1
|
Talhinhas P, Carvalho R, Tavares S, Ribeiro T, Azinheira H, Ramos AP, Silva MDC, Monteiro M, Loureiro J, Morais-Cecílio L. Diploid Nuclei Occur throughout the Life Cycles of Pucciniales Fungi. Microbiol Spectr 2023; 11:e0153223. [PMID: 37289058 PMCID: PMC10433954 DOI: 10.1128/spectrum.01532-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/14/2023] [Indexed: 06/09/2023] Open
Abstract
Within Eukaryotes, fungi are the typical representatives of haplontic life cycles. Basidiomycota fungi are dikaryotic in extensive parts of their life cycle, but diploid nuclei are known to form only in basidia. Among Basidiomycota, the Pucciniales are notorious for presenting the most complex life cycles, with high host specialization, and for their expanded genomes. Using cytogenomic (flow cytometry and cell sorting on propidium iodide-stained nuclei) and cytogenetic (FISH with rDNA probe) approaches, we report the widespread occurrence of replicating haploid and diploid nuclei (i.e., 1C, 2C and a small proportion of 4C nuclei) in diverse life cycle stages (pycnial, aecial, uredinial, and telial) of all 35 Pucciniales species analyzed, but not in sister taxa. These results suggest that the Pucciniales life cycle is distinct from any cycle known, i.e., neither haplontic, diplontic nor haplodiplontic, corroborating patchy and disregarded previous evidence. However, the biological basis and significance of this phenomenon remain undisclosed. IMPORTANCE Within Eukaryotes, fungi are the typical representatives of haplontic life cycles, contrasting with plants and animals. As such, fungi thus contain haploid nuclei throughout their life cycles, with sexual reproduction generating a single diploid cell upon karyogamy that immediately undergoes meiosis, thus resuming the haploid cycle. In this work, using cytogenetic and cytogenomic tools, we demonstrate that a vast group of fungi presents diploid nuclei throughout their life cycles, along with haploid nuclei, and that both types of nuclei replicate. Moreover, haploid nuclei are absent from urediniospores. The phenomenon appears to be transversal to the organisms in the order Pucciniales (rust fungi) and it does not occur in neighboring taxa, but a biological explanation or function for it remains elusive.
Collapse
Affiliation(s)
- Pedro Talhinhas
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Centre and Terra Associated Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Rita Carvalho
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Centre and Terra Associated Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Sílvia Tavares
- Section for Plant and Soil Science, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Copenhagen, Denmark
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
| | - Teresa Ribeiro
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Centre and Terra Associated Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Helena Azinheira
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Centre and Terra Associated Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
| | - Ana Paula Ramos
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Centre and Terra Associated Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
- LPVVA, Laboratório de Patologia Vegetal “Veríssimo de Almeida”, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Maria do Céu Silva
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Centre and Terra Associated Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
| | | | - João Loureiro
- CFE-Centre for Functional Ecology and Terra Associated Laboratory, Departamento de Ciências da Vida, Universidade de Coimbra, Coimbra, Portugal
| | - Leonor Morais-Cecílio
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Centre and Terra Associated Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Zhao Y, Huang X, Li Q, Huang L, Kang Z, Zhao J. Virulence Phenotyping and Molecular Genotyping Reveal High Diversity Within and Strong Gene Flow Between the Puccinia striiformis f. sp. tritici Populations Collected from Barberry and Wheat in Shaanxi Province of China. PLANT DISEASE 2023; 107:701-712. [PMID: 35869588 DOI: 10.1094/pdis-12-21-2713-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Emergence of new Puccinia striiformis f. sp. tritici races that overcome resistance of wheat cultivars is a challenging issue for wheat production. Although sexual reproduction of the fungus on barberry plants under field conditions in the spring in China has been reported, the diversity of the pathogen on barberry plants and the relationship to the population in wheat fields have not been determined. In the present study, two P. striiformis f. sp. tritici populations collected in western Shaanxi Province in May 2016, one from barberry plants (103 isolates) and the other from nearby wheat crops (107 isolates), were phenotyped for virulence and genotyped with simple sequence repeat (SSR) markers. The phenotypic and genotypic data of the two populations were compared to determine their relationships. A total of 120 races, including 29 previously known races (seven were shared by the two populations) and 91 new races (35 from barberry and 56 from wheat), were identified. Similarly, a total of 132 multilocus genotypes, including 51 only from barberry, 77 only from wheat, and four from both, were detected using the SSR markers. Analyses of molecular variance identified high (93%) genetic variance within populations and low but still significant variance (7%) between the populations. Nonparametric multivariate discriminant analysis of principal components and STRUCTURE analysis showed that the two populations had a close relationship with little genetic differentiation (FST = 0.038) and strong gene flow (Nm = 6.34, P = 0.001) between them. Although the analysis of linkage disequilibrium indicated clonal populations, the isolation of P. striiformis f. sp. tritici from barberry plants and the high genetic diversities in the barberry and wheat populations suggest that barberry plants provide aeciospores to infect wheat crops in the area. The information is useful for understanding stripe rust epidemiology and management of the disease.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Yangling, Shaanxi 712100, China
| | - Xueling Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi 712100, China
| | - Qiao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Yangling, Shaanxi 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Yangling, Shaanxi 712100, China
| | - Jie Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Chen W, Zhang Z, Chen X, Meng Y, Huang L, Kang Z, Zhao J. Field Production, Germinability, and Survival of Puccinia striiformis f. sp. tritici Teliospores in China. PLANT DISEASE 2021; 105:2122-2128. [PMID: 33297714 DOI: 10.1094/pdis-09-20-2018-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici, has been recently demonstrated to be heteroecious and macrocyclic. The pathogen depends on wheat as the primary (telial) host and barberry as the main alternative (aecial) host to complete the complete life cycle. Viable teliospores are essential for the initiation of sexual reproduction of P. striiformis f. sp. tritici. However, no exact source of viable teliospores has been discovered to produce basidiospores to initiate infection on susceptible barberry. In the present study, we investigated the telial production and teliospore germinability of P. striiformis f. sp. tritici in wheat fields in Gansu and Qinghai provinces and wheat straw stacks in Qinghai in 2018 and 2019. Field production of P. striiformis f. sp. tritici teliospores was observed commonly at all growth stages of winter and spring wheat plants. The percentage of leaves bearing viable teliospores and germination rate of P. striiformis f. sp. tritici teliospores were 78.5 and 5.1% at tillering stage, 83.2 and 9.4% at early jointing stage, and 91.8 and 4.9% after booting stage in 2018 and 2019, respectively. Among wheat straw samples bearing telia collected from Qinghai province, samples with germinable teliospores ranged from 23.9% in January to 4.4% in June in 2018 and from 10.3% in January to 6.0% in May in 2019, with an overall mean germinability of 5.9%. This study showed that teliospores are produced at all growth stages of wheat under field conditions, and teliospores harbored in wheat straw stacks after wheat harvest are able to survive through winter for potential infection of barberry to the next spring.
Collapse
Affiliation(s)
- Wen Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550006, China
| | - Zedong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianming Chen
- U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit and Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, U.S.A
| | - Yan Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
4
|
Wang MN, Chen XM. Barberry Does Not Function as an Alternate Host for Puccinia striiformis f. sp. tritici in the U. S. Pacific Northwest Due to Teliospore Degradation and Barberry Phenology. PLANT DISEASE 2015; 99:1500-1506. [PMID: 30695954 DOI: 10.1094/pdis-12-14-1280-re] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sexual reproduction of the stem rust pathogen, Puccinia graminis f. sp. tritici (Pgt), on barberry (Berberis vulgaris) has been shown to provide initial inoculum for the development of the disease on wheat and barley and also generate diverse races of the pathogen. However, in our previous study, the stripe rust pathogen, P. striiformis f. sp. tritici (Pst), was not found on barberry in the U. S. Pacific Northwest. To determine why Pgt is able to infect the alternate host, while Pst cannot under the natural conditions, the viabilities of teliospores of both Pgt and Pst were investigated from 2011 to 2014 by determining the germination rates using telial samples collected periodically from wheat fields. Teliospores of Pst usually produced in July were physically degraded during winter, and their germination rate decreased from 50 to 90% in August to less than 1% in the following March and no germination after May. In contrast, Pgt teliospores usually produced in July and August remained physically intact and physiologically dormant, and could not germinate until February. Germination of Pgt teliospores gradually increased to 90% in May, at which time young leaves of barberry were susceptible to infection. In addition, a time-series experiment was conducted for inoculation of barberry plants with Pst teliospores. The results showed that Pst teliospores need a minimum of 32 h continual dew-forming conditions to infect barberry, and infection reaches a peak after incubation of inoculated plants for 88 h. The lack of a prolonged period of leaf wetness conditions during the season of telial maturity effectively negates Pst infection of barberry plants in the Pacific Northwest.
Collapse
Affiliation(s)
- M N Wang
- Department of Plant Pathology, Washington State University, Pullman 99164-6430
| | - X M Chen
- USDA-ARS, Wheat Genetics, Quality, Physiology, and Disease Research Unit, and Department of Plant Pathology, Washington State University, Pullman 99164-6430
| |
Collapse
|
5
|
Abstract
Rust fungi are cosmopolitan in distribution and parasitize a wide range of plants, including economically important crop species such as wheat. Detailed regional, national, and continental surveys of pathogenic variability in wheat-attacking rust pathogens over periods of up to 90 years have shown that in the absence of sexual recombination, genetic diversity is generated by periodic introduction of exotic isolates, single-step mutation, and somatic hybridization. Laboratory studies have provided evidence for somatic hybridization between many rust species and formae speciales, and there is evidence for the process in nature within and between rust species on Linum, poplar, Senecio, wheat, and several grass species. Although the mechanisms involved in somatic hybridization are not well understood, they are thought to involve the fusion of dikaryotic vegetative hyphae, nuclear exchange, and possibly exchange of whole chromosomes between nuclei or parasexuality via the fusion of the two haploid nuclei, followed by mitotic crossing over and vegetative haploidization. In three cases, hybrid isolates rendered resistant plant genotypes susceptible because of new combinations of virulence. Implications for resistance breeding and future prospects in understanding the process are discussed.
Collapse
Affiliation(s)
- Robert F Park
- Plant Breeding Institute, The University of Sydney, Sydney, New South Wales 2570, Australia.
| | | |
Collapse
|
6
|
Brown WM, Hill JP, Velasco VR. Barley yellow rust in North America. ANNUAL REVIEW OF PHYTOPATHOLOGY 2001; 39:367-384. [PMID: 11701870 DOI: 10.1146/annurev.phyto.39.1.367] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Yellow rust of barley is an invasive disease that was found in the past 10 years in North America. The causal agent, Puccinia striiformis f. sp. hordei, was introduced into Colombia, South America, from Europe in 1975. It spread to all major barley-producing areas in South America by 1982. In 1988 it was found in Mexico and in 1991 in Texas. Since then it has been found in all major barley-producing areas of the American West. Originally described as race (R) 24, barley yellow rust in North America is now known to be a very heterogeneous population. Resistance has been identified, evaluated, and is being introduced into commercial malting and other barley cultivars. Cultural and chemical controls are effective and available. An integrated approach using general field resistance and other tactics is described for sustainable management of barley yellow rust.
Collapse
Affiliation(s)
- W M Brown
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523-1177, USA.
| | | | | |
Collapse
|
7
|
|
8
|
|
9
|
|