestibular asymmetry during the early period after unilateral vestibular deafferentation. A possible role for GABA(B) receptors in the reciprocal inhibitory commissural pathways in the vestibular nuclei is suggested.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/physiology
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Denervation
- Eye Movements/drug effects
- Eye Movements/physiology
- GABA Agonists/pharmacology
- GABA Antagonists/pharmacology
- GABA-A Receptor Agonists
- GABA-B Receptor Agonists
- GABA-B Receptor Antagonists
- Male
- Posture
- Rats
- Receptors, GABA-B/physiology
- Reflex, Vestibulo-Ocular/drug effects
- Reflex, Vestibulo-Ocular/physiology
- Rotation
- Saccades/drug effects
- Saccades/physiology
- Vestibular Nerve/physiology
- Vestibule, Labyrinth/drug effects
- Vestibule, Labyrinth/innervation
- Vestibule, Labyrinth/physiology
Collapse
Affiliation(s)
- A K Magnusson
- Department of Biomedicine and Surgery, Division of Cell Biology, Faculty of Health Sciences, SE-581 85 Linköping, Sweden.
| | | | | |
Collapse
|
12
|
Johnston AR, Him A, Dutia MB. Differential regulation of GABA(A) and GABA(B) receptors during vestibular compensation. Neuroreport 2001; 12:597-600. [PMID: 11234771 DOI: 10.1097/00001756-200103050-00033] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We investigated changes in intrinsic excitability and GABA receptor efficacy in rat medial vestibular nucleus (MVN) neurons following 48 h and 7-10 days of behavioral recovery after unilateral labyrinthectomy (UL) in the rat. The mean in vitro discharge rate of rostral ipsilesional MVN cells at both time points was significantly higher than normal, indicating that the intrinsic excitability of the deafferented cells undergoes a sustained up-regulation during vestibular compensation. In slices from animals that had compensated for 7-10 days after UL, the responsiveness of rostral ipsilesional MVN cells to the GABA(A) agonist muscimol was not different from normal, while the responsiveness to the GABA(B) agonist baclofen was significantly down-regulated. This is in contrast to the situation soon after UL, where the efficacy of both GABA(A) and GABA(B) receptors is markedly down-regulated. The recovery of fast GABA(A) mediated neurotransmission by 7-10 days post-UL presumably enables ipsilesional cells to again respond to vestibular stimulation, through commissural inhibitory modulation from the intact side. The permanent loss of excitatory input from the lesioned side may be, in effect, counteracted by the long-term down-regulation of slow GABA(B) receptors in the de-afferented neurons.
Collapse
Affiliation(s)
- A R Johnston
- Department of Biomedical Sciences (Physiology), University of Edinburgh Medical School, UK
| | | | | |
Collapse
|
13
|
Yamanaka T, Him A, Cameron SA, Dutia MB. Rapid compensatory changes in GABA receptor efficacy in rat vestibular neurones after unilateral labyrinthectomy. J Physiol 2000; 523 Pt 2:413-24. [PMID: 10699085 PMCID: PMC2269812 DOI: 10.1111/j.1469-7793.2000.t01-1-00413.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
1. The inhibitory effects of the GABAA agonist muscimol and the GABAB agonist baclofen on tonically active medial vestibular nucleus (MVN) neurones were recorded in slices of the rat dorsal brainstem in vitro, to determine whether any changes occurred in the functional efficacy of GABAergic inhibition in these cells during the initial rapid stage of 'vestibular compensation', the behavioural recovery that takes place after unilateral labyrinthectomy (UL). These experiments were carried out in preparations where the midline was cut, severing all commissural connections between the two vestibular nuclei. 2. Slices of the MVN were prepared from normal animals and animals that had been unilaterally labyrinthectomised 4 h earlier. The mean in vitro discharge rate of MVN neurones in the rostral region of the ipsi-lesional nucleus after UL was significantly higher than that in control slices, confirming our earlier reports of an increase in intrinsic excitability of these cells in the early stage of vestibular compensation. The in vitro discharge rates of caudal ipsi-lesional MVN cells, and rostral and caudal contra-lesional MVN cells, were not different from controls. 3. Muscimol and baclofen caused reversible, dose-related inhibition of the tonic discharge rate of MVN cells in control slices. In slices prepared from UL animals, MVN cells in the rostral region of the ipsi-lesional nucleus showed a marked downregulation of their response to both muscimol and baclofen, seen as a rightward shift and a decrease in slope of the dose-response relationships for the two agonists. In the contra-lesional nucleus, there was a small but significant upregulation of the responsiveness of both rostral and caudal MVN cells to baclofen, and a marked upregulation of the responsiveness of caudal MVN cells to muscimol. 4. In slices from animals that had undergone bilateral labyrinthectomy 4 h earlier, the downregulation of the functional efficacy of GABA receptors in the rostral MVN cells did not occur. The changes in GABA receptor efficacy after UL are therefore not due to the vestibular de-afferentation itself, but are instead due to the imbalance in excitability of the vestibular nuclei of the lesioned and intact sides, and the enhanced commissural inhibition of the ipsi-lesional MVN cells that follows UL. 5. The downregulation of GABA receptor efficacy in the ipsi-lesional MVN neurones is functionally compensatory, in that their response to commissural and cerebellar inhibitory drive will be significantly reduced after UL. Their intrinsic membrane conductances, and their remaining excitatory synaptic inputs, will consequently be more effective in causing depolarisation and the restoration of resting activity. Simultaneously the upregulation of GABAergic efficacy in the contra-lesional MVN will tend to reduce the hyperactivity on the contralateral side. These adaptive changes therefore represent a plausible cellular mechanism for the recovery of resting discharge in the ipsi-lesional MVN neurones, and the 're-balancing' of the excitability of the vestibular neurones of the lesioned and intact sides, as occurs after UL in vivo. 6. We propose that the adaptive regulation of the functional efficacy of GABA receptors in the MVN neurones may be an important cellular mechanism for the 'homeostasis of bilateral excitability' of the vestibular nuclei of the two sides.
Collapse
Affiliation(s)
- T Yamanaka
- Department of Biomedical Sciences (Physiology), Medical School, Teviot Place, Edinburgh EH8 9AG, UK
| | | | | | | |
Collapse
|
14
|
Abstract
Nystagmus may have onset in infancy or adulthood. Infantile-onset nystagmus is commonly associated with genetic disease, and recognition of the various genetic and nongenetic diseases in which it may develop has led to the understanding that nystagmus is often a response of the oculomotor system to an early-onset, bilateral abnormality of vision. Adult-onset nystagmus most often develops as a result of nongenetic neurologic disease, and it manifests in a variety of patterns. Genetic studies have allowed further identification of the genes and genetic loci associated with nystagmus, and careful eye-movement recordings in patients with various patterns of nystagmus have further clarified the oculomotor pathophysiology.
Collapse
Affiliation(s)
- J B Kerrison
- Emory Eye Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| |
Collapse
|