1
|
Keil TWM, Merkel OM. Characterization of positively charged polyplexes by tunable resistive pulse sensing. Eur J Pharm Biopharm 2020; 158:359-364. [PMID: 33338601 DOI: 10.1016/j.ejpb.2020.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/21/2020] [Accepted: 12/11/2020] [Indexed: 11/26/2022]
Abstract
With the approval of the first siRNA-based drugs, non-viral siRNA delivery has gained special interest in industry and academia in the last two years. For non-viral delivery, positively charged lipid and polymer formulations play a central role in research and development. However, nanoparticle size characterization, particularly of polydisperse formulations, can be very challenging. Tunable resistive pulse sensing for particle by particle measurements of size, polydispersity, zeta potential and a direct concentration promises better assessment of nanoparticle formulations. However, the current application is not optimized for positively charged particles. A supplier-provided coating solution for difficult-to-measure samples does not allow for successful measurements of positively charged nanoparticles. This article describes a new coating solution based on choline-chloride. Coating is verified by current-voltage (I-V) recordings and ultimately tested on a positively charged nanoparticle formulation comprising of siRNA and PEG-PCL-PEI polymer. This coating allows successful size, polydispersity index (PDI) and concentration measurement by tunable resistive pulse sensing of positively charged PEI-based polyplexes. This article provides the foundation for further characterization of polyplexes as well as other positively charged nanoparticle formulations based on particle by particle measurements.
Collapse
Affiliation(s)
- Tobias W M Keil
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians Universität München, 81377 Munich, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians Universität München, 81377 Munich, Germany.
| |
Collapse
|
2
|
Jiang Y, Lodge TP, Reineke TM. Packaging pDNA by Polymeric ABC Micelles Simultaneously Achieves Colloidal Stability and Structural Control. J Am Chem Soc 2018; 140:11101-11111. [DOI: 10.1021/jacs.8b06309] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yaming Jiang
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Timothy P. Lodge
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Theresa M. Reineke
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Mortuza SM, Kariyawasam LK, Banerjee S. Combined deterministic-stochastic framework for modeling the agglomeration of colloidal particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:013304. [PMID: 26274304 DOI: 10.1103/physreve.92.013304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Indexed: 06/04/2023]
Abstract
We present a multiscale model, based on molecular dynamics (MD) and kinetic Monte Carlo (kMC), to study the aggregation driven growth of colloidal particles. Coarse-grained molecular dynamics (CGMD) simulations are employed to detect key agglomeration events and calculate the corresponding rate constants. The kMC simulations employ these rate constants in a stochastic framework to track the growth of the agglomerates over longer time scales and length scales. One of the hallmarks of the model is a unique methodology to detect and characterize agglomeration events. The model accounts for individual cluster-scale effects such as change in size due to aggregation as well as local molecular-scale effects such as changes in the number of neighbors of each molecule in a colloidal cluster. Such definition of agglomeration events allows us to grow the cluster to sizes that are inaccessible to molecular simulations as well as track the shape of the growing cluster. A well-studied system, comprising fullerenes in NaCl electrolyte solution, was simulated to validate the model. Under the simulated conditions, the agglomeration process evolves from a diffusion limited cluster aggregation (DLCA) regime to percolating cluster in transition and finally to a gelation regime. Overall the data from the multiscale numerical model shows good agreement with existing theory of colloidal particle growth. Although in the present study we validated our model by specifically simulating fullerene agglomeration in electrolyte solution, the model is versatile and can be applied to a wide range of colloidal systems.
Collapse
Affiliation(s)
- S M Mortuza
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920, USA
| | - Lahiru K Kariyawasam
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920, USA
| | - Soumik Banerjee
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920, USA
| |
Collapse
|
4
|
|
5
|
Dai F, Liu Y, Wang W, Liu W. Stable gene transfection mediated by polysulfobetaine/PDMAEMA diblock copolymer in salted medium. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 24:330-43. [DOI: 10.1080/09205063.2012.690279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Fengying Dai
- a School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , 92 Weijin Road, Nankai District, Tianjin , 300072 , People’s Republic of China
- b National Key Laboratory of Biochemical Engineering, Institute of Process Engineering , Chinese Academy Of Sciences , No. 1 Zhongguancun North Second Street, Beijing , 100190 , People’s Republic of China
| | - Yuan Liu
- a School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , 92 Weijin Road, Nankai District, Tianjin , 300072 , People’s Republic of China
| | - Wei Wang
- a School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , 92 Weijin Road, Nankai District, Tianjin , 300072 , People’s Republic of China
| | - Wenguang Liu
- a School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , 92 Weijin Road, Nankai District, Tianjin , 300072 , People’s Republic of China
| |
Collapse
|
6
|
Başer B, Demirel GB, Caykara T. DNA adsorption on poly(N,N-dimethylacrylamide)-grafted chitosan hydrogels. J Appl Polym Sci 2010. [DOI: 10.1002/app.33029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Roth CM, Sundaram S. Engineering synthetic vectors for improved DNA delivery: insights from intracellular pathways. Annu Rev Biomed Eng 2004; 6:397-426. [PMID: 15255775 DOI: 10.1146/annurev.bioeng.6.040803.140203] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Significant progress has been made in the area of nonviral gene delivery to date. Yet, synthetic vectors remain less efficient by orders of magnitude than their viral counterparts. Research continues toward unraveling and overcoming various barriers to the efficient delivery of DNA, whether in plasmid form encoding a gene or as an oligonucleotide for the selective inhibition of target gene expression. Novel components for overcoming these hurdles are continually being incorporated into the design of synthetic vectors, leading to increasingly more virus-like particles. Despite these advances, general principles defining the design of synthetic vectors are yet to be developed fully. A more quantitative analysis of the cellular uptake and intracellular processing of these vectors is required for the rational manipulation of vector design. Mathematical frameworks with a more conceptual basis will help obtain an integrated perspective on these complex systems. In this review, we critically examine the progress made toward the improved design of synthetic vectors by the strategic exploitation of intracellular mechanisms and explore newer possibilities to overcome obstacles in the practical realization of this field.
Collapse
Affiliation(s)
- Charles M Roth
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | |
Collapse
|
8
|
Trimaille T, Chaix C, Pichot C, Delair T. Polymer functionalized submicrometric emulsions as potential synthetic DNA vectors. J Colloid Interface Sci 2003; 258:135-45. [PMID: 12600781 DOI: 10.1016/s0021-9797(02)00069-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Triglyceride-based emulsions were first prepared by a solvent displacement procedure which was modified to achieve their functionalization by surface deposition of various amphiphilic comb-like copolymers. These emulsions have been characterized as regards to hydrodynamic particle size and surface charges using dynamic light scattering and electrophoretic mobility measurements. The adsorption isotherms of a polydT15 oligonucleotide and a model plasmid showed that the process was dependent on the nature of the interfaces, the affinity for the nucleic acid increasing with more cationic charges, together with improved accessibility. The binding process was found to proceed according to two regimes: one at low nucleic acid coverage, independent of the initial plasmid concentration, and the second one at high coverage, which was nucleic-acid-concentration dependent. This behavior was considered to occur because of the development of repulsive interactions upon increasing the amount of immobilized nucleic acid. The complexation of plasmid complexed at the interface was finally investigated using the ethidium bromide displacement technique. The level of compaction of plasmid complexed onto the functionalized emulsions was lower than that obtained with the parent free polymer.
Collapse
Affiliation(s)
- Thomas Trimaille
- UMR 2142, CNRS-bioMérieux, ENS-Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | |
Collapse
|
9
|
?enel S, Bayramo??lu G, Ar?ca MY. DNA adsorption on a poly-L-lysine-immobilized poly(2-hydroxyethyl methacrylate) membrane. POLYM INT 2003. [DOI: 10.1002/pi.1229] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|