1
|
Ogata M, Sakamoto M, Yamauchi N, Nakazawa M, Koizumi A, Anazawa R, Kurumada K, Hidari KIPJ, Kono H. Optimization of the conditions for the immobilization of glycopolypeptides on hydrophobic silica particulates and simple purification of lectin using glycopolypeptide-immobilized particulates. Carbohydr Res 2022; 519:108624. [PMID: 35749901 DOI: 10.1016/j.carres.2022.108624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/02/2022]
Abstract
Glycopolypeptide-immobilized particulates exhibit high binding selectivities and affinities for several analytes. However, to date, the conditions for the synthesis of glycopolypeptide-immobilized particulates have not been optimized and the application of these particulates as carriers for affinity chromatography has not been reported. Accordingly, herein, as a model compound for determining the optimal conditions for the immobilization of an artificial glycopolymer on hexyl-containing hybrid silica particulates (HSPs), the glycopolypeptide poly [GlcNAcβ1,4GlcNAc-β-NHCO-(CH2)5NH-/CH3(CH2)9NH-/γ-PGA] (3) containing multivalent chitobiose moieties and multivalent decyl groups with a γ-polyglutamic acid backbone was synthesized. Immobilization of 3 on HSPs under each condition was evaluated by a lectin-binding assay using wheat germ (Triticum vulgaris) agglutinin (WGA), which is an N-acetylglucosamine-binding lectin. As a result, the optimal immobilization conditions for HSPs at 25 mg/mL were obtained at dimethyl sulfoxide (DMSO) concentration of reaction solvent in the range of 1(DMSO):9(water) to 4(DMSO):6(water) and a compound 3 concentration in the range of 125 nM-1250 nM. Furthermore, the influence of the alkyl group structure introduced into glycopolypeptide for imparting hydrophobicity to it on the immobilization of glycopolypeptide on HSPs was investigated. As a result of comparing three types, poly [GlcNAcβ1,4GlcNAc-β-NHCO-(CH2)5NH-/γ-PGA] (1) with no alkyl group, poly [GlcNAcβ1,4GlcNAc-β-NHCO-(CH2)5NH-/CH3(CH2)4NH-/γ-PGA] (2) with a pentyl group, and 3 with a decyl group, 3 showed the best immobilization efficiency on HSPs. Finally, 1 mg 3-immobilized HSPs prepared under the optimum conditions adsorbed approximately 7.5 μg WGA in a structure-specific manner. We also achieved a simple WGA purification from raw wheat germ extract as a practical example using 3-immobilized HSPs. We believe that in the future, these glycopolypeptide-immobilized particulates will be used not only for the purification of plant lectins, but also as specific adsorbents for various lectins-like substances such as in vivo lectins, pathogenic viruses, and toxin proteins.
Collapse
Affiliation(s)
- Makoto Ogata
- Faculty of Food and Agricultural Sciences, Fukushima University, 1 Kanayagawa, Fukushima, Fukushima, 960-1296, Japan; Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, 30 Nagao, Iwaki, Fukushima, 970-8034, Japan.
| | - Mao Sakamoto
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, 30 Nagao, Iwaki, Fukushima, 970-8034, Japan
| | - Noriko Yamauchi
- Department of Materials Science and Engineering, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Naka-narusawa-cho, Hitachi, Ibaraki, 316-8511, Japan
| | - Masato Nakazawa
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, 30 Nagao, Iwaki, Fukushima, 970-8034, Japan
| | - Ami Koizumi
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, 30 Nagao, Iwaki, Fukushima, 970-8034, Japan
| | - Remi Anazawa
- Faculty of Food and Agricultural Sciences, Fukushima University, 1 Kanayagawa, Fukushima, Fukushima, 960-1296, Japan
| | - Kenichi Kurumada
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, 30 Nagao, Iwaki, Fukushima, 970-8034, Japan
| | - Kazuya I P J Hidari
- Department of Food and Nutrition, Junior College Division, University of Aizu, 1-1 Aza-Kadota, Yahata, Ikki-machi, Aizuwakamatsu City, Fukushima, 965-8570, Japan
| | - Hiroyuki Kono
- Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai, Hokkaido, 059-1275, Japan
| |
Collapse
|
2
|
Jiao C, Adler K, Liu X, Sun W, Mullins RF, Sohn EH. Visualization of Mouse Choroidal and Retinal Vasculature Using Fluorescent Tomato Lectin Perfusion. Transl Vis Sci Technol 2020; 9:1. [PMID: 32509436 PMCID: PMC7255627 DOI: 10.1167/tvst.9.1.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose To develop a reliable and simplified method to assess choroid and retinal vasculature on whole mount and cross sections in mice using tomato lectin (TL; Lycopersicon esculentum). Methods Albino mice (n = 27) received 1 mg/mL of TL (conjugated to Dylight-594) intravascularly through the tail vein, jugular vein, or cardiac left ventricle. Whole mounts of the retina and choroid were evaluated using fluorescence microscopy. Perfusion with GSL-IB4 conjugated to Dylight-594 and fluorescein isothiocyanate was performed to compare against labeling with TL. Co-labeling of choroidal endothelial cells with perfused TL on cross-sections with antibodies directed against the choriocapillaris-restricted endothelial cell marker CA4 was performed. The percentage of perfused choroidal and retinal vessels was assessed semiquantitatively. One mouse was subjected to thermal laser damage before perfusion to cause retinal and choroidal vasculature ablation. Results Intravascular injection of TL led to consistent, robust labeling of retinal and choroidal vascular walls. On cross-sections, choriocapillaris was co-labeled with CA4 and TL. On flat mount, TL perfusion resulted in better labeling of choroidal vessels using tail/jugular vein injection compared with cardiac perfusion (P < .01). More consistent labeling of the choroidal and retinal vascular trees was observed with TL than with GSL-IB4. Vascular damage caused by laser ablation was detected readily using this method. Conclusions TL injection intravascularly can reliably label normal and ablated choroid and retinal vasculature in mouse in a quick, simple manner. Translational Relevance These data will help to facilitate modeling in rodents for diseases such as age-related macular degeneration, diabetes, and other ischemic/angiogenic processes that can also be used for treatment evaluation.
Collapse
Affiliation(s)
- Chunhua Jiao
- Department of Ophthalmology and Visual Sciences, University of Iowa Hospitals & Clinics, Iowa City, IA, USA.,Institute for Vision Research, Iowa City, IA, USA
| | - Kelsey Adler
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Xiuying Liu
- Department of Ophthalmology and Visual Sciences, University of Iowa Hospitals & Clinics, Iowa City, IA, USA.,Institute for Vision Research, Iowa City, IA, USA
| | - Weize Sun
- Department of Ophthalmology and Visual Sciences, University of Iowa Hospitals & Clinics, Iowa City, IA, USA.,Institute for Vision Research, Iowa City, IA, USA
| | - Robert F Mullins
- Department of Ophthalmology and Visual Sciences, University of Iowa Hospitals & Clinics, Iowa City, IA, USA.,Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Elliott H Sohn
- Department of Ophthalmology and Visual Sciences, University of Iowa Hospitals & Clinics, Iowa City, IA, USA.,Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
3
|
Ogata M, Chuma Y, Yasumoto Y, Onoda T, Umemura M, Usui T, Park EY. Synthesis of tetravalent LacNAc-glycoclusters as high-affinity cross-linker against Erythrina cristagalli agglutinin. Bioorg Med Chem 2015; 24:1-11. [PMID: 26672510 DOI: 10.1016/j.bmc.2015.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/17/2015] [Accepted: 11/20/2015] [Indexed: 12/22/2022]
Abstract
Four kinds of tetravalent double-headed glycoclusters [(LacNAc)4-DHGs] were designed with linkers of varying lengths consisting of alkanedioic carboxyamido groups (C6, C12, C18 and C24) between two bi-antennary LacNAc-glycosides. These glycoclusters served as high-affinity cross-linking ligands for the LacNAc-binding lectin Erythrina cristagalli agglutinin (ECA). The binding activity and cross-linking between each ligand and ECA were characterized by a hemagglutination inhibition (HI) assay, isothermal titration calorimetry (ITC), a quantitative precipitation assay and dynamic light scattering (DLS). For the precipitation assay and DLS measurement, the synthesized (LacNAc)4-DHGs were found to be capable of binding and precipitating the ECA as multivalent ligands. ITC analysis indicated the binding of (LacNAc)4-DHGs was driven by a favorable enthalpy change. Furthermore, the entropy penalty from binding (LacNAc)4-DHGs clearly decreased in a spacer length-dependent manner. The binding affinities of flexible (LacNAc)4-DHGs (C18 and C24) with long spacers were found to be more favorable than those of the clusters having short spacers (C6 and C12). These results were supported by molecular dynamics simulations with explicit water molecules for the tetravalent glycoclusters with ECA. We concluded that the subtle modification in the epitope-presenting scaffolds exerts the significant effect in the recognition efficiency involved in the LacNAc moieties by ECA.
Collapse
Affiliation(s)
- Makoto Ogata
- Department of Chemistry and Biochemistry, National Institute of Technology, Fukushima College, 30 Nagao, Iwaki, Fukushima 970-8034, Japan.
| | - Yasushi Chuma
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Yoshinori Yasumoto
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Takashi Onoda
- Department of Chemistry and Biochemistry, National Institute of Technology, Fukushima College, 30 Nagao, Iwaki, Fukushima 970-8034, Japan
| | - Myco Umemura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 17-2-1 Higashi-Nijo, Tsukisamu, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
| | - Taichi Usui
- Integrated Bioscience Research Division, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Enoch Y Park
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Integrated Bioscience Research Division, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| |
Collapse
|
4
|
Affiliation(s)
- Yoshiko Miura
- Department of Chemical Engineering, Graduate
School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yu Hoshino
- Department of Chemical Engineering, Graduate
School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hirokazu Seto
- Department of Chemical Engineering, Graduate
School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
5
|
Robertson RT, Levine ST, Haynes SM, Gutierrez P, Baratta JL, Tan Z, Longmuir KJ. Use of labeled tomato lectin for imaging vasculature structures. Histochem Cell Biol 2014; 143:225-34. [PMID: 25534591 DOI: 10.1007/s00418-014-1301-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2014] [Indexed: 12/01/2022]
Abstract
Intravascular injections of fluorescent or biotinylated tomato lectin were tested to study labeling of vascular elements in laboratory mice. Injections of Lycopersicon esculentum agglutinin (tomato lectin) (50-100 µg/100 µl) were made intravascularly, through the tail vein, through a cannula implanted in the jugular vein, or directly into the left ventricle of the heart. Tissues cut for thin 10- to 12-µm cryostat sections, or thick 50- to 100-µm vibratome sections, were examined using fluorescence microscopy. Tissue labeled by biotinylated lectin was examined by bright field microscopy or electron microscopy after tissue processing for biotin. Intravascular injections of tomato lectin led to labeling of vascular structures in a variety of tissues, including brain, kidney, liver, intestine, spleen, skin, skeletal and cardiac muscle, and experimental tumors. Analyses of fluorescence in serum indicated the lectin was cleared from circulating blood within 2 min. Capillary labeling was apparent in tissues collected from animals within 1 min of intravascular injections, remained robust for about 1 h, and then declined markedly until difficult to detect 12 h after injection. Light microscopic images suggest the lectin bound to the endothelial cells that form capillaries and endothelial cells that line some larger vessels. Electron microscopic studies confirmed the labeling of luminal surfaces of endothelial cells. Vascular labeling by tomato lectin is compatible with a variety of other morphological labeling techniques, including histochemistry and immunocytochemistry, and thus appears to be a sensitive and useful method to reveal vascular patterns in relationship to other aspects of parenchymal development, structure, and function.
Collapse
Affiliation(s)
- Richard T Robertson
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697-1280, USA,
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
This article highlights the very recent advances in glycopolypeptide synthesis via NCA polymerization and first studies on stimuli-responsive solution behavior and self-assembling structures. Yet glycopolypeptides are almost exclusively considered as smart biofunctional materials for use in biomedical applications, for instance in targeted drug delivery, but also have high potential for usage as structural materials to fabricate bioinspired hierarchical structures.
Collapse
Affiliation(s)
- Kai-Steffen Krannig
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Research Campus Golm, 14424 Potsdam, Germany.
| | | |
Collapse
|
7
|
Purification, Characterization, and cDNA Cloning of a Lectin from the MushroomPleurocybella porrigens. Biosci Biotechnol Biochem 2014; 73:702-9. [DOI: 10.1271/bbb.80774] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Sharma R, Naresh K, Chabre YM, Rej R, Saadeh NK, Roy R. “Onion peel” dendrimers: a straightforward synthetic approach towards highly diversified architectures. Polym Chem 2014. [DOI: 10.1039/c4py00218k] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report herein a novel “onion peel strategy” for the divergent construction of glycodendrimers using different building blocks at each layer of the dendritic growth.
Collapse
Affiliation(s)
- Rishi Sharma
- Pharmaqam and Nanoqam
- Department of Chemistry
- University du Québec à Montréal
- Montréal, Canada
| | - Kottari Naresh
- Pharmaqam and Nanoqam
- Department of Chemistry
- University du Québec à Montréal
- Montréal, Canada
| | - Yoann M. Chabre
- Pharmaqam and Nanoqam
- Department of Chemistry
- University du Québec à Montréal
- Montréal, Canada
| | - Rabindra Rej
- Pharmaqam and Nanoqam
- Department of Chemistry
- University du Québec à Montréal
- Montréal, Canada
| | | | - René Roy
- Pharmaqam and Nanoqam
- Department of Chemistry
- University du Québec à Montréal
- Montréal, Canada
| |
Collapse
|
9
|
Immobilized glycosylated Fmoc-amino acid for SPR: comparative studies of lectin-binding to linear or biantennary diLacNAc structures. Carbohydr Res 2013; 382:77-85. [PMID: 24211369 DOI: 10.1016/j.carres.2013.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/04/2013] [Accepted: 10/05/2013] [Indexed: 11/22/2022]
Abstract
A method to immobilize glycan-linked amino acids with protected α-amino groups, which are key intermediates to produce the desired neoglycoprotein, to a Biacore sensor chip was developed and its utility for interaction analyses was demonstrated. Two types of diN-acetyllactosamine (diLacNAc)-containing glycans, a core 2 hexasaccharide involving linear diLacNAc that is O-linked to N-(9-fluorenyl)methoxycarbonyl (Fmoc)-Thr and a biantennary diLacNAc that is N-linked to Fmoc-Asn, were used as ligands. For immobilization, the free carboxyl groups of the amino acid residues were activated with EDC/NHS, then reacted with the ethylenediamine-derivatized carboxymethyldextran sensor chip to obtain the desired ligand concentrations. Interactions of the ligands with five plant lectins were analyzed by surface plasmon resonance, and the bindings were compared. The resonance unit of each lectin was corrected by subtracting that of the reference cell on which the Fmoc-Thr-core 1 or Fmoc-Asn was immobilized as a ligand. The carbohydrate specificities of interactions were verified by preincubating lectins with their respective inhibitory sugar before injection. By steady state analysis, the Lycopersicon esculentum lectin showed a 27-fold higher affinity to linear diLacNAc than to biantennary diLacNAc, while Datura stramonium and Solanum tuberosum lectins both showed low Ka,apps of 10(6)M(-1) for these two ligands. In contrast, Ricinus communis agglutinin-120 showed a 3.2-fold higher Ka,app to biantennary LacNAc than to linear diLacNAc. A lectin purified from Pleurocybella porrigens mushroom interacted at the high affinity of 10(8)M(-1) with both linear and biantennary diLacNAcs, which identified it as a unique probe. This method provides a useful and sensitive system to analyze interactions by simulating the glycans on the cell surface.
Collapse
|
10
|
Bonduelle C, Lecommandoux S. Synthetic Glycopolypeptides as Biomimetic Analogues of Natural Glycoproteins. Biomacromolecules 2013; 14:2973-83. [DOI: 10.1021/bm4008088] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Colin Bonduelle
- Université de Bordeaux/IPB, ENSCBP, 16 avenue Pey Berland, 33607
Pessac Cedex, France
| | | |
Collapse
|
11
|
Sauer J, Abou Hachem M, Svensson B, Jensen KJ, Thygesen MB. Kinetic analysis of inhibition of glucoamylase and active site mutants via chemoselective oxime immobilization of acarbose on SPR chip surfaces. Carbohydr Res 2013; 375:21-8. [PMID: 23680647 DOI: 10.1016/j.carres.2013.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
Abstract
We here report a quantitative study on the binding kinetics of inhibition of the enzyme glucoamylase and how individual active site amino acid mutations influence kinetics. To address this challenge, we have developed a fast and efficient method for anchoring native acarbose to gold chip surfaces for surface plasmon resonance studies employing wild type glucoamylase and active site mutants, Y175F, E180Q, and R54L, as analytes. The key method was the chemoselective and protecting group-free oxime functionalization of the pseudo-tetrasaccharide-based inhibitor acarbose. By using this technique we have shown that at pH 7.0 the association and dissociation rate constants for the acarbose-glucoamylase interaction are 10(4)M(-1)s(-1) and 10(3)s(-1), respectively, and that the conformational change to a tight enzyme-inhibitor complex affects the dissociation rate constant by a factor of 10(2)s(-1). Additionally, the acarbose-presenting SPR surfaces could be used as a glucoamylase sensor that allowed rapid, label-free affinity screening of small carbohydrate-based inhibitors in solution, which is otherwise difficult with immobilized enzymes or other proteins.
Collapse
Affiliation(s)
- Jørgen Sauer
- Centre for Carbohydrate Recognition and Signalling, Department of Chemistry, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | | | | | | | | |
Collapse
|
12
|
Fasting C, Schalley CA, Weber M, Seitz O, Hecht S, Koksch B, Dernedde J, Graf C, Knapp EW, Haag R. Multivalenz als chemisches Organisations- und Wirkprinzip. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201114] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Fasting C, Schalley CA, Weber M, Seitz O, Hecht S, Koksch B, Dernedde J, Graf C, Knapp EW, Haag R. Multivalency as a Chemical Organization and Action Principle. Angew Chem Int Ed Engl 2012; 51:10472-98. [DOI: 10.1002/anie.201201114] [Citation(s) in RCA: 688] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Indexed: 12/26/2022]
|
14
|
Scheibe C, Bujotzek A, Dernedde J, Weber M, Seitz O. DNA-programmed spatial screening of carbohydrate–lectin interactions. Chem Sci 2011. [DOI: 10.1039/c0sc00565g] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Molecular design of N-linked tetravalent glycosides bearing N-acetylglucosamine, N,N′-diacetylchitobiose and N-acetyllactosamine: Analysis of cross-linking activities with WGA and ECA lectins. Bioorg Med Chem 2010; 18:621-9. [DOI: 10.1016/j.bmc.2009.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/01/2009] [Accepted: 12/02/2009] [Indexed: 11/19/2022]
|
16
|
Alvarez Gonzalez ML, Frankenne F, Galant C, Marbaix E, Foidart JM, Nisolle M, Béliard A. Mixed origin of neovascularization of human endometrial grafts in immunodeficient mouse models. Hum Reprod 2009; 24:2217-24. [PMID: 19508999 DOI: 10.1093/humrep/dep203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND In vivo mouse models have been developed to study the physiology of normal and pathologic endometrium. Although angiogenesis is known to play an important role in endometrial physiology and pathology, the origin of neovasculature in xenografts remains controversial. The aim of this study was to assess the origin of the neovasculature of endometrial grafts in different mouse models. METHODS Human proliferative endometrium (n = 19 women) was grafted s.c. in two immunodeficient mouse strains: nude (n = 8) and severely compromised immunodeficient (SCID; n = 20). Mice were also treated with estradiol, progesterone or levonorgestrel. Fluorescence in-situ hybridization using a centromeric human chromosome X probe, immunohistochemistry (von Willebrand factor and collagen IV) and lectin perfusion were performed to identify the origin of the vessels. RESULTS More than 90% of vessels within xenografts were of human origin 4 weeks after implantation. Some vessels (9.67 +/- 2.01%) were successively stained by human or mouse specific markers, suggesting the presence of chimeric vessels exhibiting a succession of human and murine portions. No difference in staining was observed between the two strains of mouse or different hormone treatments. Furthermore, erythrocytes were found inside human vessels, confirming their functionality. CONCLUSION This article shows that human endometrial grafts retain their own vessels, which connect to the murine vasculature coming from the host tissue and become functional.
Collapse
Affiliation(s)
- M-L Alvarez Gonzalez
- Laboratory of Tumor and Development Biology, GIGA-Research, University de Liège, Tour de Pathologie (B23), Sart-Tilman, B-4000 Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
17
|
Andrade CA, Oliveira MD, Santos-Magalhães NS, Correia MT, de Melo CP. Comparison of the interfacial properties of Eugenia uniflora and Triticum vulgaris lectins. Colloids Surf B Biointerfaces 2009; 68:7-12. [DOI: 10.1016/j.colsurfb.2008.08.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 08/14/2008] [Accepted: 08/22/2008] [Indexed: 10/21/2022]
|
18
|
Foley KJ, Forzani ES, Joshi L, Tao N. Detection of lectin-glycan interaction using high resolution surface plasmon resonance. Analyst 2008; 133:744-6. [PMID: 18493673 DOI: 10.1039/b719321a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the real-time and label-free detection of direct disaccharide binding to a lectin using a differential surface plasmon resonance detection method that allows for measurement of nanomolar concentrations of disaccharides.
Collapse
Affiliation(s)
- Kyle J Foley
- Department of Electrical Engineering, Arizona State University, Tempe, AZ 85282-5706, USA
| | | | | | | |
Collapse
|
19
|
Misawa Y, Masaka R, Maeda K, Yano M, Murata T, Kawagishi H, Usui T. Efficient synthesis of spacer-N-linked double-headed glycosides carrying N-acetylglucosamine and N,N′-diacetylchitobiose and their cross-linking activities with wheat germ agglutinin. Carbohydr Res 2008; 343:434-42. [DOI: 10.1016/j.carres.2007.11.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 11/15/2007] [Accepted: 11/25/2007] [Indexed: 10/22/2022]
|
20
|
Heyde M, Claeyssens M, Schacht EH. Interaction between Proteins and Polyphosphazene Derivatives Having a Galactose Moiety. Biomacromolecules 2008; 9:672-7. [DOI: 10.1021/bm7010278] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mieke Heyde
- Polymer Chemistry & Biomaterials Research Group, Ghent University, Krijgslaan 281, S4-bis, 9000 Ghent, Belgium, and Department of Biochemistry, Physiology and Microbiology, Gent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Marc Claeyssens
- Polymer Chemistry & Biomaterials Research Group, Ghent University, Krijgslaan 281, S4-bis, 9000 Ghent, Belgium, and Department of Biochemistry, Physiology and Microbiology, Gent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Etienne H. Schacht
- Polymer Chemistry & Biomaterials Research Group, Ghent University, Krijgslaan 281, S4-bis, 9000 Ghent, Belgium, and Department of Biochemistry, Physiology and Microbiology, Gent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
21
|
Rieger J, Stoffelbach F, Cui D, Imberty A, Lameignere E, Putaux JL, Jérôme R, Jérôme C, Auzély-Velty R. Mannosylated poly(ethylene oxide)-b-poly(epsilon-caprolactone) diblock copolymers: synthesis, characterization, and interaction with a bacterial lectin. Biomacromolecules 2007; 8:2717-25. [PMID: 17705426 DOI: 10.1021/bm070342y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel bioeliminable amphiphilic poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PEO-b-PCL) diblock copolymer end-capped by a mannose residue was synthesized by sequential controlled polymerization of ethylene oxide and epsilon-caprolactone, followed by the coupling of a reactive mannose derivative to the PEO chain end. The anionic polymerization of ethylene oxide was first initiated by potassium 2-dimethylaminoethanolate. The ring-opening polymerization of epsilon-caprolactone was then initiated by the omega-hydroxy end-group of PEO previously converted into an Al alkoxide. Finally, the saccharidic end-group was attached by quaternization of the tertiary amine alpha-end-group of the PEO-b-PCL with a brominated mannose derivative. The copolymer was fully characterized in terms of chemical composition and purity by high-resolution NMR spectroscopy and size exclusion chromatography. Furthermore, measurements with a pendant drop tensiometer showed that both the mannosylated copolymer and the non-mannosylated counterpart significantly decreased the dichloromethane/water interfacial tension. Moreover, these amphiphilic copolymers formed monodisperse spherical micelles in water with an average diameter of approximately 11 nm as measured by dynamic light scattering and cryo-transmission electron microscopy. The availability of mannose as a specific recognition site at the surface of the micelles was proved by isothermal titration microcalorimetry (ITC), using the BclA lectin (from Burkholderia cenocepacia), which interacts selectively with alpha-D-mannopyranoside derivatives. The thermodynamic parameters of the lectin/mannose interaction were extracted from the ITC data. These colloidal systems have great potential for drug targeting and vaccine delivery systems.
Collapse
Affiliation(s)
- Jutta Rieger
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), BP53, 38041 Grenoble cedex 9, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zeng X, Sun Y, Ye H, Liu J, Xiang X, Zhou B, Uzawa H. Effective chemoenzymatic synthesis of p-aminophenyl glycosides of sialyl N-acetyllactosaminide and analysis of their interactions with lectins. Carbohydr Res 2007; 342:1244-8. [PMID: 17407775 DOI: 10.1016/j.carres.2007.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 03/06/2007] [Accepted: 03/07/2007] [Indexed: 02/07/2023]
Abstract
A convenient chemoenzymatic procedure for the synthesis of p-aminophenyl glycosides of sialyl N-acetyllactosaminide has been developed from p-nitrophenyl N-acetyl-beta-D-glucosaminide as starting material through three steps: synthesis of p-nitrophenyl N-acetyllactosaminide with beta-D-galactosidase, chemical reduction of the p-nitrophenyl group, and sialylation with sialyltransferase. The p-aminophenyl glycosides were then successfully biotin-labeled through the coupling with N-(+)-biotinyl-6-aminohexanoic acid to afford biotinylated oligosaccharides with an aminohexanosyl group and phenyl group as the spacers between the biotin and glycan. Furthermore, the biotin-labeled sugars were shown to be useful for immobilization and assay of the carbohydrate-lectin interactions by an optical biosensor based on surface plasmon resonance.
Collapse
Affiliation(s)
- Xiaoxiong Zeng
- Department of Biotechnology, College of Food Science and Technology, Nanjing Agricultural University, Weigang, Nanjing 210095, Jiangsu, PR China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Zeng X, Sun Y, Ye H, Liu J, Uzawa H. Synthesis of p-nitrophenyl sulfated disaccharides with β-d-(6-sulfo)-GlcNAc units using β-N-acetylhexosaminidase from Aspergillus oryzae in a transglycosylation reaction. Biotechnol Lett 2007; 29:1105-10. [PMID: 17492477 DOI: 10.1007/s10529-007-9366-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/27/2007] [Accepted: 03/01/2007] [Indexed: 10/23/2022]
Abstract
When alpha-D-GlcNAc-OC(6)H(4)NO(2) -p and beta-D-(6-sulfo)-GlcNAc-OC(6)H(4)NO(2)-p (2) were used as substrates, beta-N-acetylhexosaminidase from Aspergillus oryzae transferred the beta-D-(6-sulfo)-GlcNAc(unit from 2 to alpha-D-GlcNAc-OC(6)H(4)NO(2) -p to afford beta-D-(6-sulfo)-GlcNAc-(1-->4)-alpha-D-GlcNAc-OC(6)H(4)NO(2)-p (3) in a yield of 94% based on the amount of donor, 2, added. beta-D-(6-sulfo)-GlcNAc-(1-->4)-alpha-D-Glc-OC(6)H(4)NO(2)-p (4) was obtained with alpha-D-Glc-OC(6)H(4)NO(2) -p as acceptor in a similar manner. With a reaction mixture of 2 and beta-D-GlcNAc-OC(6)H(4)NO(2)-p (1) in a molar ratio of 6:1, the enzyme mediated the transfer of beta-D-GlcNAc from 1 to 2, affording disaccharide beta-D-GlcNAc-(1-->4)-beta-(6-sulfo)-D-GlcNAc-OC(6)H(4)NO(2)-p (5) in a yield of 13% based on the amount of 1 added.
Collapse
Affiliation(s)
- Xiaoxiong Zeng
- Department of Biotechnology, College of Food Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, PR China.
| | | | | | | | | |
Collapse
|
24
|
Guo CX, Boullanger P, Jiang L, Liu T. Colorimetric detection of WGA in carbohydrate-functionalized polydiacetylene Langmuir–Schaefer films. Colloids Surf A Physicochem Eng Asp 2007. [DOI: 10.1016/j.colsurfa.2006.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Polizzotti BD, Kiick KL. Effects of polymer structure on the inhibition of cholera toxin by linear polypeptide-based glycopolymers. Biomacromolecules 2006; 7:483-90. [PMID: 16471920 PMCID: PMC2657727 DOI: 10.1021/bm050672n] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A variety of important biological events are mediated by the multivalent interaction between relevant oligosaccharides and multiple saccharide receptors on lectins, toxins, and cell surfaces; a variety of glycopolymeric materials have therefore been investigated in studies aimed at manipulating these events. The synthesis of protein- and polypeptide-based glycopolymers via protein engineering and other methods offers opportunities to control both the number and the spacing of saccharides on a scaffold, as well as the conformation of the polymer backbone, and will therefore facilitate the structure-based design of polymers for inhibition of multivalent binding events. In initial studies, we have synthesized a family of galactose-functionalized glycopolymers with a poly(L-glutamic acid) backbone, in which the density and linker length of the pendant carbohydrate moiety were varied. The composition of the glycopolymers was determined via (1)H NMR spectroscopy, and the impact of saccharide density and linker length, as well as the potential for these polypeptide-based glycopolymers to act as high-affinity inhibitors of the cholera toxin, has been indicated via competitive enzyme-linked immunosorbent assay and fluorescence titration experiments. The results of these studies suggest strategies for optimizing the binding of linear glycopolymers to bacterial toxins and will aid in the design of additional protein-based materials for studying the impact of multivalency, spacing, and backbone rigidity in a variety of biologically relevant binding events.
Collapse
|
26
|
Miyagawa A, Kasuya MCZ, Hatanaka K. Immobilization of Glycoconjugate Polymers on Cellulose Membrane for Affinity Separation. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2006. [DOI: 10.1246/bcsj.79.348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Zeng X, Uzawa H. Convenient enzymatic synthesis of a p-nitrophenyl oligosaccharide series of sialyl N-acetyllactosamine, sialyl Lex and relevant compounds. Carbohydr Res 2005; 340:2469-75. [PMID: 16169536 DOI: 10.1016/j.carres.2005.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Accepted: 08/22/2005] [Indexed: 11/23/2022]
Abstract
From the beta-D-Gal-(1-->4)-beta-D-GlcNAc-OC6H4NO2-p (1) prepared by the transglycosylation of beta-galactosidase from Bacillus circulans, alpha-D-Neu5Ac-(2-->3)-beta-D-Gal-(1-->4)-beta-D-GlcNAc-OC6H4NO2-p (9) and alpha-D-Neu5Ac-(2-->6)-beta-D-Gal-(1-->4)-beta-D-GlcNAc-OC6H4NO2-p (10) were effectively synthesized with an equimolar ratio of CMP-Neu5Ac by recombinant rat alpha-(2-->3)-N-sialyltransferase and rat liver alpha-(2-->6)-N-sialyltransferase, respectively. The former enzyme also transferred effectively the Neu5Ac residue from CMP-Neu5Ac to the location of OH-3 in the non-reducing terminal of beta-D-Gal-(1-->4)-beta-D-Gal-OC6H4NO2-p or beta-D-Gal-(1-->4)-beta-D-Gal-(1-->4)-beta-D-GlcNAc-OC6H4NO2-p, while the latter enzyme did not. In the case of equimolar ratio of GDP-Fuc/acceptor, 1 and 9 were further fucosylated quantitatively to form beta-D-Gal-(1-->4)-beta-D-(alpha-l-Fuc-(1-->3)-)-GlcNAc-OC6H4NO2-p (14) and alpha-D-Neu5Ac-(2-->3)-beta-D-Gal-(1-->4)-beta-D-(alpha-l-Fuc-(1-->3)-)-GlcNAc-OC6H4NO2-p (13) by recombinant human alpha-(1-->3)-fucosyltransferase VII, respectively.
Collapse
Affiliation(s)
- Xiaoxiong Zeng
- Research Center of Advanced Bionics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | | |
Collapse
|
28
|
Vila-Perelló M, Gutiérrez Gallego R, Andreu D. A Simple Approach to Well-Defined Sugar-Coated Surfaces for Interaction Studies. Chembiochem 2005; 6:1831-8. [PMID: 16142819 DOI: 10.1002/cbic.200500125] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein-carbohydrate interactions play a crucial role in many relevant biological processes, and the development of simple and reliable tools for their study is a well-recognized need. Surface-based methods are particularly attractive because they i) can effectively mimic cell-surface recognition events, ii) allow the identification of low-affinity binders, iii) are easily adaptable to high-throughput screening, and iv) require minimal sample amounts. We describe here the design and synthesis of a peptide module that efficiently captures glycans through its reducing end, by oxime ligation. Immobilization to carboxyl-functionalized supports was thereby made possible. Chemically well-defined surfaces coated with selected glycan targets were generated by this approach for surface plasmon resonance (SPR) studies. The usefulness of the method was demonstrated in the analysis of interactions that covered a five-orders-of-magnitude affinity range; namely, the strong binding (KA approximately 10(9) M(-1)) of a well-known lectin (wheat germ agglutinin) to chitopentose (GlcNAc5), and that of the same sugar with a weak binder (KA approximately 10(4) M(-1)), HEV32--the smallest hevein domain described.
Collapse
Affiliation(s)
- Miquel Vila-Perelló
- Department of Experimental and Health Sciences, Pompeu Fabra University, Dr. Aiguader 80, 08003 Barcelona, Spain
| | | | | |
Collapse
|
29
|
Kobayashi Y, Nakamura H, Sekiguchi T, Takanami R, Murata T, Usui T, Kawagishi H. Analysis of the carbohydrate binding specificity of the mushroom Pleurotus ostreatus lectin by surface plasmon resonance. Anal Biochem 2005; 336:87-93. [PMID: 15582562 DOI: 10.1016/j.ab.2004.09.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Indexed: 10/26/2022]
Abstract
The sugar binding specificity of the mushroom Pleurotus ostreatus lectin (POL) was analyzed by surface plasmon resonance. The lectin was immobilized to a sensor chip, and asialo-bovine submaxillary mucin (asialo-BSM), one of the most potent inhibitors in the hemagglutination inhibition assay, tightly bound to the lectin. The binding specificity of various mono- or oligosaccharides to the lectin was evaluated by the coinjection method. The dissociation of asialo-BSM was promoted by injection of some haptenic saccharides. For the most part, the order of acceleration ability of the sugars to the dissociation in the coinjection experiment agreed with that of the inhibitory potency of each sugar evaluated by the hemagglutination inhibition assay. In conclusion, POL recognized a galactosyl residue, and the specificity was increased by substitution at the C-2 position of the galactosyl residue with a fucosyl or acetylamino group. This method using the coinjection method proved useful in analysis of carbohydrate-lectin binding specificity.
Collapse
Affiliation(s)
- Yuka Kobayashi
- Science of Biological Resource, The United Graduate School of Agricultural Science, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Paschkunova-Martic I, Kremser C, Mistlberger K, Shcherbakova N, Dietrich H, Talasz H, Zou Y, Hugl B, Galanski MS, Sölder E, Pfaller K, Höliner I, Buchberger W, Keppler B, Debbage P. Design, synthesis, physical and chemical characterisation, and biological interactions of lectin-targeted latex nanoparticles bearing Gd–DTPA chelates: an exploration of magnetic resonance molecular imaging (MRMI). Histochem Cell Biol 2005; 123:283-301. [PMID: 15824918 DOI: 10.1007/s00418-005-0780-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2005] [Indexed: 11/24/2022]
Abstract
The physical and chemical parameters involved in the design and synthesis of biospecifically targeted nanoparticulate contrast media for magnetic resonance molecular imaging (MRMI) were explored in this pilot investigation. Latex nanoparticles 100, 400 and 900 nm in diameter were doubly derivatised, first with tomato lectin and then with gadolinium(III)-diethylenetriamine pentaacetic acid (Gd-chelates) to target them to epithelial and endothelial glycocalyceal N-glycans and to generate contrast enhancement in magnetic resonance imaging (MRI). After intravenous injection into mice, human placental cotyledons or human Vena saphena magna, contrasty images of the vascular structures were obtained in 1.5 T MRI with spatial resolution 0.1 mm in the imaging plane and 0.6 mm in the z axis, persisting >60 min and resistant to washing out by buffer rinses. Ultrastructural analysis of the nanoparticles revealed the targeting groups at the nanoparticle surfaces and the distribution of the Gd-chelates within the nanoparticles and enabled counts for use in determining relaxivity. The relaxivity values revealed were extremely high, accounting for the strong MR signals observed. Occasionally, nanoparticles larger than 100 nm were seen in close spatial association with disrupted regions of cell membrane or of collagen fibrils in the extracellular matrix. The data suggest that 100-nm nanoparticles generate adequate contrast for MRMI and cause least disruption to endothelial cell surfaces.
Collapse
Affiliation(s)
- Irena Paschkunova-Martic
- Institute of Inorganic Chemistry, University of Vienna, Währingerstrasse 42, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kim BY, Jeong JH, Park K, Kim JD. Bioadhesive interaction and hypoglycemic effect of insulin-loaded lectin–microparticle conjugates in oral insulin delivery system. J Control Release 2005; 102:525-38. [PMID: 15681076 DOI: 10.1016/j.jconrel.2004.10.032] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Accepted: 10/29/2004] [Indexed: 11/16/2022]
Abstract
Biodegradable microparticles were prepared with alginate by the piezoelectric ejection process, and lectin (wheat germ agglutinin, WGA) was conjugated to alginate microparticles to take advantage of the protective effects of alginate microparticles and the mucoadhesive properties of WGA for improved oral delivery of insulin. Their specific interaction with model mucin was determined by pig mucin (PM) immobilized surface plasmon resonance (SPR) biosensor and in vitro adsorption studies. The hypoglycemic effects of alginate and WGA-conjugated alginate microparticles were examined after oral administration in streptozotocin-induced diabetic rats. The alginate microparticles were fabricated by ejecting alginate/insulin solution into 0.1 M CaCl2 solution through a nozzle actuated by the piezoelectric transducer. The WGA was conjugated to alginate microparticles by activating hydroxyl groups with carbonyldiimidazole (CDI). The affinity constant (K(A)) of alginate-WGA microparticles from the SPR data (K(A)=5.455 g(-1) L) was about nine times greater than alginate microparticles (K(A)=0.628 g(-1) L). In vitro experiments in the mucin solution showed that the conjugated WGA enhanced the interaction about three times. In vivo studies with diabetic rats showed that the blood glucose level of SPF rats was lowest when alginate-WGA microparticles were orally administered. Larger K(A) of alginate-WGA microparticles resulted in larger glucose change (%) from base level. Still, it is not clear whether the transport of insulin through the intestinal mucous membrane was influenced by the increase of residence time at intestinal membrane through the specific adsorption of WGA-conjugated microparticles. However, it is concluded that alginate-WGA microparticles enhance the intestinal absorption of insulin sufficient to drop the glucose level of blood.
Collapse
Affiliation(s)
- Byoung-Yun Kim
- Department of Chemical and Biomolecular Engineering, Center for Ultramicrochemical Process Systems, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, Korea
| | | | | | | |
Collapse
|
32
|
Kobayashi Y, Kobayashi K, Umehara K, Dohra H, Murata T, Usui T, Kawagishi H. Purification, characterization, and sugar binding specificity of an N-Glycolylneuraminic acid-specific lectin from the mushroom Chlorophyllum molybdites. J Biol Chem 2004; 279:53048-55. [PMID: 15471858 DOI: 10.1074/jbc.m407997200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A carbohydrate-binding protein was isolated from the carpophores of the mushrooms and designated the Chlorophyllum molybdites lectin (CML) based on its origin. The molecular mass of CML was 32 kDa, and it was composed of two 16-kDa monomers with no disulfide bonds. Monosaccharide analysis indicated that 12% of the mass of CML was carbohydrate and consisted of GlcNAc:GalNAc:Gal:Man:l-Fuc in a molar ratio of 1.5:1.9: 4.4:4.8:1.0. In the hemagglutination inhibition assay, CML exhibited the strongest binding specificity toward N-glycolylneuraminic acid (NeuGc) among the monosaccharides tested, whereas NeuAc did not inhibit the hemagglutination at all. GalNAc and Mealpha-GalNAc were also inhibitory at much higher concentrations than NeuGc. Among the glycoproteins, asialobovine submaxillary mucin (BSM) and porcine stomach mucin (PSM) showed strong inhibitory effects. In surface plasmon resonance analysis, asialo-BSM and PSM exhibited the strongest binding affinity. After co-injection of CML and NeuGc or GalNAc onto the asialo-BSM- or PSM-immobilized chip, the dissociation of CML from the immobilized PSM was accelerated by NeuGc and GalNAc, but the dissociation of CML from the immobilized asialo-BSM was only promoted by GalNAc. These results and the other surface plasmon resonance experiments allowed us to conclude that the binding of asialo-BSM to CML was because of an interaction between the lectin and the GalNAc residues of asialo-BSM, and both the NeuGc and GalNAc residues were responsible for the binding of PSM to CML. The results also suggested that CML had two different carbohydrate binding domains, one specific for NeuGc and the other for GalNAc.
Collapse
Affiliation(s)
- Yuka Kobayashi
- Science of Biological Resource, United Graduate School, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Zeng X, Murata T, Usui T. Glycosidase‐Catalyzed Synthesis of Fucosyl Di‐ and Trisaccharide Derivatives Using α‐l‐Fucosidase fromAlcaligenes sp. J Carbohydr Chem 2003. [DOI: 10.1081/car-120023474] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Uzawa H, Zeng X, Minoura N. Synthesis of 6'-sulfodisaccharides by beta-N-acetylhexosaminidase-catalyzed transglycosylation. Chem Commun (Camb) 2003:100-1. [PMID: 12610985 DOI: 10.1039/b209893h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Presulfated N-acetylglucosaminyl donor (pNP beta-D-6-SO3-GlcNAc) was applied for the synthesis of sulfosugars using the beta-N-acetylhexosaminidase-catalyzed transglycosylation, to afford the critically stereocontrolled sulfodisaccharides carrying the 6-sulfo GlcNAc residue at the non-reducing sides in one step.
Collapse
Affiliation(s)
- Hirotaka Uzawa
- Laboratory of Advanced Bioelectronics, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan.
| | | | | |
Collapse
|
35
|
Terada N, Morimoto M, Saimoto H, Okamoto Y, Minami S, Shigemasa Y. Regioselective synthesis and biological activity of oxidized chitosan derivatives. POLYM ADVAN TECHNOL 2003. [DOI: 10.1002/pat.296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Nagahori N, Nishimura S. Tailored glycopolymers: controlling the carbohydrate-protein interaction based on template effect. Biomacromolecules 2002; 2:22-4. [PMID: 11749149 DOI: 10.1021/bm0000438] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- N Nagahori
- Laboratory for Bio-Macromolecular Chemistry, Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | |
Collapse
|
37
|
Ramos MV, Bomfim LR, Bandeira, Debray H. Evidence of an endogenous lectin receptor in seeds of the legume Cratylia floribunda. ACTA ACUST UNITED AC 2002. [DOI: 10.1590/s1677-04202002000300003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cratylia floribunda seeds were ground and the clean crude saline extract was fractionated into albumin, globulin, prolamin, acidic and basic glutelin protein fractions. These protein fractions were examined for the presence of an endogenous lectin receptor by SDS-polyacrylamide gel electrophoresis, western blot, affinity chromatography on a Sepharose 4B-Cratylia floribunda (CFL) lectin column and kinetic analysis in real time by surface plasmon resonance (SPR). Prolamin was the richest protein fraction although very poor in haemagglutinating activity. Basic glutelin was far the less interesting fraction for lectin activity and protein content, even though this fraction contains considerable amounts of carbohydrates. Lectin was present in all protein fractions as estimated by haemagglutinating assays but basic glutelins were almost devoid of lectin activity. Except for prolamins, protein bands were detected by SDS-PAGE in all other fractions. Western blot using digoxigenin labelled Con A revealed a single band in the albumin, globulin, acidic and basic glutelin fractions, which specifically interacted with ConA. This band migrated exactly at the same position in such fractions and seemed to be more important in the globulins. Affinity chromatography of the protein fractions on a Sepharose-CFL column yielded a peak, which was only recovered after elution with acidic buffered solution or with an alpha-D-mannose solution and the monosaccharide was recognized by the lectin. These results were fully corroborated by real time interaction of immobilized CFL with the different soluble protein fractions suggesting the presence of a lectin receptor within albumins, globulins and basic glutelins. As a whole, the results suggest that the lectin from Cratylia floribunda recognizes a soluble endogenous glycosylated receptor through an interaction mediated by its carbohydrate-binding site.
Collapse
Affiliation(s)
| | | | - Bandeira
- Universidade Federal do Ceará, Brasil
| | - Henri Debray
- Université des Sciences et Technologies de Lille, France
| |
Collapse
|
38
|
Houseman BT, Mrksich M. Model Systems for Studying Polyvalent Carbohydrate Binding Interactions. ACTA ACUST UNITED AC 2001. [DOI: 10.1007/3-540-45010-6_1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
39
|
Jiménez Blanco JL, Haseley SR, Kamerling JP, Vliegenthart JF. Analysis of the interaction between lectins and tetra- and tri-saccharide mimics of the Sd(a) determinant by surface plasmon resonance detection. Biochimie 2001; 83:653-8. [PMID: 11522394 DOI: 10.1016/s0300-9084(01)01302-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The binding properties of a spacer-linked synthetic Sd(a) tetrasaccharide beta-D-GalpNAc-(1-->4)-alpha-Neu5Ac-(2-->3)]-beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->O)-(CH(2))(5)-NH(2) (1), two tetrasaccharide mimics beta-D-Galp-(1-->4)-alpha-Neu5Ac-(2-->3)]-beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->O)-(CH(2))(5)-NH(2) (2) and beta-D-GlcpNAc-(1-->4)-alpha-Neu5Ac-(2-->3)]-beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->O)-(CH(2))(5)-NH(2) (3), and two trisaccharide mimics beta-D-GalpNAc-(1-->4)-3-O-(SO(3)H)-beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->O)-(CH(2))(5)-NH(2) (4) and beta-D-GalpNAc-(1-->4)-3-O-(CH(2)COOH)-beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->O)-(CH(2))(5)-NH(2) (5) with lectins from Dolichos biflorus (DBL), Maackia amurensis (MAL), Phaseolus limensis (PLL), Ptilota plumosa (PPL), Ricinus communis 120 (RCL120) and Triticum vulgaris (wheat germ agglutinin, WGA) have been investigated by surface plasmon resonance (SPR) detection. MAL, PPL, RCL120 and WGA did not display any binding activity with compounds 1-5. However, DBL and PLL, both exhibiting GalNAc-specificity, showed strong binding activity with compounds 1, 4 and 5, and 1, 3, 4 and 5, respectively. The results demonstrate that SPR is a very useful analysis system for identifying biologically relevant oligosaccharide mimics of the Sd(a) determinant.
Collapse
Affiliation(s)
- J L Jiménez Blanco
- Bijvoet Center, Department of Bio-Organic Chemistry, Utrecht University, P.O. Box 80075, 3508 TB Utrecht, The Netherlands
| | | | | | | |
Collapse
|
40
|
Ramos MV, Sampaio AH, Cavada BS, Calvete JJ, Grangeiro TB, Debray H. Characterization of the sugar-binding specificity of the toxic lectins isolated from Abrus pulchellus seeds. Glycoconj J 2001; 18:391-400. [PMID: 11925506 DOI: 10.1023/a:1014812114450] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The sugar-binding specificity of the toxic lectins from Abrus pulchellus seeds was investigated by combination of affinity chromatography of glycopeptides and oligosaccharides of well-defined structures on a lectin-Sepharose column and measurement of the kinetic interactions in real time towards immobilized glycoproteins. The lectins showed strong affinity for a series of bi- and triantennary N-acetyllactosamine type glycans. The related asialo-oligosaccharides interact more strongly with the lectins. The best recognized structures were asialo-glycopeptides from fetuin. Accordingly, the kinetic interaction with immobilized asialofetuin was by far the most pronounced. Human and bovine lactotransferrins and human serotransferrin interacted to a lesser extent. The interaction with asialofetuin was inhibited by galactose in a dose dependent manner. Lactose, N-acetyllactosamine and lacto-N-biose exhibited similar degree of inhibition while N-acetylgalactosamine was a poor inhibitor. These results suggested that the carbohydrate-binding site of the Abrus pulchellus lectins was specific for galactose and possess a remarkable affinity for the sequences lactose [beta-D-Gal-(1-->4)-D-Glc], N-acetyllactosamine [beta-D-Gal-(1-->4)-D-GlcNAc] and lacto-N-biose [beta-D-Gal-(1-->3)-D-GlcNAc].
Collapse
Affiliation(s)
- M V Ramos
- Departamentos de Biologia, Universidade Federal do Ceara, Campus do Pici, Cx. Postal 6033, Fortaleza-Ceara, Brasil, 60.451-970
| | | | | | | | | | | |
Collapse
|
41
|
Kawagishi H, Takagi J, Taira T, Murata T, Usui T. Purification and characterization of a lectin from the mushroom Mycoleptodonoides aitchisonii. PHYTOCHEMISTRY 2001; 56:53-58. [PMID: 11198819 DOI: 10.1016/s0031-9422(00)00351-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A lectin was isolated from the mushroom Mycoleptodonoides aitchisonii by means of affinity chromatography on bovine submaxillary mucin (BSM)-Toyopearl and gel filtration on Superose 12 HR10/30 using a FPLC system. This lectin is composed of four identical 16 kDa subunits and the molecular mass of the intact lectin was estimated to be 64 kDa by gel filtration. In a hemagglutination inhibition assay, it exhibited strong sugar-binding specificity towards asialo-BSM among the mono- or oligo-saccharides and glycoproteins tested. The binding specificity of the lectin was also examined by surface plasmon resonance analysis.
Collapse
Affiliation(s)
- H Kawagishi
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, Japan.
| | | | | | | | | |
Collapse
|
42
|
Zeng X, Nakaaki Y, Murata T, Usui T. Chemoenzymatic synthesis of glycopolypeptides carrying alpha-Neu5Ac-(2-->3)-beta-D-Gal-(1-->3)-alpha-D-GalNAc, beta-D-Gal-(1-->3)-alpha-D-GalNAc, and related compounds and analysis of their specific interactions with lectins. Arch Biochem Biophys 2000; 383:28-37. [PMID: 11097173 DOI: 10.1006/abbi.2000.2033] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glycopolypeptide (1) carrying the beta-D-Gal-(1-->3)-alpha-D-GalNAc unit as a kind model of asialo-type mucin was synthesized through three steps: enzymatic synthesis of p-nitrophenyl disaccharide glycoside, reduction of the p-nitrophenyl group, and coupling of the amino group with the carboxyl group of poly(L-glutamic acid)s (PGA). In a similar manner, glycopolypeptides (2-7) carrying beta-D-Gal-(1-->3)-beta-D-GalNAc, beta-D-Gal-(1-->3)-beta-D-GlcNAc, beta-D-Gal-(1-->6)-alpha-D-GalNAc, beta-D-Gal-(1-->6)-beta-D-GalNAc, alpha-D-GalNAc, and beta-D-GalNAc, respectively, were synthesized as analogous polymers of polymer 1. Glycopolypeptides 8 and 9 as a mimic of sialo-type mucin were further prepared from polymers 1 and 2 as the acceptor of CMP-Neu5Ac by alpha2,3-(O)-sialyltransferase, respectively. Interactions of these glycopolypeptides with lectins were investigated with the double-diffusion test and the hemagglutination-inhibition assay and in terms of an optical biosensor based on surface plasmon resonance. Polymers 1 and 2 reacted strongly with peanut (Arachis hypogaea) agglutinin (PNA) and Agaricus bisporus agglutinin (ABA). On the other hand, polymers 8 and 9 through sialylation from polymers 1 and 2 reacted with ABA, but did not with PNA. Other polymers 3-7 did not show any reactivity for both the lectins. These results show that PNA acts precisely in an exo manner on the beta-D-Gal-(1-->3)-D-GalNAc sequence, while ABA acts in an endo manner. Polymers 6 and 7 substituted with GalNAc reacted strongly with soybean (Glycine max) agglutinin and Vicia villosa agglutinin B4, regardless of the configuration of the glycosidic linkage. The interaction of all polymers with Bauhinia purpurea agglutinin was much stronger than that of the corresponding sugars. Polymers 8 and 9 reacted with wheat germ (Triticum vulgaris) agglutinin (WGA), to which Neu5Ac residues are needed for binding, but polymers 1 and 2 did not. These sugar-substituted glycopolypeptides interacted specifically with the corresponding lectins. Furthermore, polymers 4-7 reacted with WGA, but the corresponding sugars did not. It suggests that the N-acetyl group along the PGA backbone has a cluster effect for WGA. The artificial glycopolypeptides were shown to be useful as tools and probes of carbohydrate recognition and modeling in the analysis of glycoprotein-lectin interactions.
Collapse
Affiliation(s)
- X Zeng
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, Japan
| | | | | | | |
Collapse
|
43
|
Zeng X, Yoshino R, Murata T, Ajisaka K, Usui T. Regioselective synthesis of p-nitrophenyl glycosides of beta-D-galactopyranosyl-disaccharides by transglycosylation with beta-D-galactosidases. Carbohydr Res 2000; 325:120-31. [PMID: 10795819 DOI: 10.1016/s0008-6215(99)00303-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The beta-D-galactosidase from porcine liver induced regiospecific transglycosylation of beta-D-galactose from beta-D-Gal-OC6H4NO2-o to OH-6 of, respectively, p-nitrophenyl glycoside acceptors of Gal, GlcNAc and GalNAc to afford beta-Gal-(1-->6)-alpha-Gal-OC6H4NO2-p, beta-Gal-(1--> 6)-beta-Gal-OC6H4NO2-p, beta-Gal-(1-->6)-alpha-GalNAc-OC6H4NO2-p, beta-Gal-(1-->6)-beta-GalNAc-OC6H4NO2-p, beta-Gal-(1-->6)-alpha-GlcNAc-OC6H4NO2-p, and beta-Gal-(1-->6)-beta-GlcNAc-OC6H4NO2-p. The enzyme showed much higher transglycosylation activity for the alpha-glycoside acceptors than the corresponding beta-glycoside acceptors. The regioselectivity of the beta-D-galactosidase from Bacillus circulans ATCC 31382 greatly depended on the nature of the acceptor. When alpha-D-GalNAc-OC6H4NO2-p and alpha-D-GlcNAc-OC6H4NO2-p were used as acceptors, the enzyme showed high potency for regioselective synthesis of beta-Gal-(1-->3)-alpha-GalNAc-OC6H4NO2-p and beta-Gal-(1-->3)-alpha-GlcNAc-OC6H4NO2-p in high respective yields of 75.9 and 79.3% based on the acceptors added. However, replacement of beta-D-Gal-OC6H4NO2-p by beta-D-GalNAc-OC6H4NO2-p did change the direction of galactosylation. The enzyme formed regioselectively beta-Gal-(1-->6)-beta-Gal-OC6H4NO2-p with (beta-Gal-1-->(6-beta-Gal-1-->)n6-beta-Gal-OC6H4NO2-p, n = 1-4). No beta-(1-->3)-linked product was detected during the reaction. Use of the two readily available beta-D-galactosidases facilitates the preparation of (1-->3)- and (1-->6)-linked disaccharide glycosides of beta-D-Gal-GalNAc and beta-D-Gal-GlcNAc.
Collapse
Affiliation(s)
- X Zeng
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, Ohya, Japan
| | | | | | | | | |
Collapse
|
44
|
Abstract
The utilization of optical biosensors to study molecular interactions continues to expand. In 1998, 384 articles relating to the use of commercial biosensors were published in 130 different journals. While significant strides in new applications and methodology were made, a majority of the biosensor literature is of rather poor quality. Basic information about experimental conditions is often not presented and many publications fail to display the experimental data, bringing into question the credibility of the results. This review provides suggestions on how to collect, analyze and report biosensor data.
Collapse
Affiliation(s)
- D G Myszka
- University of Utah, Salt Lake City, UT 84132, USA.
| |
Collapse
|