1
|
Hu TG, Tan FX, Li L, An KJ, Zou B, Wen J, Wu JJ, Xiao GS, Yu YS, Xu YJ. Structural elucidation and physicochemical properties of litchi polysaccharide with the promoting effect on exopolysaccharide production by Weissella confusa. Int J Biol Macromol 2023; 253:126944. [PMID: 37722646 DOI: 10.1016/j.ijbiomac.2023.126944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Exopolysaccharide (EPS), as a secondary metabolite of microorganisms, has been commonly used in the dairy industry to replace the traditional stabilizers. However, the EPS production by microorganism is generally low, which limits its application. A litchi polysaccharide (Lzp2-2) with the promoting effect on EPS production by Weissella confusa was purified. The SEM and FT-IR analysis indicated that Lzp2-2 displayed a compact netlike structure and typical bands of carbohydrates. The structure of Lzp2-2 was further elucidated, which was comprised of a major backbone structure [→3)-β-D-Galp-(1→6)-β-D-Galp-(1 → 6)-β-D-Galp-(1 → 3)-β-D-Glcp-(1 → 6)-α-D-Glcp-(1 → 3)-α-D-Glcp-(1→] linked with two side chains [α-L-Araf-(1 → 5)-α-L-Araf-(1→, and β-D-Glcp-(1 → or α-L-Araf-(1→] at the O-3 and O-6) of β-D-Galp-(1→, respectively. Finally, Lzp2-2 was applied as an additive to the medium of yoghurt fermented by W. confusa. The results indicated Lzp2-2 not only promoted the EPS production to improve the viscosity, texture and mouthfeel of yoghurt, but also facilitated the generation of other secondary metabolites (volatile organic compounds), thus elevating the flavor of yoghurt.
Collapse
Affiliation(s)
- Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, China
| | - Feng-Xiang Tan
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, China
| | - Lu Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, China
| | - Ke-Jing An
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, China
| | - Bo Zou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, China
| | - Jing Wen
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, China
| | - Ji-Jun Wu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, China
| | | | - Yuan-Shan Yu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, China.
| | - Yu-Juan Xu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, China.
| |
Collapse
|
2
|
Hu TG, Wu H, Yu YS, Xu YJ, Li EN, Liao ST, Wen P, Zou YX. Preparation, structural characterization and prebiotic potential of mulberry leaf oligosaccharides. Food Funct 2022; 13:5287-5298. [PMID: 35441628 DOI: 10.1039/d1fo04048k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The present study shows the purification of a main oligosaccharide fraction (MLO 1-2) from the enzymatic hydrolysate of mulberry leaf polysaccharides by DEAE-52 cellulose and gel column chromatography. The physicochemical properties of MLO 1-2 were characterized. The structure of MLO 1-2 was obtained as follows: α-(2-OAc)-Manp-1 → 2-β-Glcp-1 → 4-β-Glcp-1 → 4-α-Glcp-1 → 2-α-Glcp-1 → 2-α-Galp-1 → 2-β-Galp-1 → 2-β-Galp-1, which was elucidated by methylation and NMR analysis. The molecular weight of MLO 1-2 showed no significant change after simulated saliva, gastric and intestinal digestion. This indicated that MLO 1-2 could pass through the digestive system without being degraded to safely reach the colon to regulate the gut microbiota. Additionally, MLO 1-2, more than glucose or galactooligosaccharides, promoted the proliferation of Bifidobacterium bifidum, B. adolescentis, Lacticaseibacillus rhamnosus and Lactobacillus acidophilus. Furthermore, the acetic and lactic acid concentrations of bacterial cultures inoculated with MLO 1-2 were higher than those inoculated with glucose and galactooligosaccharide (GOS). These results suggest that MLO 1-2 could be an excellent prebiotic for intestinal flora regulation and the promotion of gut health.
Collapse
Affiliation(s)
- Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, China
| | - Yuan-Shan Yu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Yu-Juan Xu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Er-Na Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Sen-Tai Liao
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Peng Wen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, China.
| | - Yu-Xiao Zou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| |
Collapse
|
3
|
Identifying unknown metabolites using NMR-based metabolic profiling techniques. Nat Protoc 2020; 15:2538-2567. [PMID: 32681152 DOI: 10.1038/s41596-020-0343-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/20/2020] [Indexed: 01/20/2023]
Abstract
Metabolic profiling of biological samples provides important insights into multiple physiological and pathological processes but is hindered by a lack of automated annotation and standardized methods for structure elucidation of candidate disease biomarkers. Here we describe a system for identifying molecular species derived from nuclear magnetic resonance (NMR) spectroscopy-based metabolic phenotyping studies, with detailed information on sample preparation, data acquisition and data modeling. We provide eight different modular workflows to be followed in a recommended sequential order according to their level of difficulty. This multi-platform system involves the use of statistical spectroscopic tools such as Statistical Total Correlation Spectroscopy (STOCSY), Subset Optimization by Reference Matching (STORM) and Resolution-Enhanced (RED)-STORM to identify other signals in the NMR spectra relating to the same molecule. It also uses two-dimensional NMR spectroscopic analysis, separation and pre-concentration techniques, multiple hyphenated analytical platforms and data extraction from existing databases. The complete system, using all eight workflows, would take up to a month, as it includes multi-dimensional NMR experiments that require prolonged experiment times. However, easier identification cases using fewer steps would take 2 or 3 days. This approach to biomarker discovery is efficient and cost-effective and offers increased chemical space coverage of the metabolome, resulting in faster and more accurate assignment of NMR-generated biomarkers arising from metabolic phenotyping studies. It requires a basic understanding of MATLAB to use the statistical spectroscopic tools and analytical skills to perform solid phase extraction (SPE), liquid chromatography (LC) fraction collection, LC-NMR-mass spectroscopy and one-dimensional and two-dimensional NMR experiments.
Collapse
|
4
|
Fan L, Gao S, Wang L, Wu P, Cao M, Zheng H, Xie W, Zhou J. Synthesis and anticoagulant activity of pectin sulfates. J Appl Polym Sci 2011. [DOI: 10.1002/app.35239] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
5
|
Jansson PE, Stenutz R, Widmalm G. Sequence determination of oligosaccharides and regular polysaccharides using NMR spectroscopy and a novel Web-based version of the computer program casper. Carbohydr Res 2006; 341:1003-10. [PMID: 16564037 DOI: 10.1016/j.carres.2006.02.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 02/17/2006] [Accepted: 02/27/2006] [Indexed: 11/18/2022]
Abstract
A WWW-interface to a program for structure elucidation of oligo- and polysaccharides using NMR data, CASPER, is presented. The interface and the underlying program have been extensively tested using published data and it was able to simulate 13C NMR spectra of >200 structures with an average error of about 0.3 ppm/resonance. When applied to the repeating units of Escherichia coli O-antigens the published structures were found among the five highest ranked structures in 75% of the cases. The average deviation between calculated and experimental 13C chemical shifts was 0.45 ppm. Oligosaccharide spectra were calculated with even better accuracy (0.23 ppm/resonance) and the correct structure was ranked 1st or 2nd in all the cases examined. Additional NMR experiments that may be required to distinguish between candidate structures are aided by the assignments provided by the program. This computational approach is also suitable for use in structural confirmation of chemically or enzymatically synthesized oligosaccharides. The program is found at http://www.casper.organ.su.se/casper.
Collapse
Affiliation(s)
- Per-Erik Jansson
- Centre for Medical Innovations, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
6
|
Toivonen S, Aitio O, Renkonen O. alpha 2,3-Sialylation of terminal GalNAc beta 1-3Gal determinants by ST3Gal II reveals the multifunctionality of the enzyme. The resulting Neu5Ac alpha 2-3GalNAc linkage is resistant to sialidases from Newcastle disease virus and Streptococcus pneumoniae. J Biol Chem 2001; 276:37141-8. [PMID: 11479313 DOI: 10.1074/jbc.m105715200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enzymatic alpha 2,3-sialylation of GalNAc has not been described previously, although some glycoconjugates containing alpha 2,3-sialylated GalNAc residues have been reported. In the present experiments, recombinant soluble alpha 2,3-sialyltransferase ST3Gal II efficiently sialylated the X(2) pentasaccharide GalNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc, globo-N-tetraose GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4Glc, and the disaccharide GalNAc beta 1-3Gal in vitro. The purified products were identified as Neu5Ac alpha 2-3GalNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc, Neu5Ac alpha 2-3GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4Glc, and Neu5Ac alpha 2-3GalNAc beta 1-3Gal, respectively, by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, enzymatic degradations, and one- and two-dimensional NMR-spectroscopy. In particular, the presence of the Neu5Ac alpha 2-3GalNAc linkage was firmly established in all three products by a long range correlation between Neu5Ac C2 and GalNAc H3 in heteronuclear multiple bond correlation spectra. Collectively, the data describe the first successful sialyltransfer reactions to the 3-position of GalNAc in any acceptor. Previously, ST3Gal II has been shown to transfer to the Gal beta 1-3GalNAc determinant. Consequently, the present data show that the enzyme is multifunctional, and could be renamed ST3Gal(NAc) II. In contrast to ST3Gal II, ST3Gal III did not transfer to the X(2) pentasaccharide. The Neu5Ac alpha 2-3GalNAc linkage of sialyl X(2) was cleaved by sialidases from Arthrobacter ureafaciens and Clostridium perfringens, but resisted the action of sialidases from Newcastle disease virus and Streptococcus pneumoniae. Therefore, the latter two enzymes cannot be used to differentiate between Neu5Ac alpha 2-3GalNAc and Neu5Ac alpha 2-6GalNAc linkages, as has been assumed previously.
Collapse
Affiliation(s)
- S Toivonen
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | | | | |
Collapse
|
7
|
Natunen J, Aitio O, Helin J, Maaheimo H, Niemelä R, Heikkinen S, Renkonen O. Human alpha3-fucosyltransferases convert chitin oligosaccharides to products containing a GlcNAcbeta1-4(Fucalpha1-3)GlcNAcbeta1-4R determinant at the nonreducing terminus. Glycobiology 2001; 11:209-16. [PMID: 11320059 DOI: 10.1093/glycob/11.3.209] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human alpha3-fucosyltransferases (Fuc-Ts) are known to convert N-acetyllactosamine to Galbeta1-4(Fucalpha1-3)GlcNAc (Lewis x antigen); some of them transfer fucose also to GalNAcbeta1-4GlcNAc, generating GalNAcbeta1-4(Fucalpha1-3)GlcNAc determinants. Here, we report that recombinant forms of Fuc-TV and Fuc-TVI as well as Fuc-Ts of human milk converted chitin oligosaccharides of 2-4 GlcNAc units efficiently to products containing a GlcNAcbeta1-4(Fucalpha1-3)GlcNAcbeta1-4R determinant at the nonreducing terminus. The product structures were identified by mass spectrometry and nuclear magnetic resonance experiments; rotating frame nuclear Overhauser spectroscopy data suggested that the fucose and the distal N-acetylglucosamine are stacked in the same way as the fucose and the distal galactose of the Lewis x determinant. The products closely resembled a nodulation factor of Mesorhizobium loti but were distinct from nodulation signals generated by NodZ-enzyme.
Collapse
Affiliation(s)
- J Natunen
- Institute of Biotechnology, P.O. Box 56, 00014 University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
8
|
Brockhausen I, Yang J, Lehotay M, Ogata S, Itzkowitz S. Pathways of mucin O-glycosylation in normal and malignant rat colonic epithelial cells reveal a mechanism for cancer-associated Sialyl-Tn antigen expression. Biol Chem 2001; 382:219-32. [PMID: 11308020 DOI: 10.1515/bc.2001.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The Sialyl-Tn antigen (Sialyl alpha-Ser/Thr) is expressed as a cancer-associated antigen on the surface of cancer cells. Its presence is associated with a poor prognosis in patients with colorectal and other cancers. We previously reported that Sialyl-Tn expression in LSC human colon cancer cells could be explained by a specific lack of the activity of core 1 beta3-Gal-transferase (Brockhausen et al., Glycoconjugate J. 15, 595-603, 1998) and an inability to synthesize the common O-glycan core structures. To support this mechanism, or find other mechanisms to explain Sialyl-Tn antigen expression, we investigated the O-glycosylation pathways in clonal rat colon cancer cell lines that were selected for positive or negative expression of Sialyl-Tn antigen, and compared these pathways to those in normal rat colonic mucosa. Normal rat colonic mucosa had very active glycosyltransferases synthesizing O-glycan core structures 1 to 4. Several sialyl-, sulfo- and fucosyltransferases were also active. An M type core 2 beta6-GlcNAc-transferase was found to be present in rat colon mucosa and all of the rat colon cancer cells. O-glycosylation pathways in rat colon cancer cells were significantly different from normal rat colonic mucosa; for example, rat colon cancer cells lost the ability to synthesize O-glycan core 3. All rat colon cancer cell lines, regardless of the Sialyl-Tn phenotype, expressed glycosyltransferases assembling complex O-glycans of core 1 and core 2 structures (unlike human LSC colon cancer cells which lack core 1 beta3-Gal-transferase activity). It was the activity of CMP-sialic acid:GalNAc-mucin alpha6-sialyltransferase that coincided with Sialyl-Tn expression. Sialyl-Tn negative cells had a several fold higher activity of core 2 beta6-GlcNAc-transferase which synthesizes complex O-glycans that may mask adjacent Sialyl-Tn epitopes. The results suggest a new mechanism controlling Sialyl-Tn expression in cancer cells.
Collapse
Affiliation(s)
- I Brockhausen
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
9
|
Mattila P, Salminen H, Hirvas L, Niittymäki J, Salo H, Niemelä R, Fukuda M, Renkonen O, Renkonen R. The centrally acting beta1,6N-acetylglucosaminyltransferase (GlcNAc to gal). Functional expression, purification, and acceptor specificity of a human enzyme involved in midchain branching of linear poly-N-acetyllactosamines. J Biol Chem 1998; 273:27633-9. [PMID: 9765298 DOI: 10.1074/jbc.273.42.27633] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present experiments the cDNA coding for a truncated form of the beta1,6N-acetylglucosaminyltransferase responsible for the conversion of linear to branched polylactosamines in human PA1 cells was expressed in Sf9 insect cells. The catalytic ectodomain of the enzyme was fused to glutathione S-transferase, allowing effective one-step purification of the glycosylated 67-74-kDa fusion protein. Typically a yield of 750 microg of the purified protein/liter of suspension culture was obtained. The purified recombinant protein catalyzed the transfer of GlcNAc from UDP-GlcNAc to the linear tetrasaccharide Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAc, converting the acceptor to the branched pentasaccharide Galbeta1-4GlcNAcbeta1-3(GlcNAcbeta1-6)Galbeta1-4 GlcNAc as shown by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, degradative experiments, and 1H NMR spectroscopy of the product. By contrast, the recombinant enzyme did not catalyze any reaction when incubated with UDP-GlcNAc and the trisaccharide GlcNAcbeta1-3Galbeta1-4GlcNAc. Accordingly, we call the recombinant beta1,6-GlcNAc transferase cIGnT6 to emphasize its action at central rather than peridistal galactose residues of linear polylactosamines in the biosynthesis of blood group I antigens. Taken together this in vitro expression of I-branching enzyme, in combination with the previously cloned enzymes, beta1,4galactosyltransferase and beta1, 3N-acetylglucosaminyltransferase, should allow the general synthesis of polylactosamines based totally on the use of recombinant enzymes.
Collapse
Affiliation(s)
- P Mattila
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, SF-00014 Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sakamoto Y, Taguchi T, Tano Y, Ogawa T, Leppänen A, Kinnunen M, Aitio O, Parmanne P, Renkonen O, Taniguchi N. Purification and characterization of UDP-GlcNAc:Galbeta1-4GlcNAcbeta1-3*Galbeta1-4Glc(NAc)-R(GlcNAc to *Gal) beta1,6N-acetylglucosaminyltransferase from hog small intestine. J Biol Chem 1998; 273:27625-32. [PMID: 9765297 DOI: 10.1074/jbc.273.42.27625] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A beta1,6N-acetylglucosaminyltransferase (beta1-6GnT) responsible for the formation of the beta1,6-branched poly-N-acetyllactosamine structure has been purified 210,000-fold in 2.4% yield from a homogenate of hog small intestine by successive column chromatographies involving CM-Sepharose FF, Ni2+-chelating Sepharose FF, and UDP-hexanolamine-agarose, using an assay wherein pyridylaminated lacto-N-neotetraose (Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc-PA) was used as an acceptor substrate, and the reaction product was Galbeta1-4GlcNAcbeta1-3(GlcNAcbeta1-6)Galbeta1-4 Glc-PA. The apparent molecular weight of the purified enzyme was 76,000 under nonreducing conditions. The enzyme has a pH optimum at 7.0 and has no requirement for any divalent metal ions. The Km values for pyridylaminated lacto-N-neotetraose and UDP-GlcNAc were 0.96 and 2. 59 mM, respectively. For its activity, this enzyme was shown to have an absolute requirement of at least a complete LacNAc (LacNAc = Galbeta1-4GlcNAc) residue bound to position 3 of the acceptor Gal residues, i.e. it is capable of acting only on the Gal residues of internal LacNAc units. The data strongly suggest that this enzyme could be involved in generating branches to central positions of preformed as well as growing polylactosamine chains, but not in synthesizing the distal branches to growing polylactosamine chains.
Collapse
Affiliation(s)
- Y Sakamoto
- Department, Osaka University Medical School, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Leppänen A, Zhu Y, Maaheimo H, Helin J, Lehtonen E, Renkonen O. Biosynthesis of branched polylactosaminoglycans. Embryonal carcinoma cells express midchain beta1,6-N-acetylglucosaminyltransferase activity that generates branches to preformed linear backbones. J Biol Chem 1998; 273:17399-405. [PMID: 9651325 DOI: 10.1074/jbc.273.28.17399] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two types of beta1,6-GlcNAc transferases (IGnT6) are involved in in vitro branching of polylactosamines: dIGnT6 (distally acting), transferring to the penultimate galactose residue in acceptors like GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1-R, and cIGnT6 (centrally acting), transferring to the midchain galactoses in acceptors of the type (GlcNAcbeta1-3)Galbeta1-4GlcNAcbeta1-3Galbeta1-+ ++4GlcNAcbeta1-R. The roles of the two transferases in the biosynthesis of branched polylactosamine backbones have not been clearly elucidated. We report here that cIGnT6 activity is expressed in human (PA1) and murine (PC13) embryonal carcinoma (EC) cells, both of which contain branched polylactosamines in large amounts. In the presence of exogenous UDP-GlcNAc, lysates from both EC cells catalyzed the formation of the branched pentasaccharide Galbeta1-4GlcNAcbeta1-3(GlcNAcbeta1-6)Galbeta1-4 GlcNAc from the linear tetrasaccharide Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAc. The PA1 cell lysates were shown to also catalyze the formation of the branched heptasaccharides Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1-3(+ ++GlcNAcbeta1-6)Galbeta1 -4GlcNAc and Galbeta1-4GlcNAcbeta1-3(GlcNAcbeta1-6)Galbeta1-+ ++4GlcNAcbeta1-3Galbeta1 -4GlcNAc from the linear hexasaccharide Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1- 3Galbeta1-4GlcNAc in reactions characteristic to cIGnT6. By contrast, dIGnT6 activity was not detected in the lysates of the two EC cells that were incubated with UDP-GlcNAc and the acceptor trisaccharide GlcNAcbeta1-3Galbeta1-4GlcNAc. Hence, it appears likely that cIGnT6, rather than dIGnT6 is responsible for the synthesis of the branched polylactosamine chains in these cells.
Collapse
Affiliation(s)
- A Leppänen
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, P. O. Box 56, FIN-00014 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
12
|
Niemelä R, Natunen J, Majuri ML, Maaheimo H, Helin J, Lowe JB, Renkonen O, Renkonen R. Complementary acceptor and site specificities of Fuc-TIV and Fuc-TVII allow effective biosynthesis of sialyl-TriLex and related polylactosamines present on glycoprotein counterreceptors of selectins. J Biol Chem 1998; 273:4021-6. [PMID: 9461592 DOI: 10.1074/jbc.273.7.4021] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The P-selectin counterreceptor PSGL-1 is covalently modified by mono alpha2,3-sialylated, multiply alpha1,3-fucosylated polylactosamines. These glycans are required for the adhesive interactions that allow this adhesion receptor-counterreceptor pair to facilitate leukocyte extravasation. To begin to understand the biosynthesis of these glycans, we have characterized the acceptor and site specificities of the two granulocyte alpha1,3-fucosyltransferases, Fuc-TIV and Fuc-TVII, using recombinant forms of these two enzymes and a panel of synthetic polylactosamine-based acceptors. We find that Fuc-TIV can transfer fucose effectively to all N-acetyllactosamine (LN) units in neutral polylactosamines, and to the "inner" LN units of alpha2,3-sialylated acceptors but is ineffective in transfer to the distal alpha2,3-sialylated LN unit in alpha2,3-sialylated acceptors. Fuc-TVII, by contrast, effectively fucosylates only the distal alpha2,3-sialylated LN unit in alpha2,3-sialylated acceptors and thus exhibits an acceptor site-specificity that is complementary to Fuc-TIV. Furthermore, the consecutive action of Fuc-TIV and Fuc-TVII, in vitro, can convert the long chain sialoglycan SAalpha2-3'LNbeta1-3'LNbeta1-3'LN (where SA is sialic acid) into the trifucosylated molecule SAalpha2-3'Lexbeta1-3'Lexbeta1-3'Lex (where Lex is the trisaccharide Galbeta1-4(Fucalpha1-3)GlcNAc) known to decorate PSGL-1. The complementary in vitro acceptor site-specificities of Fuc-TIV and Fuc-TVII imply that these enzymes cooperate in vivo in the biosynthesis of monosialylated, multifucosylated polylactosamine components of selectin counterreceptors on human leukocytes.
Collapse
Affiliation(s)
- R Niemelä
- Institute of Biotechnology, P.O. Box 56, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Salminen H, Ahokas K, Niemelä R, Penttilä L, Maaheimo H, Helin J, Costello CE, Renkonen O. Improved enzymatic synthesis of a highly potent oligosaccharide antagonist of L-selectin. FEBS Lett 1997; 419:220-6. [PMID: 9428638 DOI: 10.1016/s0014-5793(97)01462-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The polylactosamine sLex beta1-3'(sLex beta1-6')LacNAc beta1-3'(sLex beta1-6')LacNAc beta1-3'(sLex beta1-6')LacNAc (7) (where sLex is Neu5Ac alpha2-3Gal beta1-4(Fuc alpha1-3)GlcNAc and LacNAc is Gal beta1-4GlcNAc) is a nanomolar L-selectin antagonist and therefore a potential anti-inflammatory agent (Renkonen et al. (1997) Glycobiology, 7, 453). Here we describe an improved synthesis of 7. The octasaccharide LacNAc beta1-3'LacNAc beta1-3'LacNAc beta1-3'LacNAc (4) was converted into the triply branched undecasaccharide LacNAc beta1-3'(GlcNAc beta1-6')LacNAc beta1-3'(GlcNAc beta1-6')LacNAc beta1-3'(GlcNAc beta1-6')LacNAc (5) by incubation with UDP-GlcNAc and the midchain beta1,6-GlcNAc transferase activity of rat serum. Glycan 5 was enzymatically beta1,4-galactosylated to LacNAc beta1-3'(LacNAc beta1-6')LacNAc beta1-3'(LacNAc beta1-6')LacNAc beta1-3'(LacNAc beta1-6')LacNAc (6). Combined with the enzymatic conversion of 6 to 7 (Renkonen et al., loc. cit.) and the available chemical synthesis of 4, our data improve the availability of 7 for full assessment of its anti-inflammatory properties.
Collapse
Affiliation(s)
- H Salminen
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Räbinä J, Natunen J, Niemelä R, Salminen H, Ilves K, Aitio O, Maaheimo H, Helin J, Renkonen O. Enzymatic synthesis of site-specifically (alpha 1-3)-fucosylated polylactosamines containing either a sialyl Lewis (x), a VIM-2, or a sialylated and internally difucosylated sequence. Carbohydr Res 1997; 305:491-9. [PMID: 9648266 DOI: 10.1016/s0008-6215(97)00260-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
By using two different reaction pathways, we generated enzymatically three sialylated and site-specifically alpha 1-3-fucosylated polylactosamines. Two of these are isomeric hexasaccharides Neu5Ac(alpha 2-3)Gal(beta 1-4)GlcNAc(beta 1-3)Gal(beta 1-4)[Fuc(alpha 1-3)] GlcNAc and Neu5Ac(alpha 2-3)Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc(beta 1-3)Gal(beta 1-4) GlcNAc, containing epitopes that correspond to VIM-2 and sialyl Lewis (x), respectively. The third one, nonasaccharide Neu5Ac(alpha 2-3)Gal(beta 1-4)GlcNAc(beta 1-3)Gal(beta 1-4)[Fuc(alpha 1-3)] GlcNAc(beta 1-3)Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc, is a sialylated and internally difucosylated derivative of a trimeric N-acetyllactosamine. All three oligosaccharides have one fucose-free N-acetyllactosaminyl unit and can be used as acceptors for recombinant alpha 1-3-fucosyltransferases in determining the biosynthesis pathways leading to polyfucosylated selectin ligands.
Collapse
Affiliation(s)
- J Räbinä
- Institute of Biotechnology, University of Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Leppänen A, Niemelä R, Renkonen O. Enzymatic midchain branching of polylactosamine backbones is restricted in a site-specific manner in alpha 1,3-fucosylated chains. Biochemistry 1997; 36:13729-35. [PMID: 9354644 DOI: 10.1021/bi9712807] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Branched polylactosamines on animal cell surfaces are believed to contribute to multivalent interactions in cell adhesion and cell signalling. Their biosynthesis proceeds via linear precursors that become branched by beta1,6-GlcNAc transferases (IGnT6, GlcNAc to Gal). Previous work has identified the tetrasaccharide Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAc (1) and the hexasaccharide Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1- 3Galbeta1-4GlcNAc (4) as acceptors for a rat serum enzyme activity (cIGnT6), which transfers GlcNAcbeta1-6 units to the midchain galactose residues. Thereby, 1 is converted to the branched pentasaccharide Galbeta1-4GlcNAcbeta1-3(GlcNAcbeta1-6)Galbeta1-4 GlcNAc and 4 to the doubly branched octasaccharide Galbeta1-4GlcNAcbeta1-3(GlcNAcbeta1-6)Galbeta1-+ ++4GlcNAcbeta1-3(GlcNAcb eta1-6)Galbeta1-4GlcNAc [Leppänen, A., Salminen, H., Zhu, Y., Maaheimo, H., Helin, J., Costello, C. E., & Renkonen, O. (1997) Biochemistry 36, 7026-7036]. Here we report that neither the alpha1, 3-fucose-containing derivatives of 1 [Galbeta1-4GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3)G lcNAc and Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4Gl cNAc] nor a similar derivative of 4 [Galbeta1-4GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3)+ ++GlcNAcbeta1-3Galbeta1- 4GlcNAc] were acceptors for the rat serum cIGnT6 activity. Hence, the enzyme's branch-forming action was completely prevented at sites in the immediate neighborhood of the fucosylated loci of the polylactosamines. In Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1- 3Galbeta1-4(Fucalpha1-3) GlcNAc, the inhibition of the branch-forming reaction was restricted to the fucose-carrying LacNAc unit; at the middle LacNAc, the branching proceeded normally. However, in the isomeric Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1- 4GlcNAcbeta1-3Galbeta1-4 GlcNAc, the fucose residue prevented branching completely at the middle LacNAc and almost completely at the reducing end LacNAc. In summary, alpha1,3-fucose residues in polylactosamine chains inhibited the cIGnT6 reaction in a site-specific manner, at the fucosylated LacNAc unit itself and also at sites one and two LacNAc units upstream, but not at the LacNAc units downstream from the fucosylated locus. These data imply that site-directed branching in polylactosamines is possible in vitro with the aid of specifically positioned alpha1,3-fucosyl units, that can be removed afterward without harming the branched backbones.
Collapse
Affiliation(s)
- A Leppänen
- Institute of Biotechnology, Department of Biosciences (Division of Biochemistry), University of Helsinki, Finland
| | | | | |
Collapse
|
16
|
Helin J, Penttilä L, Leppänen A, Maaheimo H, Lauri S, Costello CE, Renkonen O. The beta 1,6-GlcNAc transferase activity present in hog gastric mucosal microsomes catalyses site-specific branch formation on a long polylactosamine backbone. FEBS Lett 1997; 412:637-42. [PMID: 9276482 DOI: 10.1016/s0014-5793(97)00818-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We find that the beta 1,6-GlcNAc transferase activity present in hog gastric mucosal microsomes converts the linear pentasaccharide GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4GlcNAc (1) in a site-specific way to the branch-bearing hexasaccharide GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4GlcNAc (2). The product is a positional isomer of GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc (3), reportedly formed from 1 by another polylactosamine beta 1,6-GlcNAc transferase activity present in human serum (Leppänen et al., Biochemistry, 30 (1991) 9287). Combined use of the two kinds of activities gave in the present experiments the heptasaccharide GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc (4), in which one of the branches occupies the position of the branch in 2 and the other the position of the branch in 3.
Collapse
Affiliation(s)
- J Helin
- Institute of Biotechnology, University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
17
|
Leppanen A, Salminen H, Zhu Y, Maaheimo H, Helin J, Costello CE, Renkonen O. In vitro biosynthesis of a decasaccharide prototype of multiply branched polylactosaminoglycan backbones. Biochemistry 1997; 36:7026-36. [PMID: 9188700 DOI: 10.1021/bi9627673] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Multiply branched polylactosaminoglycans are expressed in glycoproteins and glycolipids of many cells. Interest in their biology stems from their abundant expression in early embryonal cells and from their ability to carry multiple lectin-binding determinants, which makes them prominent ligands and antagonists of cell adhesion proteins. A prototype of their backbones is represented by the decasaccharide LacNAc beta1-3'(LacNAc beta1-6')LacNAc beta1-3'(LacNAc beta1-6')LacNAc (5), where LacNAc is the disaccharide Gal beta1-4GlcNAc. Here, we describe in vitro biosynthesis of glycan 5. Incubation of the linear hexasaccharide LacNAc beta1-3'LacNAc beta1-3'LacNAc (1) with UDP-GlcNAc and alpha midchain beta1,6-GlcNAc transferase activity (GlcNAc to Gal), present in rat serum [Gu, J., Nishikawa, A., Fujii, S., Gasa, S., & Taniguchi, N. (1992) J. Biol. Chem. 267, 2994-2999], gave the doubly branched octasaccharide LacNAc beta1-3'(GlcNAc beta1-6')LacNAc beta1-3'(GlcNAc beta1-6')LacNAc (4). The latter was converted to 5 by enzymatic beta1,4-galactosylation. In the initial branching reaction of 1, two isomeric heptasaccharide intermediates, LacNAc beta1-3'LacNAc beta1-3'(GlcNAc beta1-6')LacNAc (2) and LacNAc beta1-3'(GlcNAc beta1-6')LacNAc beta1-3'LacNAc (3), were formed first at comparable rates. Later, both intermediates were converted to 4, revealing two distinct pathways of the reaction: 1 --> 2 --> 4 and 1 --> 3 --> 4. These data suggest that, regardless of their chain length, linear polylactosamines similar to 1 contain potential branching sites at each of the internal galactoses. The enzyme-binding epitope of 1 is probably LacNAc beta1-3'LacNAc, because the trisaccharides GlcNAc beta1-3'LacNAc and LacNAc beta1-3Gal as well as the tetrasaccharide GlcNAc beta1-3'LacNAc beta1-3Gal were poor acceptors, while LacNAc beta1-3'LacNAc was a good one. Midchain beta1,6-GlcNAc transferase activities present in serum of several mammalian species, including man, resembled closely the rat serum activity in their mode of action and in their acceptor specificity. We suggest that analogous membrane-bound Golgi enzymes are involved in the biosynthesis of multiply branched polylactosamines in vivo.
Collapse
Affiliation(s)
- A Leppanen
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|