1
|
Demers I, Donkers J, Kremer B, Speel EJ. Ex Vivo Culture Models to Indicate Therapy Response in Head and Neck Squamous Cell Carcinoma. Cells 2020; 9:E2527. [PMID: 33238461 PMCID: PMC7700693 DOI: 10.3390/cells9112527] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is characterized by a poor 5 year survival and varying response rates to both standard-of-care and new treatments. Despite advances in medicine and treatment methods, mortality rates have hardly decreased in recent decades. Reliable patient-derived tumor models offer the chance to predict therapy response in a personalized setting, thereby improving treatment efficacy by identifying the most appropriate treatment regimen for each patient. Furthermore, ex vivo tumor models enable testing of novel therapies before introduction in clinical practice. A literature search was performed to identify relevant literature describing three-dimensional ex vivo culture models of HNSCC to examine sensitivity to chemotherapy, radiotherapy, immunotherapy and targeted therapy. We provide a comprehensive overview of the currently used three-dimensional ex vivo culture models for HNSCC with their advantages and limitations, including culture success percentage and comparison to the original tumor. Furthermore, we evaluate the potential of these models to predict patient therapy response.
Collapse
Affiliation(s)
- Imke Demers
- Department of Pathology, GROW-school for Oncology and Development Biology, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands;
| | - Johan Donkers
- Department of Otorhinolaryngology, Head and Neck Surgery, GROW-School for Oncology and Development Biology, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands; (J.D.); (B.K.)
| | - Bernd Kremer
- Department of Otorhinolaryngology, Head and Neck Surgery, GROW-School for Oncology and Development Biology, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands; (J.D.); (B.K.)
| | - Ernst Jan Speel
- Department of Pathology, GROW-school for Oncology and Development Biology, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands;
| |
Collapse
|
2
|
Helgaland T, Engelen B, Olsnes C, Aarstad HJ, Vassbotn FS. In vitro cholesteatoma growth and secretion of cytokines. Acta Otolaryngol 2010; 130:815-9. [PMID: 20085440 DOI: 10.3109/00016480903413657] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION Our results show a significant difference between skin and cholesteatoma biology in vitro. OBJECTIVES Cholesteatoma disease is a process of destruction characterized by uncontrolled growth of squamous epithelial cells in the middle ear or temporal bone. The pathophysiology behind the cholesteatoma development is controversial, and the mechanisms driving the cholesteatoma growth, migration and destructive properties is still unclear. We aimed to provide a method to study the effect of various compounds on cholesteatoma and skin tissue growth, as well as to further investigate the biological differences between normal skin and cholesteatoma tissue. METHODS We have established a method to study cholesteatoma biopsy tissue in vitro. Cholesteatoma tissues from patients undergoing surgery for chronic otitis were grown in culture medium and compared to growth patterns and behaviour of normal retroauricular skin. Conditioned medium was analysed for various secreted cytokines. RESULTS We found a radial outgrowth of keratinocyte epithelium from the circular biopsies. After 5 days of culture we found a significant growth of both cholesteatoma and skin-derived cells. Cholesteatoma samples showed higher growth rate as compared with skin control cultures from the same patient. Moreover, the cholesteatoma cells showed higher production of monocyte chemoattractant protein-1 (MCP-1) and interleukin (IL)-6 as compared with normal skin.
Collapse
|
3
|
Friedrich J, Ebner R, Kunz-Schughart LA. Experimental anti-tumor therapy in 3-D: spheroids--old hat or new challenge? Int J Radiat Biol 2008; 83:849-71. [PMID: 18058370 DOI: 10.1080/09553000701727531] [Citation(s) in RCA: 325] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE To give a state-of-the-art overview on the promise of three-dimensional (3-D) culture systems for anticancer drug development, with particular emphasis on multicellular tumor spheroids (MCTS). RESULTS AND CONCLUSIONS Cell-based assays have become an integral component in many stages of routine anti-tumor drug testing. However, they are almost always based on homogenous monolayer or suspension cultures and thus represent a rather artificial cellular environment. 3-D cultures--such as the well established spheroid culture system--better reflect the in vivo behavior of cells in tumor tissues and are increasingly recognized as valuable advanced tools for evaluating the efficacy of therapeutic intervention. The present article summarizes past and current applications and particularly discusses technological challenges, required improvements and recent progress with the use of the spheroid model in experimental therapeutics, as a basis for sophisticated drug/therapy screening. A brief overview is given focusing on the nomenclature of spherical 3-D cultures, their potential to mimic many aspects of the pathophysiological situation in tumors, and currently available protocols for culturing and analysis. A list of spheroid-forming epithelial cancer cell lines of different origin is provided and the recent trend to use spheroids for testing combination treatment strategies is highlighted. Finally, various spheroid co-culture approaches are presented that have been established to study heterologous cell interactions in solid tumors and thereby are able to reflect the cellular tumor environment with increasing accuracy. The intriguing observation that in order to retain certain tumor initiating cell properties, some primary tumor cell populations must be maintained exclusively in 3-D culture is mentioned, adding a new but fascinating challenge for future therapeutic campaigns.
Collapse
|
4
|
Schmolz M. Functional drug candidate profiling using complex human organotypic cell culture models: a promising way to reduce clinical drug failure. Expert Opin Drug Discov 2007; 2:935-47. [DOI: 10.1517/17460441.2.7.935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Yasuhara T, Matsukawa N, Hara K, Yu G, Xu L, Maki M, Kim SU, Borlongan CV. Transplantation of human neural stem cells exerts neuroprotection in a rat model of Parkinson's disease. J Neurosci 2006; 26:12497-511. [PMID: 17135412 PMCID: PMC6674904 DOI: 10.1523/jneurosci.3719-06.2006] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neural stem cells (NSCs) possess high potencies of self-renewal and neuronal differentiation. We explored here whether transplantation of human NSCs cloned by v-myc gene transfer, HB1.F3 cells, is a feasible therapeutic option for Parkinson's disease. In vivo, green fluorescent protein-labeled HB1.F3 cells (200,000 viable cells in 3 microl of PBS) when stereotaxically transplanted (same-day lesion-transplant paradigm) into the 6-hydroxydopamine-lesioned striatum of rats significantly ameliorated parkinsonian behavioral symptoms compared with controls (vehicle, single bolus, or continuous minipump infusion of trophic factor, or killed cell grafts). Such graft-derived functional effects were accompanied by preservation of tyrosine hydroxylase (TH) immunoreactivity along the nigrostriatal pathway. Grafted HB1.F3 cells survived in the lesioned brain with some labeled with neuronal marker mitogen-activated protein 2 and decorated with synaptophysin-positive terminals. Furthermore, endogenous neurogenesis was activated in the subventricular zone of transplanted rats. To further explore the neuroprotective mechanisms underlying HB1.F3 cell transplantation, we performed cell culture studies and found that a modest number of HB1.F3 cells were TH and dopamine and cAMP-regulated phosphoprotein 32 positive, although most cells were nestin positive, suggesting a mixed population of mature and immature cells. Administration of the HB1.F3 supernatant to human derived dopaminergic SH-SY5Y cells and fetal rat ventral mesencephalic dopaminergic neurons protected against 6-hydroxydopamine neurotoxicity by suppressing apoptosis through Bcl-2 upregulation, which was blocked by anti-stem cell factor antibody alone, the phosphatidylinositol 3-kinase/Akt inhibitor LY294002 [2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one] alone, or a combination of both. These results suggest that HB1.F3 cell transplantation exerts neuroprotective effects against dopaminergic depletion in vitro and in vivo because of trophic factor secretion and neuronal differentiation.
Collapse
Affiliation(s)
- Takao Yasuhara
- Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912
| | - Noriyuki Matsukawa
- Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912
| | - Koichi Hara
- Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912
| | - Guolong Yu
- Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912
| | - Lin Xu
- Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912
| | - Mina Maki
- Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912
| | - Seung U. Kim
- Disease Research Center, Ajou University School of Medicine, Suwon 443-721, Korea
- Division of Neurology, University of British Columbia Hospital, Vancouver, British Columbia, Canada V5Z 1M9, and
| | - Cesario V. Borlongan
- Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912
- Research and Affiliations Service Line, Augusta Veterans Affairs Medical Center, Augusta, Georgia 30904
| |
Collapse
|
6
|
Olsnes C, Heimdal JH, Kross KW, Olofsson J, Aarstad HJ. Viable head and neck tumor spheroids stimulate in vitro autologous monocyte MCP-1 secretion through soluble substances and CD14/lectin-like receptors. Eur Arch Otorhinolaryngol 2005; 262:953-60. [PMID: 16328410 DOI: 10.1007/s00405-004-0902-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Accepted: 11/18/2004] [Indexed: 10/25/2022]
Abstract
Biopsies from carcinoma tissue and benign control mucosa from head and neck squamous cell carcinoma (HNSCC) patients were used to establish fragment (F)-spheroids in vitro. We have previously shown that autologous monocytes co-cultured with F-spheroids in vitro augment their secretion of monocyte chemotactic protein-1 (MCP-1). Presently, the aims of the present work were to study whether the metabolic activity, secreted products and/or specific receptor/ligand on the surface of the F-spheroids and monocytes are necessary for stimulation of the monocyte MCP-1 secretion upon F-spheroid co-culture. Actinomycin D (1 mug/ml for 24 h) pre-treatment of the F-spheroids abolished the monocyte MCP-1 co-culture response. Co-culture of monocytes and F-spheroids separated by a semi-permeable membrane showed a decreased, but still present, monocyte MCP-1 co-culture response. Conditioned medium from F-spheroids stimulated allogenous monocytes to secrete MCP-1. The addition of glucose or galactose, but not mannose, to co-cultures partially inhibited the monocyte MCP-1 co-culture response. The addition of anti-CD14 antibody diminished the MCP-1 co-culture response. In conclusion, the monocyte MCP-1 co-culture response is dependent on metabolically active spheroids, secreted stimuli, and is augmented by direct contact with F-spheroids, possibly via lectin-like receptors and the CD14 receptor.
Collapse
Affiliation(s)
- Carla Olsnes
- Department of Otolaryngology and Head and Neck Surgery, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | |
Collapse
|
7
|
Kross KW, Heimdal JH, Olsnes C, Olofsson J, Aarstad HJ. Head and neck squamous cell carcinoma spheroid- and monocyte spheroid-stimulated IL-6 and monocyte chemotactic protein-1 secretion are related to TNM stage, inflammatory state and tumor macrophage density. Acta Otolaryngol 2005; 125:1097-104. [PMID: 16298793 DOI: 10.1080/00016480510038031] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Monocyte fragment (F)-spheroid-stimulated and F-spheroid IL-6 and monocyte chemotactic protein (MCP)-1 secretion are related to inflammatory state, macrophage density and the TNM stage of patients with head and neck squamous cell carcinoma (HNSCC). Fragment (F)-spheroids from HNSCC patients in vitro secrete and stimulate autologous monocytes to secrete IL-6 and MCP-1. The aim of this investigation was to study this cytokine secretion in relation to other cytokines, spheroid composition and host factors.In series I (n=14) the densities of epithelial cells, fibroblasts and macrophages were determined in sections from F-spheroids and donor tissue. In series II (n=17) the TNM stage, donor inflammatory state, macrophage density and the secretion of F-spheroid- and monocyte F-spheroid-stimulated IL-6, MCP-1 and tumor necrosis factor (TNF)-alpha were determined. Epithelial cells were partly replaced by interstitial tissue during spheroid formation. Malignant (M) F-spheroids secreted more MCP-1 than benign (B) F-spheroids. No F-spheroid secreted measurable amounts of TNF-alpha. Monocytes secreted more IL-6 when co-cultured with MF- compared to BF-spheroids. Monocyte IL-6 MF- and MCP-1 MB-spheroid-stimulated secretion correlated with macrophage density. In addition, there was an association between MF- and BF-spheroid-stimulated monocyte cytokine secretion, as well as between BF- and MF-spheroid-stimulated MCP-1 secretion. An inverse relation was also noted between the erythrocyte sedimentation rate at monocyte harvest and the monocyte MCP-1 F-spheroid responses.
Collapse
Affiliation(s)
- Kenneth W Kross
- Department of Otolaryngology/Head and Neck Surgery, Haukeland University Hospital and Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
| | | | | | | | | |
Collapse
|
8
|
Kunz-Schughart LA, Freyer JP, Hofstaedter F, Ebner R. The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. ACTA ACUST UNITED AC 2004; 9:273-85. [PMID: 15191644 DOI: 10.1177/1087057104265040] [Citation(s) in RCA: 536] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the past few years, establishment and adaptation of cell-based assays for drug development and testing has become an important topic in high-throughput screening (HTS). Most new assays are designed to rapidly detect specific cellular effects reflecting action at various targets. However, although more complex than cell-free biochemical test systems, HTS assays using monolayer or suspension cultures still reflect a highly artificial cellular environment and may thus have limited predictive value for the clinical efficacy of a compound. Today's strategies for drug discovery and development, be they hypothesis free or mechanism based, require facile, HTS-amenable test systems that mimic the human tissue environment with increasing accuracy in order to optimize preclinical and preanimal selection of the most active molecules from a large pool of potential effectors, for example, against solid tumors. Indeed, it is recognized that 3-dimensional cell culture systems better reflect the in vivo behavior of most cell types. However, these 3-D test systems have not yet been incorporated into mainstream drug development operations. This article addresses the relevance and potential of 3-D in vitro systems for drug development, with a focus on screening for novel antitumor drugs. Examples of 3-D cell models used in cancer research are given, and the advantages and limitations of these systems of intermediate complexity are discussed in comparison with both 2-D culture and in vivo models. The most commonly used 3-D cell culture systems, multicellular spheroids, are emphasized due to their advantages and potential for rapid development as HTS systems. Thus, multicellular tumor spheroids are an ideal basis for the next step in creating HTS assays, which are predictive of in vivo antitumor efficacy.
Collapse
Affiliation(s)
- Leoni A Kunz-Schughart
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauss Allee 11, D-93042 Regensburg, Germany.
| | | | | | | |
Collapse
|