1
|
Liotta LJ, Antoine J, Brammer Basta LA, Campbell AS, Cole GY, Demick Brazile KA, Dogal Gardner NM, Fitzgerald ME, Francois JEK, French BM, Garafola SL, Giannetti CA, Granatosky EA, Harney AM, Hummel JT, Joyce AP, Keylor MH, Khubchandani JA, Korzeniecki C, Lieberman DC, Litterio JM, Maiorano MO, Marshall JF, McCarthy KA, Mendes Vieira A, Miller RM, Morrison ER, Moura SP, Neumann DF, Oliveira AF, Pace NJ, Plouffe JX, Pomfret MN, Reardon KN, Sheller-Miller SM, Smith MJ, Sullivan JL, Sweeney SW, Tougas KL. Efficient synthesis for each of the eight stereoisomers of the iminosugars lentiginosine and 1,4-dideoxy-1,4-imino-D-arabinitol (DAB). Carbohydr Res 2024; 545:109280. [PMID: 39326205 DOI: 10.1016/j.carres.2024.109280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Herein, we describe the efficient, diastereoselective syntheses of the iminosugars 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) 1b, lentiginosine 3a, and the seven stereoisomers of each of these iminosugars starting from 4-benzoyl-6-deoxy-6-iodoglycopyranosides 47 with yields ranging from 38 % to 68 % for the DAB and isomers 1a-1h and from 44 % to 89 % for the lentiginosine and isomers 3a-3h. We also report the syntheses of the eight stereoisomers of the 4-benzoyl-6-deoxy-6-iodoglycopyranosides 47 from commercially available sugars. Key to the iminosugar syntheses is a single multistep reaction that converts the 4-benzoyl-6-deoxy-6-iodoglycopyranosides 47 to a vinyl pyrrolidine through a one-pot zinc mediated reductive elimination, followed by a reductive amination and finally an intramolecular nucleophilic substitution. Strategic selection of the amine utilized in the reductive amination and the functionalization of the intermediate carbon-carbon double bond provides access to a vast array of iminosugars.
Collapse
Affiliation(s)
- Louis J Liotta
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA.
| | - Jessica Antoine
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | | | - Andrew S Campbell
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Gabrielle Y Cole
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | | | | | - Megan E Fitzgerald
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Jean E K Francois
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Brian M French
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Sara L Garafola
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Catherine A Giannetti
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Eve A Granatosky
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Alycen M Harney
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - James T Hummel
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Andrew P Joyce
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Mitchell H Keylor
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Jasmine A Khubchandani
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Claudia Korzeniecki
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Diana C Lieberman
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Joshua M Litterio
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Madison O Maiorano
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Jessica F Marshall
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Kelly A McCarthy
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Andreia Mendes Vieira
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Ruby M Miller
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Emily R Morrison
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Steven P Moura
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Dillon F Neumann
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Aliza F Oliveira
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Nicholas J Pace
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Jodie X Plouffe
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Meredith N Pomfret
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Katelyn N Reardon
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | | | - Michael J Smith
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Jessica L Sullivan
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Samantha W Sweeney
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Kerstin L Tougas
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| |
Collapse
|
2
|
Investigation of the Protective Effect for GcMAF by a Glycosidase Inhibitor and the Glycan Structure of Gc Protein. Molecules 2023; 28:molecules28041570. [PMID: 36838558 PMCID: PMC9963009 DOI: 10.3390/molecules28041570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
O-linked α-N-acetylgalactosamine (α-GalNAc) in the Gc protein is essential for macrophage activation; thus, the GalNAc-attached form of Gc protein is called Gc macrophage activating factor (GcMAF). O-linked glycans in Gc proteins from human plasma mainly consist of trisaccharides. GcMAF is produced when glycans on the Gc protein are hydrolyzed by α-Sia-ase and β-Gal-ase, leaving an α-GalNAc. Upon hydrolysis of α-GalNAc present on GcMAF, the protein loses the macrophage-activating effect. In contrast, our synthesized pyrrolidine-type iminocyclitol possessed strong in vitro α-GalNAc-ase inhibitory activity. In this study, we examined the protective effects of iminocyclitol against GcMAF via inhibition of α-GalNAc-ase activity. Detailed mass spectrometric analyses revealed the protective effect of the inhibitor on GcMAF. Furthermore, structural information regarding the glycosylation site and glycan structure was obtained using tandem mass spectrometric (MS/MS) analysis of the glycosylated peptides after tryptic digestion.
Collapse
|
3
|
Vardé M, Marino C, Repetto E, Varela OJ. Enantioselective Synthesis of 2,3,4,5‐Tetra(hydroxyalkyl)pyrrolidines through 1,3‐Dipolar Cycloadditions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mariana Vardé
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Organic chemistry ARGENTINA
| | - Carla Marino
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Organic chemistry ARGENTINA
| | - Evangelina Repetto
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Organic chemistry ARGENTINA
| | - Oscar Jose Varela
- Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Organic Chemistry Pabellon 2, Ciudad Universitaria 1428 Buenos Aires ARGENTINA
| |
Collapse
|
4
|
Tsunoda T, Tanoeyadi S, Proteau PJ, Mahmud T. The chemistry and biology of natural ribomimetics and related compounds. RSC Chem Biol 2022; 3:519-538. [PMID: 35656477 PMCID: PMC9092360 DOI: 10.1039/d2cb00019a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/06/2022] [Indexed: 11/21/2022] Open
Abstract
Natural ribomimetics represent an important group of specialized metabolites with significant biological activities. Many of the activities, e.g., inhibition of seryl-tRNA synthetases, glycosidases, or ribosomes, are manifestations of their structural resemblance to ribose or related sugars, which play roles in the structural, physiological, and/or reproductive functions of living organisms. Recent studies on the biosynthesis and biological activities of some natural ribomimetics have expanded our understanding on how they are made in nature and why they have great potential as pharmaceutically relevant products. This review article highlights the discovery, biological activities, biosynthesis, and development of this intriguing class of natural products.
Collapse
Affiliation(s)
- Takeshi Tsunoda
- Department of Pharmaceutical Sciences, Oregon State University Corvallis OR 97331 USA
| | - Samuel Tanoeyadi
- Department of Pharmaceutical Sciences, Oregon State University Corvallis OR 97331 USA
| | - Philip J Proteau
- Department of Pharmaceutical Sciences, Oregon State University Corvallis OR 97331 USA
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University Corvallis OR 97331 USA
| |
Collapse
|
5
|
Aronson JK. When I use a word . . . . Medical hyacinths. BMJ 2022; 377:o1036. [PMID: 35459704 DOI: 10.1136/bmj.o1036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Jeffrey K Aronson
- Centre for Evidence Based Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford
| |
Collapse
|
6
|
Zanardi MM, Marcarino MO, Sarotti AM. Redefining the Impact of Boltzmann Analysis in the Stereochemical Assignment of Polar and Flexible Molecules by NMR Calculations. Org Lett 2019; 22:52-56. [DOI: 10.1021/acs.orglett.9b03866] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- María M. Zanardi
- Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina, Av. Pellegrini 3314, S2002QEO Rosario, Argentina
| | - Maribel O. Marcarino
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Ariel M. Sarotti
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| |
Collapse
|
7
|
O’Keefe S, Roebuck QP, Nakagome I, Hirono S, Kato A, Nash R, High S. Characterizing the selectivity of ER α-glucosidase inhibitors. Glycobiology 2019; 29:530-542. [PMID: 30976784 PMCID: PMC6583763 DOI: 10.1093/glycob/cwz029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/15/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) contains both α-glucosidases and α-mannosidases which process the N-linked oligosaccharides of newly synthesized glycoproteins and thereby facilitate polypeptide folding and glycoprotein quality control. By acting as structural mimetics, iminosugars can selectively inhibit these ER localized α-glycosidases, preventing N-glycan trimming and providing a molecular basis for their therapeutic applications. In this study, we investigate the effects of a panel of nine iminosugars on the actions of ER luminal α-glucosidase I and α-glucosidase II. Using ER microsomes to recapitulate authentic protein N-glycosylation and oligosaccharide processing, we identify five iminosugars that selectively inhibit N-glycan trimming. Comparison of their inhibitory activities in ER microsomes against their effects on purified ER α-glucosidase II, suggests that 3,7a-diepi-alexine acts as a selective inhibitor of ER α-glucosidase I. The other active iminosugars all inhibit α-glucosidase II and, having identified 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) as the most effective of these compounds, we use in silico modeling to understand the molecular basis for this enhanced activity. Taken together, our work identifies the C-3 substituted pyrrolizidines casuarine and 3,7a-diepi-alexine as promising "second-generation" iminosugar inhibitors.
Collapse
Affiliation(s)
- Sarah O’Keefe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Quentin P Roebuck
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Izumi Nakagome
- School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Shuichi Hirono
- School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, Japan
| | - Robert Nash
- PhytoQuest Ltd, Plas Gogerddan, Aberystwyth, Ceredigion, UK
| | - Stephen High
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
8
|
Malatinský T, Otočková B, Dikošová L, Fischer R. A Convenient Synthetic Route towards 3,5‐Bis(hydroxymethyl)pyrrolizidines: Stereoselective Synthesis of Unnatural (–)‐Hyacinthacine B 2. ChemistrySelect 2019. [DOI: 10.1002/slct.201900529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Tomáš Malatinský
- Institute of Organic Chemistry, Catalysis and PetrochemistrySlovak University of Technology in Bratislava Radlinského 9 812 37 Bratislava Slovak Republic
| | - Barbora Otočková
- Institute of Organic Chemistry, Catalysis and PetrochemistrySlovak University of Technology in Bratislava Radlinského 9 812 37 Bratislava Slovak Republic
| | - Lívia Dikošová
- Institute of Organic Chemistry, Catalysis and PetrochemistrySlovak University of Technology in Bratislava Radlinského 9 812 37 Bratislava Slovak Republic
| | - Róbert Fischer
- Institute of Organic Chemistry, Catalysis and PetrochemistrySlovak University of Technology in Bratislava Radlinského 9 812 37 Bratislava Slovak Republic
| |
Collapse
|
9
|
Carroll AW, Willis AC, Hoshino M, Kato A, Pyne SG. Corrected Structure of Natural Hyacinthacine C 1 via Total Synthesis. JOURNAL OF NATURAL PRODUCTS 2019; 82:358-367. [PMID: 30714734 DOI: 10.1021/acs.jnatprod.8b00879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hyacinthacines C1 and C4 are natural products that were isolated from Hyacinthoides non-scripta and Scilla socialis in 1999 and 2007, respectively. Despite their different 1H NMR and 13C NMR spectroscopic data, these compounds have been assigned the same structures, including absolute configurations. This work details the total synthesis of natural (+)-hyacinthacine C1, whose structure is confirmed as being the C-6 epimer of that reported. The synthetic strategy focused on inverting the configuration at C-1 of the final hyacinthacines via operating the inversion at the corresponding carbon atom in three previously synthesized intermediates. To do this, the advanced intermediates were subjected to Swern oxidation, followed by a stereoselective reduction with L-Selectride. This approach led to the synthesis of (+)-5 -epi-hyacinthacine C1 (15), the corrected structure for (+)-hyacinthacine C1 (19), (+)-6,7-di- epi-hyacinthacine C1 (23), and (+)-7- epi-hyacinthacine C1 (29). Glycosidase inhibition assays revealed that (+)-hyacinthacine C1 (19) proved the most active, with IC50 values of 33.7, 55.5, and 78.2 μM, against the α-glucosidase of rice, human lysosome, and rat intestinal maltase, respectively.
Collapse
Affiliation(s)
- Anthony W Carroll
- School of Chemistry , University of Wollongong , Wollongong , New South Wales 2522 , Australia
| | - Anthony C Willis
- Research School of Chemistry , Australian National University , Canberra , ACT 2601 , Australia
| | - Masako Hoshino
- Department of Hospital Pharmacy , University of Toyama , Sugitani , Toyama 2630 , Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy , University of Toyama , Sugitani , Toyama 2630 , Japan
| | - Stephen G Pyne
- School of Chemistry , University of Wollongong , Wollongong , New South Wales 2522 , Australia
| |
Collapse
|
10
|
Raheem DJ, Tawfike AF, Abdelmohsen UR, Edrada-Ebel R, Fitzsimmons-Thoss V. Application of metabolomics and molecular networking in investigating the chemical profile and antitrypanosomal activity of British bluebells (Hyacinthoides non-scripta). Sci Rep 2019; 9:2547. [PMID: 30796274 PMCID: PMC6385288 DOI: 10.1038/s41598-019-38940-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/09/2019] [Indexed: 12/30/2022] Open
Abstract
Bulb, leaf, scape and flower samples of British bluebells (Hyacinthoides non-scripta) were collected regularly for one growth period. Methanolic extracts of freeze-dried and ground samples showed antitrypanosomal activity, giving more than 50% inhibition, for 20 out of 41 samples. High-resolution mass spectrometry was used in the dereplication of the methanolic extracts of the different plant parts. The results revealed differences in the chemical profile with bulb samples being distinctly different from all aerial parts. High molecular weight metabolites were more abundant in the flowers, shoots and leaves compared to smaller molecular weight ones in the bulbs. The anti-trypanosomal activity of the extracts was linked to the accumulation of high molecular weight compounds, which were matched with saponin glycosides, while triterpenoids and steroids occurred in the inactive extracts. Dereplication studies were employed to identify the significant metabolites via chemotaxonomic filtration and considering their previously reported bioactivities. Molecular networking was implemented to look for similarities in fragmentation patterns between the isolated saponin glycoside at m/z 1445.64 [M + formic-H]- equivalent to C64H104O33 and the putatively found active metabolite at m/z 1283.58 [M + formic-H]- corresponding to scillanoside L-1. A combination of metabolomics and bioactivity-guided approaches resulted in the isolation of a norlanostane-type saponin glycoside with antitrypanosomal activity of 98.9% inhibition at 20 µM.
Collapse
Affiliation(s)
- Dotsha J Raheem
- School of Chemistry, Bangor University, Bangor, Gwynedd, UK
- Department of Chemistry, College of Science, University of Salahaddin, Erbil, Kurdistan, Iraq
| | - Ahmed F Tawfike
- School of Chemistry, Bangor University, Bangor, Gwynedd, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
- Computational and Analytical Science Department, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Usama R Abdelmohsen
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Würzburg, Germany
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - RuAngelie Edrada-Ebel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | |
Collapse
|
11
|
Zanardi MM, Sortino MA, Sarotti AM. On the effect of intramolecular H-bonding in the configurational assessment of polyhydroxylated compounds with computational methods. The hyacinthacines case. Carbohydr Res 2019; 474:72-79. [DOI: 10.1016/j.carres.2019.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 01/04/2023]
|
12
|
Carroll AW, Pyne SG. The History of the Glycosidase Inhibiting Hyacinthacine C-type Alkaloids: From Discovery to Synthesis. Curr Org Synth 2019; 16:498-522. [PMID: 31984928 PMCID: PMC7432187 DOI: 10.2174/1570179416666190126100312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND The inherent glycosidase inhibitory activity and potentially therapeutic value of the polyhydroxylated pyrrolizidine alkaloids containing a hydroxymethyl substituent at the C-3 position have been well documented. Belonging to this class, the naturally occurring hyacinthacine C-type alkaloids are of general interest among iminosugar researchers. Their selective micromolar α -glycosidase inhibitory ranges (10 - 100 μM) suggest that these azasugars are potential leads for treating type II diabetes. However, the structures of hyacinthacine C1, C3 and C4 are insecure with hyacinthacine C5 being recently corrected. OBJECTIVE This review presents the hyacinthacine C-type alkaloids: their first discovery to the most recent advancements on the structures, biological activities and total synthesis. CONCLUSION The hyacinthacine C-type alkaloids are of exponentially increasing interest and will undoubtedly continue to be reported as synthetic targets. They represent a challenging but rewarding synthetic feat for the community of those interested in accessing biologically active iminosugars. Since 2009, ten total syntheses have been employed towards accessing similarly related products but only three have assessed the glycosidase inhibitory activity of the final products. This suggests the need for an accessible and universal glycosidase inhibitory assay so to accurately determine the structure-activity relationship of how the hyacinthacine C-type alkaloids inhibit specific glycosidases. Confirming the correct structures of the hyacinthacine C-type alkaloids as well as accessing various analogues continues to strengthen the foundation towards a marketable treatment for type II diabetes and other glycosidase related illnesses.
Collapse
Affiliation(s)
- Anthony W. Carroll
- School of Chemistry, University of Wollongong, Wollongong, New South Wales, Wollongong, NSW 2522, Australia
| | - Stephen G. Pyne
- School of Chemistry, University of Wollongong, Wollongong, New South Wales, Wollongong, NSW 2522, Australia
| |
Collapse
|
13
|
Carroll AW, Savaspun K, Willis AC, Hoshino M, Kato A, Pyne SG. Total Synthesis of Natural Hyacinthacine C 5 and Six Related Hyacinthacine C 5 Epimers. J Org Chem 2018; 83:5558-5576. [PMID: 29701065 DOI: 10.1021/acs.joc.8b00585] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The total synthesis of natural (+)-hyacinthacine C5 was achieved, which allowed correction of its initially proposed structure, as well as six additional hyacinthacine C-type compounds. These compounds were readily accessible from two epimeric anti-1,2-amino alcohols. Keeping a common A-ring configuration, chemical manipulation occurred selectively on the B-ring of the hyacinthacine C-type products through methods of syn-dihydroxylation, SN2 ring-opening of a cyclic sulfate, and also employing either ( R)- or ( R, S)-α-methylallyl amine for the Petasis borono Mannich reaction. Our small analogue library was then assessed for its glycosidase inhibitory potency against a panel of glycosidases. (-)-6- Epi-hyacinthacine C5 and (+)-7- epi-hyacinthacine C5 (compound names are based on the corrected structure of hyacinthacine C5) proved most active, with inhibitory activities ranging between weak (IC50 = 130 μM) and moderate (IC50 = 9.9 μM) against the α-glucosidases of rat intestinal maltase, isomaltase, and sucrase, thus identifying potential new leads for future antidiabetic drug development.
Collapse
Affiliation(s)
- Anthony W Carroll
- School of Chemistry, University of Wollongong , Wollongong , New South Wales 2522 , Australia
| | - Kongdech Savaspun
- School of Chemistry, University of Wollongong , Wollongong , New South Wales 2522 , Australia
| | - Anthony C Willis
- Research School of Chemistry, Australian National University , Canberra , ACT 0200 , Australia
| | - Masako Hoshino
- Department of Hospital Pharmacy , University of Toyama , Sugitani , Toyama 2630 , Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy , University of Toyama , Sugitani , Toyama 2630 , Japan
| | - Stephen G Pyne
- School of Chemistry, University of Wollongong , Wollongong , New South Wales 2522 , Australia
| |
Collapse
|
14
|
|
15
|
Pecchioli T, Cardona F, Reissig HU, Zimmer R, Goti A. Alkoxyallene-Based Stereodivergent Syntheses of (−)-Hyacinthacine B4 and of Putative Hyacinthacine C5 Epimers: Proposal of Hyacinthacine C5 Structure. J Org Chem 2017; 82:5835-5844. [DOI: 10.1021/acs.joc.7b00667] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tommaso Pecchioli
- Department
of Chemistry “Ugo Schiff”, University of Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Francesca Cardona
- Department
of Chemistry “Ugo Schiff”, University of Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Hans-Ulrich Reissig
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Reinhold Zimmer
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Andrea Goti
- Department
of Chemistry “Ugo Schiff”, University of Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
16
|
Oliveira Udry GA, Repetto E, Vega DR, Varela O. Synthesis of Enantiomeric Polyhydroxyalkylpyrrolidines from 1,3-Dipolar Cycloadducts. Evaluation as Inhibitors of a β-Galactofuranosidase. J Org Chem 2016; 81:4179-89. [PMID: 27116655 DOI: 10.1021/acs.joc.6b00514] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Enantiomeric 2,3,4-tris(hydroxyalkyl)-5-phenylpyrrolidines have been synthesized from the major cycloadducts obtained by the 1,3-dipolar cycloaddition of sugar enones with azomethine ylides derived from natural amino acids. Reduction of the ketone carbonyl group of the cycloadducts, which possess a basic structure of bicyclic 6-(menthyloxy)hexahydropyrano[4,3-c]pyrrol-7(6H)one, afforded a number of pyrrolidine-based bicyclic systems. A sequence of reactions, which involved hydrolysis of the menthyloxy substituent, reduction, N-protection, and degradative oxidation, afforded varied pyrrolidine structures having diverse configurations and patterns of substitution; in particular, polyhydroxylated derivatives have been obtained. The unprotected products were isolated as pyrrolidinium trifluoroacetates. Because of the furanose-like nature of the target trihydroxyalkyl pyrrolidines, these molecules have been evaluated as inhibitors of the β-galactofuranosidase from Penicillium fellutanum. The compounds showed practically no inhibitory activity for concentration of pyrrolidines in the range of 0.1-1.6 mM.
Collapse
Affiliation(s)
- Guillermo A Oliveira Udry
- CIHIDECAR-CONICET-UBA, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Pabellón 2, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Evangelina Repetto
- CIHIDECAR-CONICET-UBA, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Pabellón 2, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Daniel R Vega
- Departamento Física de la Materia Condensada, GAIyANN-CAC-CNEA y ECyT-UNSAM , Av. Gral. Paz 1499, San Martín, 1650 Buenos Aires, Argentina
| | - Oscar Varela
- CIHIDECAR-CONICET-UBA, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Pabellón 2, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| |
Collapse
|
17
|
Li YX, Kinami K, Hirokami Y, Kato A, Su JK, Jia YM, Fleet GWJ, Yu CY. Gem-difluoromethylated and trifluoromethylated derivatives of DMDP-related iminosugars: synthesis and glycosidase inhibition. Org Biomol Chem 2016; 14:2249-63. [DOI: 10.1039/c5ob02474a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gem-difluoromethylated and trifluoromethylated derivatives of DMDP-related iminosugars have been synthesized from cyclic nitrones and assayed against various glycosidases.
Collapse
Affiliation(s)
- Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Kyoko Kinami
- Department of Hospital Pharmacy
- University of Toyama
- 2630 Sugitani
- Japan
| | - Yuki Hirokami
- Department of Hospital Pharmacy
- University of Toyama
- 2630 Sugitani
- Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy
- University of Toyama
- 2630 Sugitani
- Japan
| | - Jia-Kun Su
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - George W. J. Fleet
- Chemistry Research Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
18
|
Harit VK, Ramesh NG. Amino-functionalized iminocyclitols: synthetic glycomimetics of medicinal interest. RSC Adv 2016. [DOI: 10.1039/c6ra23513a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A review on the syntheses and biological activities of unnatural glycomimetics highlighting the effect of replacement of hydroxyl groups of natural iminosugars by amino functionalities is presented.
Collapse
Affiliation(s)
- Vimal Kant Harit
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi - 110016
- India
| | - Namakkal G. Ramesh
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi - 110016
- India
| |
Collapse
|
19
|
Ghani U. Re-exploring promising α-glucosidase inhibitors for potential development into oral anti-diabetic drugs: Finding needle in the haystack. Eur J Med Chem 2015; 103:133-62. [PMID: 26344912 DOI: 10.1016/j.ejmech.2015.08.043] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 08/16/2015] [Accepted: 08/23/2015] [Indexed: 01/27/2023]
Abstract
Treatment of diabetes mellitus by oral α-glucosidase inhibitors is currently confined to acarbose, miglitol and voglibose marred by efficacy problems and unwanted side effects. Since the discovery of the drugs more than three decades ago, no significant progress has been made in the drug development area of anti-diabetic α-glucosidase inhibitors. Despite existence of a wide chemical diversity of α-glucosidase inhibitors identified to date, majority of them are simply piled up in publications and reports thus creating a haystack destined to be forgotten in the scientific literature without given consideration for further development into drugs. This review finds those "needles" in that haystack and lays groundwork for highlighting promising α-glucosidase inhibitors from the literature that may potentially become suitable candidates for pre-clinical or clinical trials while drawing attention of the drug development community to consider and take already-identified promising α-glucosidase inhibitors into the next stage of drug development.
Collapse
Affiliation(s)
- Usman Ghani
- Clinical Chemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia.
| |
Collapse
|
20
|
Kato A, Hirokami Y, Kinami K, Tsuji Y, Miyawaki S, Adachi I, Hollinshead J, Nash RJ, Kiappes JL, Zitzmann N, Cha JK, Molyneux RJ, Fleet GWJ, Asano N. Isolation and SAR studies of bicyclic iminosugars from Castanospermum australe as glycosidase inhibitors. PHYTOCHEMISTRY 2015; 111:124-131. [PMID: 25583438 DOI: 10.1016/j.phytochem.2014.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/04/2014] [Accepted: 12/11/2014] [Indexed: 06/04/2023]
Abstract
We report the isolation and structural determination of fourteen iminosugars, containing five pyrrolizidines and five indolizidines, from Castanospermum australe. The structure of a new alkaloid was elucidated by spectroscopic methods as 6,8-diepi-castanospermine (13). Our side-by-side comparison between bicyclic and corresponding monocyclic iminosugars revealed that inhibition potency and spectrum against each enzyme are clearly changed by their core structures. Castanospermine (10) and 1-deoxynojirimycin (DNJ) have a common d-gluco configuration, and they showed the expected similar inhibition potency and spectrum. In sharp contrast, 6-epi-castanospermine (12) and 1-deoxymannojirimycin (manno-DNJ) both have the d-manno configuration but the α-mannosidase inhibition of 6-epi-castanospermine (12) was much better than that of manno-DNJ. 6,8-Diepi-castanospermine (13) could be regarded as a bicyclic derivative of talo-DNJ, but it showed a complete loss of α-galactosidase A inhibition. This behavior against α-galactosidase A is similar to that observed for 1-epi-australine (6) and altro-DMDP.
Collapse
Affiliation(s)
- Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan.
| | - Yuki Hirokami
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Kyoko Kinami
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Yutaro Tsuji
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Shota Miyawaki
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Isao Adachi
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Jackie Hollinshead
- Institute of Biological, Environmental and Rural Sciences/Phytoquest Limited, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, United Kingdom
| | - Robert J Nash
- Institute of Biological, Environmental and Rural Sciences/Phytoquest Limited, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, United Kingdom
| | - J L Kiappes
- Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Nicole Zitzmann
- Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Jin K Cha
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States
| | - Russell J Molyneux
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 34 Rainbow Drive, Hilo, HI 96720, United States
| | - George W J Fleet
- Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom; Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom.
| | - Naoki Asano
- BioApply Co., Ltd., 1-95 Tsuchishimizu, Kanazawa 920-0955, Japan
| |
Collapse
|
21
|
Veyron A, Reddy PV, Koos P, Bayle A, Greene AE, Delair P. Stereocontrolled synthesis of glycosidase inhibitors (+)-hyacinthacines A1 and A2. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.tetasy.2014.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Minehira D, Okada T, Iwaki R, Kato A, Adachi I, Toyooka N. Enantiodivergent strategy for the synthesis of polyhydroxylated pyrrolizidines and evaluation of their inhibitory activities against glycosidases. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2014.11.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
|
24
|
Abstract
This review covers pyrrolizidine alkaloids isolated from natural sources. Topics include: aspects of structure, isolation, and biological/pharmacological studies; total syntheses of necic acids, necine bases and closely-related non-natural analogues.
Collapse
Affiliation(s)
- Jeremy Robertson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| | | |
Collapse
|
25
|
Savaspun K, Au CWG, Pyne SG. Total Synthesis of Hyacinthacines B3, B4, and B5 and Purported Hyacinthacine B7, 7-epi-Hyacinthacine B7, and 7a-epi-Hyacinthacine B3 from a Common Precursor. J Org Chem 2014; 79:4569-81. [DOI: 10.1021/jo5005923] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kongdech Savaspun
- School
of Chemistry, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Christopher W. G. Au
- School
of Chemistry, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Stephen G. Pyne
- School
of Chemistry, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
26
|
Laborda P, Sayago FJ, Cativiela C, Parella T, Joglar J, Clapés P. Aldolase-Catalyzed Synthesis of Conformationally Constrained Iminocyclitols: Preparation of Polyhydroxylated Benzopyrrolizidines and Cyclohexapyrrolizidines. Org Lett 2014; 16:1422-5. [DOI: 10.1021/ol5002158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pedro Laborda
- Departamento
de Química Orgánica, Instituto de Síntesis Química
y Catálisis Homogénea, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Francisco J. Sayago
- Departamento
de Química Orgánica, Instituto de Síntesis Química
y Catálisis Homogénea, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Carlos Cativiela
- Departamento
de Química Orgánica, Instituto de Síntesis Química
y Catálisis Homogénea, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Teodor Parella
- Servei
de RMN and Dept. Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jesús Joglar
- Biotransformation
and Bioactive Molecules Group, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Pere Clapés
- Biotransformation
and Bioactive Molecules Group, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
27
|
Iminosugars: Therapeutic Applications and Synthetic Considerations. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_50] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
28
|
Yan RY, Wang HQ, Kang J, Chen RY. Pyrrolidine-type iminosugars from leaves of Suregada glomerulata. Carbohydr Res 2014; 384:9-12. [DOI: 10.1016/j.carres.2013.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 10/25/2013] [Accepted: 11/11/2013] [Indexed: 11/17/2022]
|
29
|
Structure, Biological Properties, and Total Synthesis of Polyhydroxylated Pyrrolizidines of the Hyacinthacines Family. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-444-63281-4.00013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
30
|
Mulholland DA, Schwikkard SL, Crouch NR. The chemistry and biological activity of the Hyacinthaceae. Nat Prod Rep 2013; 30:1165-210. [PMID: 23892453 DOI: 10.1039/c3np70008a] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Hyacinthaceae (sensu APGII), with approximately 900 species in about 70 genera, can be divided into three main subfamilies, the Hyacinthoideae, the Urgineoideae and the Ornithogaloideae, with a small fourth subfamily the Oziroëoideae, restricted to South America. The plants included in this family have long been used in traditional medicine for a wide range of medicinal applications. This, together with some significant toxicity to livestock has led to the chemical composition of many of the species being investigated. The compounds found are, for the most part, subfamily-restricted, with homoisoflavanones and spirocyclic nortriterpenoids characterising the Hyacinthoideae, bufadienolides characterising the Urgineoideae, and cardenolides and steroidal glycosides characterising the Ornithogaloideae. The phytochemical profiles of 38 genera of the Hyacinthaceae will be discussed as well as any biological activity associated with both crude extracts and compounds isolated. The Hyacinthaceae of southern Africa were last reviewed in 2000 (T. S. Pohl, N. R. Crouch and D. A. Mulholland, Curr. Org. Chem., 2000, 4, 1287-1324; ref. 1); the current contribution considers the family at a global level.
Collapse
Affiliation(s)
- Dulcie A Mulholland
- Natural Products Research Group, Department of Chemistry, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | | | | |
Collapse
|
31
|
Evolution of the Total Syntheses of Batzellasides the First Marine Piperidine Iminosugar. Nat Prod Commun 2013. [DOI: 10.1177/1934578x1300800729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Batzellasides A-C are C-alkylated piperidine iminosugars isolated from a sponge Batzella sp. The first total synthesis of (+)-batzellaside B was achieved by employing a chiral pool approach starting from L-arabinose for the construction of a piperidine ring system. Subsequently a practical second-generation synthesis was developed by utilizing a Sharpless asymmetric dihydroxylation for the preparation of the common piperidine intermediate elaborated in the first-generation synthesis. The overall yield of batzellaside B was improved to 3.3% by introducing the exocyclic C8 stereocenter via facial selective hydride addition to a linear ketone. These syntheses allowed for the determination of the absolute stereochemistry of this natural product as well as for providing precious samples which would pave the way for further biological studies.
Collapse
|
32
|
Balieu S, Guilleret A, Reynaud R, Martinez A, Haudrechy A. Stereoselective synthesis of (2S,3S,4R,5S)-3,4-dihydroxy-2,5-dihydroxymethyl pyrrolidine from L-sorbose. Carbohydr Res 2013; 374:14-22. [PMID: 23603481 DOI: 10.1016/j.carres.2013.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 03/05/2013] [Accepted: 03/21/2013] [Indexed: 10/27/2022]
Abstract
One of the most frequently synthesized iminosugar derivatives is DMDP. Starting from L-sorbose, a practical method for the synthesis of derivatives of this five-membered iminocyclitol has been developed, involving straightforward steps and a convenient selective reduction of a ketoxime intermediate.
Collapse
Affiliation(s)
- Sébastien Balieu
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims, Reims, France
| | | | | | | | | |
Collapse
|
33
|
Huang MH, Li YX, Jia YM, Yu CY. General intermediates for the synthesis of 6-C-alkylated DMDP-related natural products. Molecules 2013; 18:6723-33. [PMID: 23749160 PMCID: PMC6269708 DOI: 10.3390/molecules18066723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 05/24/2013] [Accepted: 05/27/2013] [Indexed: 12/03/2022] Open
Abstract
Protected L-homoDMDP en-8 and its C-6 epimer en-7 were prepared through two different pathways starting from the vinylpyrrolidine en-9. Based on the NMR and X-ray analysis, the stereochemistry of homoDMDP at C-6 was confirmed to be consistent with reported data. Compounds en-7 and en-8 are general intermediates for the synthesis of a series of 6-C-alkylated DMDP-related natural products, such as broussonetine G, homoDMDP-7-O-apioside, homoDMDP-7-O-b-D-xyloside and so on.
Collapse
Affiliation(s)
- Mu-Hua Huang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100191, China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100191, China
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100191, China
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100191, China
| |
Collapse
|
34
|
Martella D, Cardona F, Parmeggiani C, Franco F, Tamayo JA, Robina I, Moreno-Clavijo E, Moreno-Vargas AJ, Goti A. Synthesis and Glycosidase Inhibition Studies of 5-Methyl-Substituted Tetrahydroxyindolizidines and -pyrrolizidines Related to Natural Hyacinthacines B. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300103] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Reddy PV, Smith J, Kamath A, Jamet H, Veyron A, Koos P, Philouze C, Greene AE, Delair P. Asymmetric Approach to Hyacinthacines B1 and B2. J Org Chem 2013; 78:4840-9. [DOI: 10.1021/jo400386f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Paidi Venkatram Reddy
- SERCO, ‡Theoretical Chemistry, and §MUST, Département
de Chimie Moléculaire, University Grenoble Alpes, ICMG FR-2607, CNRS, UMR-5250, F-38041
Grenoble, France
| | - Julien Smith
- SERCO, ‡Theoretical Chemistry, and §MUST, Département
de Chimie Moléculaire, University Grenoble Alpes, ICMG FR-2607, CNRS, UMR-5250, F-38041
Grenoble, France
| | - Anushree Kamath
- SERCO, ‡Theoretical Chemistry, and §MUST, Département
de Chimie Moléculaire, University Grenoble Alpes, ICMG FR-2607, CNRS, UMR-5250, F-38041
Grenoble, France
| | - Hélène Jamet
- SERCO, ‡Theoretical Chemistry, and §MUST, Département
de Chimie Moléculaire, University Grenoble Alpes, ICMG FR-2607, CNRS, UMR-5250, F-38041
Grenoble, France
| | - Amaël Veyron
- SERCO, ‡Theoretical Chemistry, and §MUST, Département
de Chimie Moléculaire, University Grenoble Alpes, ICMG FR-2607, CNRS, UMR-5250, F-38041
Grenoble, France
| | - Peter Koos
- SERCO, ‡Theoretical Chemistry, and §MUST, Département
de Chimie Moléculaire, University Grenoble Alpes, ICMG FR-2607, CNRS, UMR-5250, F-38041
Grenoble, France
| | - Christian Philouze
- SERCO, ‡Theoretical Chemistry, and §MUST, Département
de Chimie Moléculaire, University Grenoble Alpes, ICMG FR-2607, CNRS, UMR-5250, F-38041
Grenoble, France
| | - Andrew E. Greene
- SERCO, ‡Theoretical Chemistry, and §MUST, Département
de Chimie Moléculaire, University Grenoble Alpes, ICMG FR-2607, CNRS, UMR-5250, F-38041
Grenoble, France
| | - Philippe Delair
- SERCO, ‡Theoretical Chemistry, and §MUST, Département
de Chimie Moléculaire, University Grenoble Alpes, ICMG FR-2607, CNRS, UMR-5250, F-38041
Grenoble, France
| |
Collapse
|
36
|
Lee H, Kim JH, Lee WK, Cho J, Nam W, Lee J, Ha HJ. Highly stereoselective directed reactions and an efficient synthesis of azafuranoses from a chiral aziridine. Org Biomol Chem 2013; 11:3629-34. [DOI: 10.1039/c3ob27390c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Abstract
Our work on the application of the boronic acid Mannich reaction to the synthesis of pyrrolizidine alkaloids is described.
Collapse
|
38
|
Kondakal VV, Ilyas Qamar M, Hemming K. The synthesis of hydroxy-pyrrolizidines and indolizidines from cyclopropenones: towards hyacinthacines, australines and jenamidines. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.05.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Eklund EJ, Pike RD, Scheerer JR. Synthesis of 1-aminopyrrolizidine alkaloid (−)-absouline by stereoselective aminoconjugate addition. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.06.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Thoss V, Murphy PJ, Marriott R, Wilson T. Triacylglycerol composition of British bluebell (Hyacinthoides non-scripta) seed oil. RSC Adv 2012. [DOI: 10.1039/c2ra20090b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
41
|
Tamayo JA, Franco F, Sánchez-Cantalejo F. Synthesis of the Proposed Structure of Pentahydroxylated Pyrrolizidine Hyacinthacine C5 and Its C6,C7 Epimer. European J Org Chem 2011. [DOI: 10.1002/ejoc.201101126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Zhang W, Sato K, Kato A, Jia YM, Hu XG, Wilson FX, van Well R, Horne G, Fleet GWJ, Nash RJ, Yu CY. Synthesis of Fully Substituted Polyhydroxylated Pyrrolizidines via Cope–House Cyclization. Org Lett 2011; 13:4414-7. [DOI: 10.1021/ol201749c] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei Zhang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Summit PLC, 91, Milton Park, Abingdon, Oxon OX14 4RY, U.K., Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K., and Phytoquest Limited, IBERS, Plas Gogerddan
| | - Kasumi Sato
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Summit PLC, 91, Milton Park, Abingdon, Oxon OX14 4RY, U.K., Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K., and Phytoquest Limited, IBERS, Plas Gogerddan
| | - Atsushi Kato
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Summit PLC, 91, Milton Park, Abingdon, Oxon OX14 4RY, U.K., Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K., and Phytoquest Limited, IBERS, Plas Gogerddan
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Summit PLC, 91, Milton Park, Abingdon, Oxon OX14 4RY, U.K., Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K., and Phytoquest Limited, IBERS, Plas Gogerddan
| | - Xiang-Guo Hu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Summit PLC, 91, Milton Park, Abingdon, Oxon OX14 4RY, U.K., Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K., and Phytoquest Limited, IBERS, Plas Gogerddan
| | - Francis X. Wilson
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Summit PLC, 91, Milton Park, Abingdon, Oxon OX14 4RY, U.K., Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K., and Phytoquest Limited, IBERS, Plas Gogerddan
| | - Renate van Well
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Summit PLC, 91, Milton Park, Abingdon, Oxon OX14 4RY, U.K., Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K., and Phytoquest Limited, IBERS, Plas Gogerddan
| | - Graeme Horne
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Summit PLC, 91, Milton Park, Abingdon, Oxon OX14 4RY, U.K., Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K., and Phytoquest Limited, IBERS, Plas Gogerddan
| | - George W. J. Fleet
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Summit PLC, 91, Milton Park, Abingdon, Oxon OX14 4RY, U.K., Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K., and Phytoquest Limited, IBERS, Plas Gogerddan
| | - Robert J. Nash
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Summit PLC, 91, Milton Park, Abingdon, Oxon OX14 4RY, U.K., Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K., and Phytoquest Limited, IBERS, Plas Gogerddan
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Summit PLC, 91, Milton Park, Abingdon, Oxon OX14 4RY, U.K., Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K., and Phytoquest Limited, IBERS, Plas Gogerddan
| |
Collapse
|
43
|
Massen ZS, Coutouli-Argyropoulou E, Sarli VC, Gallos JK. Synthesis of a protected trihydroxyindolizidine 3-carboxylate via a hetero-Diels–Alder addition of ethyl 2-nitrosoacrylate to a d-ribose-derived exo-glycal. Carbohydr Res 2011; 346:508-11. [DOI: 10.1016/j.carres.2010.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 12/28/2010] [Accepted: 12/29/2010] [Indexed: 11/29/2022]
|
44
|
Garrabou X, Gómez L, Joglar J, Gil S, Parella T, Bujons J, Clapés P. Structure-guided minimalist redesign of the L-fuculose-1-phosphate aldolase active site: expedient synthesis of novel polyhydroxylated pyrrolizidines and their inhibitory properties against glycosidases and intestinal disaccharidases. Chemistry 2011; 16:10691-706. [PMID: 20661960 DOI: 10.1002/chem.201000714] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A minimalist active site redesign of the L-fuculose-1-phosphate aldolase from E. coli FucA was envisaged, to extend its tolerance towards bulky and conformationally restricted N-Cbz-amino aldehyde acceptor substrates (Cbz=benzyloxycarbonyl). Various mutants at the active site of the FucA wild type were obtained and screened with seven sterically demanding N-Cbz-amino aldehydes including N-Cbz-prolinal derivatives. FucA F131A showed an aldol activity of 62 μmol h(-1) mg(-1) with (R)-N-Cbz-prolinal, whereas no detectable activity was observed with the FucA wild type. For the other substrates, the F131A mutant gave aldol activities from 4 to about 25 times higher than those observed with the FucA wild type. With regard to the stereochemistry of the reactions, the (R)-amino aldehydes gave exclusively the anti configured aldol adducts whereas their S counterparts gave variable ratios of anti/syn diastereoisomers. Interestingly, the F131A mutant was highly stereoselective both with (R)- and with (S)-N-Cbz-prolinal, exclusively producing the anti and syn aldol adducts, respectively. Molecular models suggest that this improved activity towards bulky and more rigid substrates, such as N-Cbz-prolinal, could arise from a better fit of the substrate into the hydrophobic pocket created by the F131A mutation, due to an additional π-cation interaction with the residue K205' and to efficient contact between the substrate and the mechanistically important Y113' and Y209' residues. An expedient synthesis of novel polyhydroxylated pyrrolizidines related to the hyacinthacine and alexine types was accomplished through aldol additions of dihydroxyacetone phosphate (DHAP) to hydroxyprolinal derivatives with the hyperactive FucA F131A as catalyst. The iminocyclitols obtained were fully characterised and found to be moderate to weak inhibitors (relative to 1,4-dideoxy-1,4-imino-L-arabinitol (LAB) and 1,4-dideoxy-1,4-imino-D-arabinitol (DAB)) against glycosidases and rat intestinal saccharidases.
Collapse
Affiliation(s)
- Xavier Garrabou
- Biotransformation and Bioactive Molecules Group, Instituto de Química Avanzada de Cataluña-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
45
|
Horne G, Wilson FX. Therapeutic Applications of Iminosugars: Current Perspectives and Future Opportunities. PROGRESS IN MEDICINAL CHEMISTRY 2011; 50:135-76. [DOI: 10.1016/b978-0-12-381290-2.00004-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
46
|
Synthesis of polyhydroxylated pyrrolizidine and indolizidine compounds and their glycosidase inhibitory activities. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Tamayo JA, Franco F, Sánchez-Cantalejo F. Synthesis of unnatural pentahydroxylated pyrrolizidines: 5-epi- and 5,7a-di-epi-hyacinthacine C1. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Hu XG, Bartholomew B, Nash RJ, Wilson FX, Fleet GWJ, Nakagawa S, Kato A, Jia YM, Well RV, Yu CY. Synthesis and Glycosidase Inhibition of the Enantiomer of (−)-Steviamine, the First Example of a New Class of Indolizidine Alkaloid. Org Lett 2010; 12:2562-5. [DOI: 10.1021/ol1007718] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiang-Guo Hu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, Graduate University of The Chinese Academy of Sciences, Beijing 100049, China, Phytoquest Limited, IBERS, Plas Gogerddan, Aberystwyth SY23 3EB, Ceredigion, Wales, U.K., Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Summit PLC, 91, Milton Park, Abingdon, Oxon OX14 4RY,
| | - Barbara Bartholomew
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, Graduate University of The Chinese Academy of Sciences, Beijing 100049, China, Phytoquest Limited, IBERS, Plas Gogerddan, Aberystwyth SY23 3EB, Ceredigion, Wales, U.K., Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Summit PLC, 91, Milton Park, Abingdon, Oxon OX14 4RY,
| | - Robert J. Nash
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, Graduate University of The Chinese Academy of Sciences, Beijing 100049, China, Phytoquest Limited, IBERS, Plas Gogerddan, Aberystwyth SY23 3EB, Ceredigion, Wales, U.K., Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Summit PLC, 91, Milton Park, Abingdon, Oxon OX14 4RY,
| | - Francis X. Wilson
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, Graduate University of The Chinese Academy of Sciences, Beijing 100049, China, Phytoquest Limited, IBERS, Plas Gogerddan, Aberystwyth SY23 3EB, Ceredigion, Wales, U.K., Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Summit PLC, 91, Milton Park, Abingdon, Oxon OX14 4RY,
| | - George W. J. Fleet
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, Graduate University of The Chinese Academy of Sciences, Beijing 100049, China, Phytoquest Limited, IBERS, Plas Gogerddan, Aberystwyth SY23 3EB, Ceredigion, Wales, U.K., Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Summit PLC, 91, Milton Park, Abingdon, Oxon OX14 4RY,
| | - Shinpei Nakagawa
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, Graduate University of The Chinese Academy of Sciences, Beijing 100049, China, Phytoquest Limited, IBERS, Plas Gogerddan, Aberystwyth SY23 3EB, Ceredigion, Wales, U.K., Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Summit PLC, 91, Milton Park, Abingdon, Oxon OX14 4RY,
| | - Atsushi Kato
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, Graduate University of The Chinese Academy of Sciences, Beijing 100049, China, Phytoquest Limited, IBERS, Plas Gogerddan, Aberystwyth SY23 3EB, Ceredigion, Wales, U.K., Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Summit PLC, 91, Milton Park, Abingdon, Oxon OX14 4RY,
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, Graduate University of The Chinese Academy of Sciences, Beijing 100049, China, Phytoquest Limited, IBERS, Plas Gogerddan, Aberystwyth SY23 3EB, Ceredigion, Wales, U.K., Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Summit PLC, 91, Milton Park, Abingdon, Oxon OX14 4RY,
| | - Renate van Well
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, Graduate University of The Chinese Academy of Sciences, Beijing 100049, China, Phytoquest Limited, IBERS, Plas Gogerddan, Aberystwyth SY23 3EB, Ceredigion, Wales, U.K., Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Summit PLC, 91, Milton Park, Abingdon, Oxon OX14 4RY,
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, Graduate University of The Chinese Academy of Sciences, Beijing 100049, China, Phytoquest Limited, IBERS, Plas Gogerddan, Aberystwyth SY23 3EB, Ceredigion, Wales, U.K., Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, Summit PLC, 91, Milton Park, Abingdon, Oxon OX14 4RY,
| |
Collapse
|
49
|
Izquierdo I, Plaza MT, Tamayo JA, Franco F, Sánchez-Cantalejo F. Total synthesis of natural (+)-hyacinthacine A6 and non-natural (+)-7a-epi-hyacinthacine A1 and (+)-5,7a-diepi-hyacinthacine A6. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.03.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Best D, Wang C, Weymouth-Wilson AC, Clarkson RA, Wilson FX, Nash RJ, Miyauchi S, Kato A, Fleet GW. Looking glass inhibitors: scalable syntheses of DNJ, DMDP, and (3R)-3-hydroxy-l-bulgecinine from d-glucuronolactone and of l-DNJ, l-DMDP, and (3S)-3-hydroxy-d-bulgecinine from l-glucuronolactone. DMDP inhibits β-glucosidases and β-galactosidases whereas l-DMDP is a potent and specific inhibitor of α-glucosidases. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.tetasy.2010.01.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|