1
|
Vaswani AR, Blaess S. Reelin Signaling in the Migration of Ventral Brain Stem and Spinal Cord Neurons. Front Cell Neurosci 2016; 10:62. [PMID: 27013975 PMCID: PMC4786562 DOI: 10.3389/fncel.2016.00062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 02/26/2016] [Indexed: 12/03/2022] Open
Abstract
The extracellular matrix protein Reelin is an important orchestrator of neuronal migration during the development of the central nervous system. While its role and mechanism of action have been extensively studied and reviewed in the formation of dorsal laminar brain structures like the cerebral cortex, hippocampus, and cerebellum, its functions during the neuronal migration events that result in the nuclear organization of the ventral central nervous system are less well understood. In an attempt to delineate an underlying pattern of Reelin action in the formation of neuronal cell clusters, this review highlights the role of Reelin signaling in the migration of neuronal populations that originate in the ventral brain stem and the spinal cord.
Collapse
Affiliation(s)
- Ankita R Vaswani
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn Bonn, Germany
| | - Sandra Blaess
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn Bonn, Germany
| |
Collapse
|
2
|
Dekimoto H, Terashima T, Katsuyama Y. Dispersion of the neurons expressing layer specific markers in the reeler brain. Dev Growth Differ 2010; 52:181-93. [PMID: 20067496 DOI: 10.1111/j.1440-169x.2009.01153.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurons with similar functions including neuronal connectivity and gene expression form discrete condensed structures within the vertebrate brain. This is exemplified within the circuitry formed by the cortical layers and the neuronal nuclei. It is well known that the Reelin protein is required for development of these neuronal structures in rodents and human, but the function of Reelin remains controversial. In this report, we used "layer-specific markers" of the cerebral cortex to carry out detailed observations of spatial distribution of the neuronal subpopulations in the brain of the Reelin deficient mouse, reeler. We observed a spatially dispersed expression of the markers in the reeler cerebral cortex. These markers are expressed also in other laminated and non-laminated structures of brain, in which we observed similar abnormal gene expression. Our observations suggest that neurons within the brain structures (such as the layers and the nuclei), which normally exhibit condensed distribution of marker expressions, loosen their segregation or scatter by a lack of Reelin.
Collapse
Affiliation(s)
- Hideyuki Dekimoto
- Division of Anatomy and Neurobiology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | |
Collapse
|
3
|
Abstract
The reeler mouse is one of the most famous spontaneously occurring mutants in the research field of neuroscience, and this mutant has been used as a model animal to understand mammalian brain development. The classical observations emphasized that laminar structures of the reeler brain are highly disrupted. Molecular cloning of Reelin, the gene responsible for reeler mutant provided insights into biochemistry of Reelin signal, and some models had been proposed to explain the function of Reelin signal in brain development. However, recent reports of reeler found that non-laminated structures in the central nervous system are also affected by the mutation, making function of Reelin signal more controversial. In this review, we summarized reported morphological and histological abnormalities throughout the central nervous system of the reeler comparing to those of the normal mouse. Based on this overview of the reeler abnormalities, we discuss possible function of Reelin signal in the neuronal migration and other morphological events in mouse development.
Collapse
Affiliation(s)
- Yu Katsuyama
- Division of Anatomy and Developmental Neurobiology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 Japan.
| | | |
Collapse
|
4
|
Hirasugi K, Hisa Y, Setsu T, Terashima T. Ambiguus motoneurons innervating laryngeal and esophageal muscles are malpositioned in the Reelin-deficient mutant rat, Shaking Rat Kawasaki. Acta Otolaryngol 2007; 127:213-20. [PMID: 17364355 DOI: 10.1080/00016480600794479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
CONCLUSIONS The present study confirmed that ambiguus motoneurons innervating intrinsic laryngeal and esophageal muscles are radially malpositioned in the brainstem of the Shaking Rat Kawasaki (SRK), a reelin-deficient mutant rat. OBJECTIVES Ambiguus motoneurons innervating the striated muscles of the larynx and esophagus take a long migration from their original birth plate in the floor of the fourth ventricle to their final settlement in the ventral margin of the medulla oblongata. To examine whether the migration of ambiguus nucleus neurons is affected in SRK, we studied localization of ambiguus motoneurons of postnatal day 21 (P21) normal and SRK rats. MATERIALS AND METHODS To label ambiguus motoneurons retrogradely, horseradish peroxidase (HRP) was injected into some laryngeal muscles including cricothyroid, thyroarytenoid and posterior cricoarytenoid muscles, and the cervical and abdominal esophageal muscles of the SRK and normal controls 2 days before sacrifice. RESULTS In the P21 normal rat, HRP-positive laryngeal and esophageal motoneurons were found in the nucleus ambiguus, whereas in the P21 SRK, they were scattered from the base of the fourth ventricle to the ventro-lateral margin of the medulla, suggesting that radial migration of ambiguus motoneurons from their birthplace to their final settlement is guided by Reelin protein.
Collapse
Affiliation(s)
- Kaheita Hirasugi
- Department of Otorhinolaryngology, Kyoto Prefectual School of Medicine, Kyoto, Japan
| | | | | | | |
Collapse
|
5
|
Tanaka Y, Okado H, Terashima T. Retrograde infection of precerebellar nuclei neurons by injection of a recombinant adenovirus into the cerebellar cortex of normal and reeler mice. ACTA ACUST UNITED AC 2007; 70:51-62. [PMID: 17558144 DOI: 10.1679/aohc.70.51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The reeler mouse is an autosomal recessive mutant mouse caused by mutation of the reelin gene and characterized by cerebellar ataxia. To determine whether the distribution pattern of precerebellar nuclei neurons in the brainstem of the reeler mouse changes, we injected a small volume of a replication-defective recombinant adenovirus carrying E. coli beta-galactosidase (lacZ) into the cerebellar cortex of normal and reeler mice. Five days later, the mice were transcardially perfused by a fixative solution. X-gal staining of coronal or sagittal sections of the brainstem revealed that many origins for reticulocerebellar, cuneocerebellar, trigeminocerebellar, and pontocerebellar projections were retrogradely labeled, but only a few olivocerebellar neurons were labeled. Retrogradely labeled neurons in the lateral reticular nucleus tended to locate more laterally and be more condensed into a small compartment in the reeler compared with their normal counterparts. Retrogradely labeled neurons in the external cuneate nucleus were more dorsally shifted in the reeler mice compared with their normal counterparts. We could not find any differences between the normal and reeler mice in the distribution patterns of their trigeminocerebellar projection neurons. Retrogradely labeled pontocerebellar neurons in the basilar pons of the reeler mouse were reduced in number compared with their normal counterparts in addition to being more ventrally and laterally shifted. These findings strongly suggest that the migration of some precerebellar nuclei neurons from the rhombic lip to their final loci may be obstructed in the reeler mice.
Collapse
Affiliation(s)
- Yasufumi Tanaka
- Department of Anatomy and Developmental Neurobiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | |
Collapse
|
6
|
Rossel M, Loulier K, Feuillet C, Alonso S, Carroll P. Reelin signaling is necessary for a specific step in the migration of hindbrain efferent neurons. Development 2005; 132:1175-85. [PMID: 15703280 DOI: 10.1242/dev.01683] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cytoarchitecture of the hindbrain results from precise and co-ordinated sequences of neuronal migrations. Here, we show that reelin, an extracellular matrix protein involved in neuronal migration during CNS development, is necessary for an early, specific step in the migration of several hindbrain nuclei. We identified two cell populations not previously known to be affected in reeler mutants that show a common migratory defect: the olivocochlear efferent neurons and the facial visceral motor nucleus. In control embryos, these cells migrate first toward a lateral position within the neural tube, and then parallel to the glial cell processes, to a ventral position where they settle close to the pial surface. In reelermutants, the first migration is not affected, but the neurons are unable to reach the pial surface and remain in an ectopic position. Indeed, this is the first evidence that the migration of specific hindbrain nuclei can be divided into two parts: a reelin-independent and a reelin-dependent migration. We also show that reelin is expressed at high levels at the final destination of the migratory process, while the reelin intracellular effector Dab1 was expressed by cell groups that included the two populations affected. Mice mutant at the Dab1 locus, called scrambler, exhibit the same phenotype, a failure of final migration. However, examination of mice lacking both reelin receptors, ApoER2 and VLDLR, did not reveal the same phenotype, suggesting involvement of an additional reelin-binding receptor. In the hindbrain, reelin signaling might alter the adhesive properties of efferent neurons and their ability to respond to directional cues, as has been suggested for the migration of olfactory bulb precursors.
Collapse
Affiliation(s)
- Mireille Rossel
- EPHE Quantitative Cell Biology, INSERM EMI 343, IFR 122, University Montpellier 2, 34090 Montpellier, France.
| | | | | | | | | |
Collapse
|
7
|
Affiliation(s)
- Gabriella D'Arcangelo
- The Cain Foundation Laboratories, Texas Children's Hospital, Department of Pediatrics, Program in Developmental Biology, Baylor College of Medicine, Houston 77030, USA
| |
Collapse
|
8
|
Tsukamoto Y, Yamamoto T, Okado H, Nibu KI, Terashima T. Retrograde labeling of mouse spinal descending tracts by a recombinant adenovirus. ACTA ACUST UNITED AC 2004; 66:209-20. [PMID: 14527162 DOI: 10.1679/aohc.66.209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present study tested whether a gene-transfer based upon the retrograde axonal transport of the lacZ adenovirus is effective in the spinal descending tracts of the adult mouse. A small volume of a replication-defective recombinant adenovirus encoding E. coli beta-galactosidase was injected into the upper lumbar cord, and, seven days later, the mice were transcardially perfused by a fixative solution. X-gal staining of coronal or sagittal sections of the spinal cord and the brain revealed that many sites of origin for rubrospinal, vestibulospinal, and reticulospinal tracts were retrogradely labeled, whereas few of the corticospinal tract neurons were retrogradely labeled. Ependymal cells surrounding the central canal of the spinal cord, which were located far from the injection site, showed a high expression of beta-galactosidase activity. Motoneurons around the injection site were strongly stained by X-gal staining, and their axons in the ventral root were anterogradely labeled. Afferent fibers in the dorsal root were labeled by the transganglionic transport of beta-galactosidase. To examine the efficacy of the uptake and retrograde transport of HRP and adenovirus, we injected a mixed solution of 10% HRP and recombinant adenovirus. The number of HRP-labeled corticospinal neurons overwhelmed the number of X-gal stained ones, while the numbers of HRP-labeled rubrospinal and subcoeruleus-spinal neurons were smaller in comparison with the numbers of beta-galactosidase-positive counterparts. The present study revealed that the origins for the spinal descending tracts except for corticospinal neurons could be efficiently gene-transferred by the retrograde infection of a recombinant adenovirus. Such a difference in efficacy of retrograde infection among the spinal descending tracts is practically important when an adenovirus-mediated gene transfer is designed to treat certain neurological diseases affecting the spinal descending tracts.
Collapse
Affiliation(s)
- Yasuhiro Tsukamoto
- Department of Anatomy and Developmental Neurobiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | |
Collapse
|
9
|
Nishikawa S, Goto S, Yamada K, Hamasaki T, Ushio Y. Lack of Reelin causes malpositioning of nigral dopaminergic neurons: evidence from comparison of normal and Reln(rl) mutant mice. J Comp Neurol 2003; 461:166-73. [PMID: 12724835 DOI: 10.1002/cne.10610] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The reeler gene (Reln(rl), formerly rl) product Reelin controls neuronal migration and positioning and thereby plays a key role in brain development. Mutation of Reln leads to widespread disruption of laminar cortical regions and ectopia in some brainstem nuclei. In the embryonic striatum of normal mice, a substantial expression of reelin mRNA has been documented; however, the anomalous positioning of neurons in the basal ganglia of reeler mice remains to be studied. We provide first evidence for a potential role of Reelin in the developmental formation of the substantia nigra. In reeler mutant mice lacking Reelin, dopaminergic neurons destined for the substantia nigra fail to migrate laterally and become anomalously clustered just lateral to the ventral tegmental area. Their axons appear to project to striatal patches forming "dopamine islands." Results from the normal mice show that, at the midembryonic stage, Reelin identified with CR-50 is highly concentrated in the ventral mesencephalon, where nigral dopaminergic neurons are in progress to migrate laterally to their eventual position of the adult brain. A combination of CR-50 labeling and anterograde axonal tracing provided evidence that embryonic striatal neurons may supply the ventral portion of the mesencephalon with Reelin through their axonal projections. We hypothesize that Reelin plays a role in the positioning of nigral dopaminergic neurons and that it can act as an environmental cue at a remote site far from its birthplace via a transaxonal delivery system.
Collapse
Affiliation(s)
- Shigeyuki Nishikawa
- Laboratory of Neurobiology, Department of Neurosurgery, Kumamoto University Medical School, Kumamoto 860-8556, 1-1-1 Honjo, Japan
| | | | | | | | | |
Collapse
|
10
|
Saito Y, Tanaka I, Ezure K. Morphology of the decrementing expiratory neurons in the brainstem of the rat. Neurosci Res 2002; 44:141-53. [PMID: 12354629 DOI: 10.1016/s0168-0102(02)00095-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In anesthetized and artificially-ventilated rats, the morphological properties of decrementing expiratory (E-DEC) neurons were studied using intracellular recording and labeling with Neurobiotin. Sixteen E-DEC neurons were successfully labeled; ten of which were cranial motoneurons located in the facial (FN) and ambiguus (NA) nuclei. Two interneurons were labeled in the Bötzinger complex (BOT) and the ventral respiratory group (VRG) rostral to the obex, and the remaining four in the VRG caudal to the obex. All the interneurons had extensive intramedullary collaterals within the ventrolateral medulla. Terminal-like boutons were distributed ventral to the NA at the level of the BOT, both ventral to and within the NA at the level rostral to the obex and largely within the cell column tentatively designed as the ambiguous-retroambiguus complex (NA/NRA) caudal to the obex. The four interneurons in the NA/NRA had axons projecting to the spinal cord as well. The extensive intramedullary projections suggest that these E-DEC interneurons of the BOT and the VRG play a significant role in respiration. The simultaneous projections from the caudal E-DEC neurons to both the spinal cord and the NA suggest that these neurons also play integrative roles in non-respiratory behaviors including vocalization, swallowing and defecation.
Collapse
Affiliation(s)
- Yoshiaki Saito
- Department of Neurobiology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashi-dai, Fuchu, Tokyo 183-8526, Japan
| | | | | |
Collapse
|
11
|
Costagli A, Kapsimali M, Wilson SW, Mione M. Conserved and divergent patterns of Reelin expression in the zebrafish central nervous system. J Comp Neurol 2002; 450:73-93. [PMID: 12124768 DOI: 10.1002/cne.10292] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The protein Reelin is suggested to function in cell-cell interactions and in mediating neuronal migrations in layered central nervous system structures. With the aim of shedding light on the development of the teleost telencephalon, which forms through the process of eversion and results in the formation of a nonlaminar pallium, we isolated a zebrafish ortholog of the reelin gene and studied its expression in developing and adult brain. The pattern of expression is highly dynamic during the first 24-72 hours of development. By 5 days postfertilization, high amounts of reelin mRNA are found in the dorsal telencephalon, thalamic and hypothalamic regions, pretectal nuclei, optic tectum, cerebellum, hindbrain, reticular formation, and spinal cord, primarily confined to postmitotic neurons. This pattern persists in 1- to 3-month-old zebrafish. This study, together with reports on reelin expression in other vertebrates, shows that reelin mRNA distribution is conserved in many regions of the vertebrate brain. A major exception is that reelin is expressed in the majority of the cells of the dorsal regions of the everted telencephalon in zebrafish embryos, whereas it is restricted to specific neuronal populations in the developing telencephalon of amniotes. To better understand the origin of these differences, we analyzed reelin expression in the telencephalon of an amphibian. Telencephalic reelin expression in Xenopus laevis shows more similarities with the sauropsidian than with the teleostean pattern. Thus, the differences in the telencephalic expression of reelin between teleosts and tetrapods are likely to be due to different roles for Reelin during eversion, a process that is specific for the teleost telencephalon.
Collapse
Affiliation(s)
- Arianna Costagli
- Department of Anatomy and Developmental Biology, University College London, WC1E 6BT London, United Kingdom
| | | | | | | |
Collapse
|
12
|
Phelps PE, Rich R, Dupuy-Davies S, Ríos Y, Wong T. Evidence for a cell-specific action of Reelin in the spinal cord. Dev Biol 2002; 244:180-98. [PMID: 11900467 DOI: 10.1006/dbio.2002.0580] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Reelin, the extracellular matrix protein missing in reeler mice, plays an important role in neuronal migration in the central nervous system. We examined the migratory pathways of phenotypically identified spinal cord neurons to determine whether their positions were altered in reeler mutants. Interneurons and projection neurons containing choline acetyltransferase and/or NADPH diaphorase were studied in E12.5-E17.5 reeler and wild-type embryos, and their final locations were assessed postnatally. While three groups of dorsal horn interneurons migrated and differentiated normally in reeler mice, the migrations of both sympathetic (SPNs) and parasympathetic preganglionic neurons (PPNs) were aberrant in the mutants. Initially reeler and wild-type SPNs were detected laterally near somatic motor neurons, but by E13.5, many reeler SPNs had mismigrated medially. Postnatally, 79% of wild-type SPNs were found laterally, whereas in reeler, 92% of these neurons were positioned medially. At E13.5, both reeler and wild-type PPNs were found laterally, but by E14.5, reeler PPNs were scattered across the intermediate spinal cord while wild-type neurons correctly maintained their lateral location. By postnatal day 16, 97% of PPNs were positioned laterally in wild-type mice; in contrast, only 62% of PPNs were found laterally in mutant mice. In E12.5-E14.5 wild-type mice, Reelin-secreting cells were localized along the dorsal and medial borders of both groups of preganglionic neurons, but did not form a solid barrier. In contrast, Dab1, the intracellular adaptor protein thought to function in Reelin signaling, was expressed in cells having positions consistent with their identification as SPNs and PPNs. In combination, these findings suggest that, in the absence of Reelin, both groups of autonomic motor neurons migrate medially past their normal locations, while somatic motor neurons and cholinergic interneurons in thoracic and sacral segments are positioned normally. These results suggest that Reelin acts in a cell-specific manner on the migration of cholinergic spinal cord neurons.
Collapse
Affiliation(s)
- Patricia E Phelps
- Department of Physiological Science, UCLA, Los Angeles, California 90095-1527, USA.
| | | | | | | | | |
Collapse
|
13
|
Setsu T, Ikeda Y, Woodhams PL, Terashima T. Branchiogenic motoneurons innervating facial, masticatory, and esophageal muscles show aberrant distribution in the reeler-phenotype mutant rat, Shaking Rat Kawasaki. J Comp Neurol 2001; 439:275-90. [PMID: 11596054 DOI: 10.1002/cne.1350] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Shaking Rat Kawasaki (SRK) is an autosomal recessive mutant rat that is characterized by cerebellar ataxia. Although previous studies indicated many points of similarity between this mutant rat and the reeler mouse, nonlaminated structures such as the facial nucleus have not been studied in this mutant rat. Nissl-stained sections through the brainstem showed that the cytoarchitecture of the facial, motor trigeminal, and ambiguus nuclei was abnormal in SRK, especially in the lateral cell group of the facial nucleus and the compact formation of the ambiguus nucleus. To examine whether orofacial motoneurons are also malpositioned in the SRK rat, horseradish peroxidase (HRP) was injected into the facial, masticatory, and abdominal esophageal muscles of the SRK rats and normal controls to label facial, trigeminal, and ambiguus motoneurons, respectively. HRP-labeled facial, trigeminal, and ambiguus motoneurons of the SRK rat were distributed more widely than those of their normal counterparts, as in the case of the reeler mouse, with the one exception that labeled facial motoneurons innervating the nasolabial muscle were distributed more widely in the ventrolateral-to-dorsomedial direction in comparison with those of the reeler mutant. These data demonstrate that nonlaminated structures in the brainstem of the SRK rat are affected severely, as is the case in the reeler mutant mouse.
Collapse
Affiliation(s)
- T Setsu
- Department of Anatomy, Kobe University School of Medicine, Kobe 650-0017, Japan
| | | | | | | |
Collapse
|
14
|
Carroll P, Gayet O, Feuillet C, Kallenbach S, de Bovis B, Dudley K, Alonso S. Juxtaposition of CNR protocadherins and reelin expression in the developing spinal cord. Mol Cell Neurosci 2001; 17:611-23. [PMID: 11312598 DOI: 10.1006/mcne.2001.0966] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The CNR (cadherin-related neuronal receptors) family of protocadherins is of great interest because of their potential roles as molecular tags in the formation of specific synaptic connections, and as receptors for reelin, during neuronal migration, and cell body positioning. In order to know more about potential functions of CNRs we have mapped their expression during mouse nervous system development and compared their expression with that of reelin and its intracellular effector Dab1 in several tissues. In spinal cord, CNRs and Dab1 are expressed in motoneurons, while reelin is located in adjacent cells. In the hindbrain, there is a differential expression of CNRs and Dab1 in various motor nuclei. In the retina and olfactory system, we observe CNR and reelin expression but not that of Dab1. These results provide new insights into the potential functions of CNRs and their possible integration in the reelin pathway during development.
Collapse
Affiliation(s)
- P Carroll
- INSERM U382, Developmental Biology Institute of Marseille (IBDM), CNRS/INSERM/Université de la Méditerranée/AP de Marseille, Campus de Luminy, Case 907, Marseille Cedex 09, 13288, France.
| | | | | | | | | | | | | |
Collapse
|