1
|
Takagi A, Usuguchi K, Takashima I, Okuda K. Total Synthesis of Antiausterity Agent (±)-Uvaridacol L by Regioselective Axial Diacylation of a myo-Inositol Orthoester. Org Lett 2021; 23:4083-4087. [PMID: 33596082 DOI: 10.1021/acs.orglett.1c00079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The antiausterity natural product (±)-uvaridacol L was synthesized for the first time in seven steps from myo-inositol. The key reaction of this synthesis, axial selective dibenzoylation of myo-inositol orthoformate, was achieved using a catalytic amount of tetrabutylammonium fluoride (TBAF). The preferential cytotoxicity of racemic uvaridacol L against cancer cell lines able to adapt to nutrient deprivation was also evaluated under nutrient deprived conditions. Morphological evaluation was also carried out.
Collapse
Affiliation(s)
- Akira Takagi
- Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe, Hyogo 658-8558, Japan
| | - Kazuki Usuguchi
- Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe, Hyogo 658-8558, Japan
| | - Ippei Takashima
- Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe, Hyogo 658-8558, Japan
| | - Kensuke Okuda
- Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe, Hyogo 658-8558, Japan
| |
Collapse
|
2
|
Shashidhar MS, Krishnaswamy S. Intermolecular Acyl-Transfer Reactions in Molecular Crystals. Acc Chem Res 2019; 52:437-446. [PMID: 30698945 DOI: 10.1021/acs.accounts.8b00557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is far more difficult to recognize and predict the chemical reactions that a molecule of an organic compound can undergo in crystalline (solid) state as compared to the solution state (the "organic functional group" approach), since the published data on solid-state structure-reactivity investigations and correlations are scant. The discovery of the first intermolecular acyl-transfer reaction in molecular crystals of racemic 2,4-di- O-benzoyl- myo-inositol-1,3,5-orthoformate (DiBz) during our attempts to develop methods for the synthesis of phosphoinositols, motivated us to find other molecular crystals capable of supporting similar reactions. Small changes to the molecular structure of DiBz yielded analogues with different crystal structures which showed varying degrees of acyl transfer reactivity as compared to the crystals of DiBz. A systematic investigation of the structures, polymorphism, cocrystallization behavior, and the corresponding reactivity of these crystals allowed us to correlate the acyl transfer reactivity with their structures and inherent noncovalent interactions and provided crucial insights into the mechanism of these reactions. Polymorphs or cocrystals of these compounds exhibited dissimilar reactivities due to differences in the molecular conformation and/or arrangements in their crystals. The knowledge of phase transitions between polymorphs enabled us to control and tune the reactivity in the solid state. We could identify three conditions essential for intermolecular acyl transfer: (i) favorable relative geometry of the electrophile (ester C═O) and the nucleophile (OH), (ii) noncovalent interactions (C-H···π) between the reacting molecules which help in maintaining the facility and specificity of the reaction, and (iii) the presence of channels in the lattice which enable propagation of the reaction in the crystal. Based on this supramolecular structure-reactivity correlation, we identified other molecular crystals (composed of molecules of widely different molecular structure from that of DiBz) from a survey of the Cambridge Structural Database (CSD) and predicted their acyl transfer reactivity. The increased availability of user-friendly modern X-ray diffractometers and related software has enabled efficient collection, analysis and interpretation of single crystal X-ray diffraction data, essential for such studies. The rapidly expanding CSD facilitates the identification of crystals with similar structures and reactivity patterns. In a wider perspective, facile reactions in molecular crystals fascinate chemists because these reactions usually exhibit unique product selectivity and have the potential to be developed as sustainable green reactions. We are optimistic that similar approaches for the study of other group transfer reactions in molecular crystals would augment and widen the scope of chemical reactions in molecular crystals in particular and the solid state in general. The ability to predict the reactivity of molecules in their crystals could find applications in organic synthesis, material science and industry. Realization of the involvement of inositol derivatives in cellular processes led to the discovery of cellular signal transduction mechanisms. The ability of inositol derivatives to support facile acyl-transfer reactions in the crystalline state might well have opened a new avenue for research in the area of organic solid-state reactions.
Collapse
Affiliation(s)
- Mysore S. Shashidhar
- Division of Organic Chemistry and the Academy of Scientific and Industrial Research, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Shobhana Krishnaswamy
- Division of Organic Chemistry and the Academy of Scientific and Industrial Research, CSIR-National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
3
|
Tamboli MI, Bahadur V, Gonnade RG, Shashidhar MS. Correlation of the solid-state reactivities of racemic 2,4(6)-di-O-benzoyl-myo-inositol 1,3,5-orthoformate and its 4,4'-bipyridine cocrystal with their crystal structures. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2014; 70:1040-5. [PMID: 25370103 DOI: 10.1107/s2053229614021834] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/03/2014] [Indexed: 11/11/2022]
Abstract
Racemic 2,4(6)-di-O-benzoyl-myo-inositol 1,3,5-orthoformate, C21H18O8, (1), shows a very efficient intermolecular benzoyl-group migration reaction in its crystals. However, the presence of 4,4'-bipyridine molecules in its cocrystal, C21H18O8·C10H8N2, (1)·BP, inhibits the intermolecular benzoyl-group transfer reaction. In (1), molecules are assembled around the crystallographic twofold screw axis (b axis) to form a helical self-assembly through conventional O-H···O hydrogen-bonding interactions. This helical association places the reactive C6-O-benzoyl group (electrophile, El) and the C4-hydroxy group (nucleophile, Nu) in proximity, with a preorganized El···Nu geometry favourable for the acyl transfer reaction. In the cocrystal (1)·BP, the dibenzoate and bipyridine molecules are arranged alternately through O-H···N interactions. The presence of the bipyridine molecules perturbs the regular helical assembly of the dibenzoate molecules and thus restricts the solid-state reactivity. Hence, unlike the parent dibenzoate crystals, the cocrystals do not exhibit benzoyl-transfer reactions. This approach is useful for increasing the stability of small molecules in the crystalline state and could find application in the design of functional solids.
Collapse
Affiliation(s)
- Majid I Tamboli
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Vir Bahadur
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Rajesh G Gonnade
- Center for Materials Characterization, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Mysore S Shashidhar
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| |
Collapse
|
4
|
Gonnade RG, Bhadbhade MM, Shashidhar MS. Crystal-to-crystal transformation amongst dimorphs of racemic 2,6-di-O-(p-halo benzoyl)-myo-inositol 1,3,5-orthoformates that achieves halogen bonding contacts. CrystEngComm 2008. [DOI: 10.1039/b712528c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Yan L, Liu F, Yang J, Liu H. Synthesis of Novel Caged Intramolecular Ketals of β‐C‐Glycopyranosidic Ketones. J Carbohydr Chem 2007. [DOI: 10.1080/07328300701609111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Murali C, Shashidhar MS, Gonnade RG, Bhadbhade MM. Investigating Organization of Molecules that Facilitates Intermolecular Acyl Transfer in Crystals: Reactivity and X-ray Structures ofO-Benzoyl-myo-inositol 1,3,5-Orthoesters. European J Org Chem 2007. [DOI: 10.1002/ejoc.200600765] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
Sulfonate protecting groups. Synthesis of O- and C-methylated inositols: d- and l-ononitol, d- and l-laminitol, mytilitol and scyllo-inositol methyl ether. Tetrahedron 2005. [DOI: 10.1016/j.tet.2005.02.073] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Sarmah MP, Gonnade RG, Shashidhar MS, Bhadbhade MM. Benzoyl Transfer Reactivities of Racemic 2,4-Di-O-acyl-myo-inosityl 1,3,5-Orthoesters in the Solid State: Molecular Packing and Intermolecular Interactions Correlate with the Ease of the Reaction. Chemistry 2005; 11:2103-10. [PMID: 15714536 DOI: 10.1002/chem.200400851] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Racemic 2,4-di-O-acyl-myo-inosityl 1,3,5-orthoesters undergo transesterification catalyzed by sodium carbonate with varying ease of reaction in the solid state; reactions in solution and melt do not show such varied differences. An interesting crystal of a 1:1 molecular complex of highly reactive racemic 2,4-di-O-benzoyl-myo-inosityl 1,3,5-orthoformate and its orthoacetate analogue exhibited better reactivity than the latter component alone. Single-crystal X-ray structures of the reactants have been correlated with the observed differences in the acyl-transfer efficiencies in the solid state. Although each of the derivatives helically self-assembles around the crystallographic 2(1) axis linked through O-H...O hydrogen bonding, the pre-organization of the reactive groups (C=O [El] and OH [Nu]), C-H...O and the C-H...pi interactions are significantly more favourable for the reactive derivatives than the less reactive ones. Bond-length distributions also showed differences; the O-C bond of the axial benzoyl group, which gets cleaved during the reaction, is longer (1.345-1.361 A) relative to the chemically equivalent O-C bond of the equatorial benzoyl group (1.316-1.344 A) in the reactive derivatives. These bond-length differences are not significant in the less reactive derivatives. The overall molecular organization is different too; the strikingly discrete helices, which may be viewed as "reaction tunnels" and are held by interhelical interactions, are clearly evident in the reactive derivatives in comparison with the less reactive ones.
Collapse
Affiliation(s)
- Manash P Sarmah
- Division of Organic Synthesis, National Chemical Laboratory, Pune 411 008, India
| | | | | | | |
Collapse
|
9
|
Sureshan KM, Shashidhar MS, Praveen T, Das T. Regioselective Protection and Deprotection of Inositol Hydroxyl Groups. Chem Rev 2003; 103:4477-503. [PMID: 14611268 DOI: 10.1021/cr0200724] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kana M Sureshan
- Division of Organic Synthesis, National Chemical Laboratory, Pune 411 008, India
| | | | | | | |
Collapse
|
10
|
Sarmah MP, Shashidhar MS. Sulfonate protecting groups. Improved synthesis of scyllo-inositol and its orthoformate from myo-inositol. Carbohydr Res 2003; 338:999-1001. [PMID: 12681925 DOI: 10.1016/s0008-6215(03)00052-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A convenient high yielding method for the preparation of scyllo-inositol and its orthoformate from myo-inositol, without involving chromatography is described. myo-Inositol 1,3,5-orthoformate was benzoylated to obtain 2-O-benzoyl-myo-inositol 1,3,5-orthoformate. This diol was tosylated and the benzoyl group removed by aminolysis in a one-pot procedure to obtain 4,6-di-O-tosyl-myo-inositol 1,3,5-orthoformate. Swern oxidation of the ditosylate, followed by sodium borohydride reduction and methanolysis of tosylates gave scyllo-inositol 1,3,5-orthoformate (isolated as the triacetate). Aminolysis of the acetates followed by acid hydrolysis of the orthoformate moiety with trifluoroacetic acid gave scyllo-inositol in an overall yield of 64%.
Collapse
Affiliation(s)
- Manash P Sarmah
- National Chemical Laboratory, Division of Organic Synthesis, Pune 411 008, India
| | | |
Collapse
|
11
|
Sureshan KM, Shashidhar MS, Praveen T, Gonnade RG, Bhadbhade MM. Sulfonate protecting groups. Regioselective sulfonylation of myo-inositol orthoesters-improved synthesis of precursors of D- and L-myo-inositol 1,3,4,5-tetrakisphosphate, myo-inositol 1,3,4,5,6-pentakisphosphate and related derivatives. Carbohydr Res 2002; 337:2399-410. [PMID: 12493224 DOI: 10.1016/s0008-6215(02)00298-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The regioselectivity of sulfonylation of myo-inositol orthoesters was controlled by the use of different bases to obtain the desired sulfonate. Monosulfonylation of myo-inositol orthoesters in the presence of one equivalent of sodium hydride or triethylamine resulted in the sulfonylation of the 4-hydroxyl group. The use of pyridine as a base for the same reaction resulted in sulfonylation of the 2-hydroxyl group. Disulfonylation of these orthoesters in the presence of excess sodium hydride yielded the 4,6-di-O-sulfonylated orthoesters. However, the use of triethylamine or pyridine instead of sodium hydride yielded the 2,4-di-O-sulfonylated orthoester. Sulfonylated derivatives of myo-inositol orthoesters were stable to conditions of O-alkylation but were cleaved using magnesium/methanol or sodium methoxide in methanol to regenerate the corresponding myo-inositol orthoester derivative. These new methods of protection-deprotection have been used: (i) for the efficient synthesis of enantiomers of 2,4-di-O-benzyl-myo-inositol, which are precursors for the synthesis of D- and L-myo-inositol 1,3,4,5-tetrakisphosphate; (ii) for the preparation of 2-O-benzyl-myo-inositol which is a precursor for the preparation of myo-inositol 1,3,4,5,6-pentakisphosphate.
Collapse
Affiliation(s)
- Kana M Sureshan
- Division of Organic Synthesis, National Chemical Laboratory, Pune 411 008, India
| | | | | | | | | |
Collapse
|
12
|
|
13
|
Praveen T, Shashidhar MS. Convenient synthesis of 4,6-di-O-benzyl-myo-inositol and myo-inositol 1,3,5-orthoesters. Carbohydr Res 2001; 330:409-11. [PMID: 11270820 DOI: 10.1016/s0008-6215(00)00296-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Convenient high yielding methods for the preparation of 4,6-di-O-benzyl-myo-inositol, myo-inositol 1,3,5-orthoformate and myo-inositol 1,3,5-orthoacetate, without involving chromatography are described. Myo-inositol was converted to racemic 2,4-di-O-benzoyl-myo-inositol 1,3,5-orthoformate by successive treatment with triethyl orthoformate and benzoyl chloride. The dibenzoate obtained on benzylation with benzyl bromide and silver(I) oxide gave 2-O-benzoyl-4,6-di-O-benzyl-myo-inositol 1,3,5-orthoformate. Deprotection of the benzoate and the orthoformate with isobutylamine and aqueous trifluoroacetic acid, respectively gave 4,6-di-O-benzyl-myo-inositol in an overall yield of 67%. Myo-inositol orthoformate and orthoacetate were prepared and isolated as their tribenzoates. The free orthoesters were regenerated by deprotection of the benzoates by aminolysis with isobutylamine.
Collapse
Affiliation(s)
- T Praveen
- Division of Organic Synthesis, National Chemical Laboratory, Pune, India
| | | |
Collapse
|
14
|
Sureshan K, Shashidhar M. Regioselective O-acylation of myo-inositol 1,3,5-orthoesters: the role of acyl migration. Tetrahedron Lett 2000. [DOI: 10.1016/s0040-4039(00)00561-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|