1
|
Lata M, Ramya T. A comparative study of the substrate preference of the sialidases, CpNanI, HpNanH, and BbSia2 towards 2-Aminobenzamide-labeled 3'-Sialyllactose, 6'-Sialyllactose, and Sialyllacto-N-tetraose-b. Biochem Biophys Rep 2024; 39:101791. [PMID: 39156723 PMCID: PMC11326918 DOI: 10.1016/j.bbrep.2024.101791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
Sialidases catalyze the removal of terminal sialic acids from sialylated biomolecules, and their substrate preference is frequently indicated in terms of the glycosidic linkages cleaved (α2-3, α2-6, and α2-8) without mention of the remaining sub-terminal reducing-end saccharide moieties. Many human gut commensal and pathogenic bacteria secrete sialidases to forage for sialic acids, which are then utilized as an energy source or assimilated into membrane/capsular structural components. Infant gut commensals similarly utilize sialylated human milk oligosaccharides containing different glycosidic linkages. Here, we have studied the preference of the bacterial sialidases, BbSia2 from Bifidobacterium bifidum, CpNanI from Clostridium perfringens, and HpNanH from Glaesserella parasuis, for the glycosidic linkages, Siaα2-3Gal, Siaα2-6Gal, and Siaα2-6GlcNAc, by employing 2-Aminobenzamide-labeled human milk oligosaccharides, 3'-Sialyllactose (3'-SL), 6'-Sialyllactose (6'-SL), and Sialyllacto-N-tetraose-b (LSTb), respectively, as proxies for these glycosidic linkages. BbSia2, CpNanI, and HpNanH hydrolyzed these three oligosaccharides with the glycosidic linkage preferences, 3'-SL (Siaα2-3Gal) ≥ LSTb (Siaα2-6GlcNAc) ≥ 6'-SL (Siaα2-6Gal), 3'-SL (Siaα2-3Gal) ≥ 6'-SL (Siaα2-6Gal) > LSTb (Siaα2-6GlcNAc), and 3'-SL (Siaα2-3Gal) ≥ 6'-SL (Siaα2-6Gal) > LSTb (Siaα2-6GlcNAc), respectively. Our finding suggests that sub-terminal reducing-end saccharide moieties can profoundly influence the substrate preference of sialidases, and advocates for the characterization and indication of the substrate preference of sialidases in terms of both the glycosidic linkage and the sub-terminal reducing-end saccharide moiety.
Collapse
Affiliation(s)
- Madhu Lata
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - T.N.C. Ramya
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
2
|
Kar SS, Nanda NP, Ravichandiran V, Swain SP. Silane promoted glycosylation and its applications for synthesis of sugar compounds and active pharmaceutical ingredients (APIs). NEW J CHEM 2022. [DOI: 10.1039/d2nj04192h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Silane promoted glycosylation and its applications for preparation of active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Sidhartha Sankar Kar
- Department of Pharmaceutical Chemistry, Institute of Pharmacy & Technology, Salipur, Cuttack, 754202, Odisha, India
| | - Nrusingha Prasad Nanda
- Department of Pharmaceutical Chemistry, Institute of Pharmacy & Technology, Salipur, Cuttack, 754202, Odisha, India
| | - V. Ravichandiran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, 168, Maniktala Main Road, Kolkata, 700054, India
| | - Sharada Prasanna Swain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, 168, Maniktala Main Road, Kolkata, 700054, India
| |
Collapse
|
3
|
Aberrant sialylation in a patient with a HNF1α variant and liver adenomatosis. iScience 2021; 24:102323. [PMID: 33889819 PMCID: PMC8050382 DOI: 10.1016/j.isci.2021.102323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/18/2021] [Accepted: 03/15/2021] [Indexed: 11/30/2022] Open
Abstract
Glycosylation is a fundamental post-translational modification of proteins that boosts their structural diversity providing subtle and specialized biological properties and functions. All those genetic diseases due to a defective glycan biosynthesis and attachment to the nascent glycoproteins fall within the wide area of congenital disorders of glycosylation (CDG), mostly causing multisystem involvement. In the present paper, we detailed the unique serum N-glycosylation of a CDG-candidate patient with an unexplained neurological phenotype and liver adenomatosis harboring a recurrent pathogenic HNF1α variant. Serum transferrin isoelectric focusing showed a surprising N-glycosylation pattern consisting on hyposialylation, as well as remarkable hypersialylation. Mass spectrometry-based glycomic analyses of individual serum glycoproteins enabled to unveil hypersialylated complex N-glycans comprising up to two sialic acids per antenna. Further advanced MS analysis showed the additional sialic acid is bonded through an α2-6 linkage to the peripheral N-acetylglucosamine residue. Serum N-glycome is altered in a boy with neurological syndrome and HNF1α mutated HCA Glycomics reveals unique hypersialylated N-glycans with two NeuAc per antenna In-depth MS studies show the additional NeuAc is α2-6 linked to an outer arm GlcNAc
Collapse
|
4
|
Acute phase inflammation is characterized by rapid changes in plasma/peritoneal fluid N-glycosylation in mice. Glycoconj J 2016; 33:457-70. [PMID: 26924641 PMCID: PMC4891370 DOI: 10.1007/s10719-015-9648-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/29/2015] [Accepted: 12/23/2015] [Indexed: 12/02/2022]
Abstract
Murine zymosan-induced peritonitis is a widely used model for studying the molecular and cellular events responsible for the initiation, persistence and/or resolution of inflammation. Among these events, it is becoming increasingly evident that changes in glycosylation of proteins, especially in the plasma and at the site of inflammation, play an important role in the inflammatory response. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS)-based glycosylation profiling, we investigated the qualitative and quantitative effect of zymosan-induced peritonitis on N-glycosylation in mouse plasma and peritoneal fluid. Our results show that both N-glycomes exhibit highly similar glycosylation patterns, consisting mainly of diantennary and triantennary complex type N-glycans with high levels (>95 %) of galactosylation and sialylation (mostly NeuGc) and a medium degree of core fucosylation (30 %). Moreover, MS/MS structural analysis, assisted by linkage-specific derivatization of sialic acids, revealed the presence of O-acetylated sialic acids as well as disialylated antennae (“branching sialylation”) characterized by the presence of α2-6-linked NeuGc on the GlcNAc of the NeuGcα2-3-Galβ1-3-GlcNAc terminal motif. A significant decrease of (core) fucosylation together with an increase of both α2-3-linked NeuGc and “branching sialylation” were observed in N-glycomes of mice challenged with zymosan, but not in control mice injected with PBS. Importantly, substantial changes in glycosylation were already observed 12 h after induction of peritonitis, thereby demonstrating an unexpected velocity of the biological mechanisms involved.
Collapse
|
5
|
Yu H, Lau K, Thon V, Autran CA, Jantscher-Krenn E, Xue M, Li Y, Sugiarto G, Qu J, Mu S, Ding L, Bode L, Chen X. Synthetic Disialyl Hexasaccharides Protect Neonatal Rats from Necrotizing Enterocolitis. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Yu H, Lau K, Thon V, Autran CA, Jantscher-Krenn E, Xue M, Li Y, Sugiarto G, Qu J, Mu S, Ding L, Bode L, Chen X. Synthetic disialyl hexasaccharides protect neonatal rats from necrotizing enterocolitis. Angew Chem Int Ed Engl 2014; 53:6687-91. [PMID: 24848971 DOI: 10.1002/anie.201403588] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Indexed: 12/29/2022]
Abstract
Two novel synthetic α2-6-linked disialyl hexasaccharides, disialyllacto-N-neotetraose (DSLNnT) and α2-6-linked disialyllacto-N-tetraose (DS'LNT), were readily obtained by highly efficient one-pot multienzyme (OPME) reactions. The sequential OPME systems described herein allowed the use of an inexpensive disaccharide and simple monosaccharides to synthesize the desired complex oligosaccharides with high efficiency and selectivity. DSLNnT and DS'LNT were shown to protect neonatal rats from necrotizing enterocolitis (NEC) and are good therapeutic candidates for preclinical experiments and clinical application in treating NEC in preterm infants.
Collapse
Affiliation(s)
- Hai Yu
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616 (USA)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sumiyoshi W, Nakakita SI, Miyanishi N, Yamada K, Hasehira K, Nakakita Y, Hirabayashi J. Hypersialylated type-I lactosamine-containing N-glycans found in Artiodactyla sera are potential xenoantigens. Glycobiology 2012; 22:1031-41. [PMID: 22492204 DOI: 10.1093/glycob/cws069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There is increasing interest in biologics, i.e. human-originated biological pharmaceutics. Most of the protein drugs developed so far, such as immunoglobulins and erythropoietin, are secreted glycoproteins; as a result, any non-human-type glycans, such as αGal and NeuGc, derived from animal cells and sera must be removed to circumvent undesirable immunogenic reactions. In this study, we made an extensive search for potential xenoantigenic glycans among a panel of mammalian sera. As a result, sera belonging to the order Artiodactyla, i.e. bovine, lamb and goat sera, were found to contain substantial amounts of hypersialylated biantennary glycans closely associated with a type-I lactosamine structure containing a unique tetrasaccharide, Siaα2-3Galβ1-3(Siaα2-6)GlcNAc. In all three Artiodactyla sera, the most abundant structure was Siaα2-3Galβ1-3(Siaα2-6)GlcNAcβ1-2Manα1-3[Siaα2-6Galβ1-4GlcNAcβ1-2Manα1-6]Manβ1-4GlcNAcβ1-4GlcNAc. A dually hypersialylated biantennary structure, Siaα2-3Galβ1-3(Siaα2-6)GlcNAcβ1-2Manα1-3[Siaα2-3Galβ1-3(Siaα2-6)GlcNAcβ1-2Manα1-6]Manβ1-4GlcNAcβ1-4GlcNAc, was also abundant (10%) in bovine serum. The amount of hypersialylated glycans among total sialylated glycans was 46, 26 and 23% in bovine, lamb and goat sera, respectively. On the other hand, such structures could not be detected in the sera of other animals including human. The biological functions and the immunogenicity of the hypersialylated glycans in these animals remain to be elucidated; however, it is worth noting that glycoproteins biosynthesized from Artiodactyla cells and those contaminated with bovine serum might enhance undesirable antigenicity in human patients.
Collapse
Affiliation(s)
- Wataru Sumiyoshi
- Division of Glyco-Bioindustry, Life Science Research Center, Institute of Research Promotion, Kagawa University, 1750-1Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Kotani N, Asano M, Iwakura Y, Takasaki S. Knockout of mouse beta 1,4-galactosyltransferase-1 gene results in a dramatic shift of outer chain moieties of N-glycans from type 2 to type 1 chains in hepatic membrane and plasma glycoproteins. Biochem J 2001; 357:827-34. [PMID: 11463354 PMCID: PMC1222013 DOI: 10.1042/0264-6021:3570827] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To understand the contribution of beta 1,4-galactosyltransferase (beta 4Gal-T)-1 to galactosylation in vivo, N-glycans of hepatic membrane glycoproteins and plasma glycoproteins from beta 4Gal-T1 wild-type (beta 4Gal-T1(+/+)) and beta 4Gal-T1 knockout mice were compared. Unexpectedly, glycoproteins from the knockout mice were found to express considerable amounts of sialylated, galactosylated N-glycans. A striking contrast was that galactose residues were largely beta 1,4-linked to GlcNAc residues in the beta 4Gal-T1(+/+) mouse glycans but beta 1,3-linked in the knockout mouse glycans, thus resulting in the shift of the backbone structure from type 2 chain (Gal beta 1-->4GlcNAc) to type 1 chain (Gal beta 1-->3GlcNAc). Detailed analysis of plasma glycoproteins revealed that the expression of sialyl linkage in N-glycans was shifted from the Sia alpha 2-->6Gal to the Sia alpha 2-->3Gal, and oversialylated type 1 chains were, remarkably, found in the knockout mouse glycans. Thus beta 4Gal-T1 deficiency was primarily compensated for by beta1,3-galactosyltransferases, which resulted in different sialyl linkages being formed on the outer chains and altered backbone structures, depending on the acceptor specificities of sialyltransferases. These results suggest that beta 4Gal-T1 in mouse liver plays a central role in the synthesis of type 2 chain and is also involved in the regulation of sialylation of N-glycans. The knockout mice may prove useful in investigation of the mechanism which regulates the tissue-dependent terminal glycosylation.
Collapse
Affiliation(s)
- N Kotani
- Division of Biochemistry, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
9
|
Nemansky M, van den Eijnden DH. Enzymatic characterization of CMP-NeuAc:Gal beta 1-4GlcNAc-R alpha(2-3)-sialyltransferase from human placenta. Glycoconj J 1993; 10:99-108. [PMID: 8395270 DOI: 10.1007/bf00731193] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this report we present the enzymatic characterization of CMP-NeuAc:Gal beta 1-4GlcNAc-R alpha(2-3)-sialyltransferase from human placenta using placenta membranes as an enzyme preparation. This sialyltransferase is highly sensitive to detergents and prefers type 2 chain (Gal beta 1-4GlcNAc) over type 1 chain (Gal beta 1-3GlcNAc) acceptors. Oligosaccharides and glycopeptides were better acceptor substrates than glycoproteins. Of the branched oligosaccharides, those with a bisected N-acetylglucosamine (GlcNAc) structure appeared to be poorer substrates, while triantennary structures containing a Gal beta 1-4GlcNAc beta 1-4Man alpha 1-3Man branch were preferred. Product characterization, using 400 MHz 1H-NMR spectroscopy, confirmed that sialic acid was introduced into the Gal beta 1-4GlcNAc-R units of the acceptor substrates in an alpha (2-3) linkage, and revealed that this sialyltransferase does not prefer either of the two branches of a complex type di-antennary glycopeptide acceptor for sialic acid attachment. These properties distinguish this enzyme from all other sialyltransferases characterized to date.
Collapse
Affiliation(s)
- M Nemansky
- Department of Medical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands
| | | |
Collapse
|
10
|
Nemansky M, Schiphorst WE, Koeleman CA, Van den Eijnden DH. Human liver and human placenta both contain CMP-NeuAc:Gal beta 1-->4GlcNAc-R alpha 2-->3- as well as alpha 2-->6-sialyltransferase activity. FEBS Lett 1992; 312:31-6. [PMID: 1426235 DOI: 10.1016/0014-5793(92)81404-a] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A high pH anion exchange chromatographic (HPAEC) system for the separation of isomeric sialo-oligosaccharide products was developed. Employing this system, using Gal beta 1-->4GlcNAc beta 1-->2Man alpha 1-->6Man beta 1-->4GlcNAc as a substrate, a Gal beta 1-->4GlcNAc-R alpha 2-->3-sialyltransferase activity was detected for the first time in human liver. This activity is expressed together with the prevalent alpha 2-->6-sialyltransferase. Furthermore, in addition to the major alpha 2-->3-sialyltransferase, a low but distinct activity of alpha 2-->6-sialyltransferase was detected in human placenta. This activity could not be found by methods based on methylation analysis or high resolution NMR spectroscopy. It is concluded that HPAEC, in combination with the use of the pentasaccharide as an acceptor substrate, is suited for the specific detection of minor, Gal beta 1-->4GlcNAc-specific sialyltransferase activities.
Collapse
Affiliation(s)
- M Nemansky
- Department of Medical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
11
|
Broquet P, Baubichon-Cortay H, George P, Louisot P. Glycoprotein sialyltransferases in eucaryotic cells. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1991; 23:385-9. [PMID: 2015947 DOI: 10.1016/0020-711x(91)90164-i] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- P Broquet
- INSERM U.189, Faculté de Médecine Lyon-Sud, Oullins, France
| | | | | | | |
Collapse
|
12
|
Green ED, Adelt G, Baenziger JU, Wilson S, Van Halbeek H. The asparagine-linked oligosaccharides on bovine fetuin. Structural analysis of N-glycanase-released oligosaccharides by 500-megahertz 1H NMR spectroscopy. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)81354-6] [Citation(s) in RCA: 175] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
Bierhuizen MF, De Wit M, Govers CA, Ferwerda W, Koeleman C, Pos O, Van Dijk W. Glycosylation of three molecular forms of human alpha 1-acid glycoprotein having different interactions with concanavalin A. Variations in the occurrence of di-, tri-, and tetraantennary glycans and the degree of sialylation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 175:387-94. [PMID: 3402460 DOI: 10.1111/j.1432-1033.1988.tb14208.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Human alpha 1-acid glycoprotein (AGP) was separated into a non-bound (AGP-A; 46%), a retarded (AGP-B; 39%) and a bound fraction (AGP-C; 15%) using concanavalin A (ConA)-Sepharose chromatography. The apparent molecular masses, as determined by SDS-PAGE, of the three fractions were 43.5, 42.3 and 41.2 kDa, respectively. The occurrence of N-linked di-, tri- and tetraantennary glycans on these three molecular forms (AGP-A, -B, and -C) was studied by sequential lectin-affinity chromatography of the 14C-labelled glycopeptides. These were obtained by extensive pronase treatment followed by N-[14C]acetylation of the peptide moieties. The glycopeptides of AGP-A did not bind to ConA-Sepharose whereas for AGP-B and AGP-C 18% and 44%, respectively, of the glycopeptides were bound as diantennary structures. Glycopeptide fractions of all three forms of AGP which were not bound to ConA-Sepharose were shown to contain equal amounts of both tri- and tetraantennary glycans by chromatography with Phaseolus vulgaris leukoagglutinating lectin (L-PHA). With the assumption that each molecule contains five glycosylation sites, it could be shown that AGP-A contains no diantennary structures whereas AGP-B and AGP-C contain one and two diantennary structures, respectively. In addition each of the molecular forms contains equal amounts of tri- and tetraantennary structures on the remaining glycosylation sites. The results of this study, therefore, exclude a uniformity of glycan chains in the three molecular forms of AGP. The degree of sialylation of each of the molecular forms was investigated by chromatography on L-PHA-agarose and Ricinus communis agglutinin-I--agarose both before and after desialylation of the glycopeptides. It was shown that about 90% of the biantennary glycans of both AGP-B and AGP-C were disialylated while the remainder were monosialylated. The degree of sialylation of the tri- and tetraantennary glycans was identical for the three molecular forms. In each case, one or more terminal galactose residues occurred on at least 20% of the tri- and 65% of the tetraantennary chains. It is suggested that the decrease in the exposure of galactose residues from AGP-A to AGP-C is related to the concomittant decrease in branching of the glycans of the three molecular forms. The relevance of these findings to studies on the function of AGP during inflammatory and liver diseases is discussed.
Collapse
Affiliation(s)
- M F Bierhuizen
- Department of Medical Chemistry, Faculty of Medicine, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
14
|
De Heij HT, Kloosterman M, Koppen PL, Van Boom JH, Van Den Eijnden DH. Combined Chemical and Enzymatic Synthesis of a Disialylated Tetrasaccharide Analogous to M and N Bloodgroup Determinants of Glycophorin a. J Carbohydr Chem 1988. [DOI: 10.1080/07328308808058915] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
A GDP-fucose:[Gal beta 1—4]GlcNAc alpha 1—3-fucosyltransferase activity is correlated with the presence of human chromosome 11 and the expression of the Lex, Ley, and sialyl-Lex antigens in human-mouse cell hybrids. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47686-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Koenderman AH, Koppen PL, Van den Eijnden DH. Biosynthesis of polylactosaminoglycans. Novikoff ascites tumor cells contain two UDP-GlcNAc:beta-galactoside beta 1----6-N-acetylglucosaminyltransferase activities. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 166:199-208. [PMID: 2954821 DOI: 10.1111/j.1432-1033.1987.tb13502.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Novikoff ascites tumor cells contain a UDP-GlcNAc:beta-galactoside beta 1----6-N-acetylglucosaminyltransferase (beta 6-GlcNAc-transferase B) that acts on galactosides and N-acetylgalactosaminides in which the accepting sugar is beta 1----3 substituted by a Gal or GlcNAc residue. Characterization of enzyme products by 1H-NMR and methylation analysis indicates that an R beta 1----3(GlcNAc beta 1----6)Gal- branching point is formed such as occurs in blood-group-I-active substances. The enzyme does not show an absolute divalent cation requirement and 20 mM EDTA is not inhibitory. The activity is strongly inhibited by Triton X-100 at concentrations of greater than or equal to 0.2%. Competition studies suggest that a single enzyme acts on Gal beta 1----3Gal beta 1----4Glc, GlcNAc beta 1----3Gal beta 1----4GlcNAc and GlcNAc beta 1----3GalNAc alpha-O-benzyl (Km values 0.71, 0.83 and 0.53 mM, respectively). Gal beta----3Gal beta 1----4Glc as an acceptor substrate for beta 6-GlcNAc-transferase B does not inhibit the incorporation of GlcNAc in beta 1----6 linkage to the terminal Gal residues of asialo-alpha 1-acid glycoprotein catalyzed by a beta-galactoside beta 1----6-N-acetylglucosaminyltransferase (beta 6-GlcNAc-transferase A) previously described in Novikoff ascites tumor cells [D. H. Van den Eijnden, H. Winterwerp, P. Smeeman & W.E.C.M. Schiphorst (1983) J. Biol. Chem. 258, 3435-3437]. Neither is Triton X-100 at a concentration of 0.8% inhibitory for the activity of beta 6-GlcNAc-transferase A. This activity is absent from hog gastric mucosa microsomes, which has been described to contain high levels of beta 6-GlcNAc-transferase B. [F. Piller, J. P. Cartron, A. Maranduba, A. Veyrières, Y. Leroy & B. Fournet (1984) J. Biol. Chem. 259, 13,385-13,390]. Our results show that Novikoff tumor cells contain two beta-galactoside beta 6-GlcNAc-transferases, which differ in acceptor specificity and tolerance towards Triton X-100. A role for these enzymes in the synthesis of branched polylactosaminoglycans and of O-linked oligosaccharide core structures having blood-group I activity is proposed.
Collapse
|
17
|
|