1
|
Zak EJ, Tennyson J. Ro-vibronic transition intensities for triatomic molecules from the exact kinetic energy operator; electronic spectrum for the C̃ 1B 2 ← X̃ 1A 1 transition in SO 2. J Chem Phys 2017; 147:094305. [PMID: 28886637 DOI: 10.1063/1.4986943] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A procedure for calculating ro-vibronic transition intensities for triatomic molecules within the Born-Oppenheimer approximation is reported. Ro-vibrational energy levels and wavefunctions are obtained with the DVR3D suite, which solves the nuclear motion problem with an exact kinetic energy operator. Absolute transition intensities are calculated both with the Franck-Condon approximation and with a full transition dipole moment surface. The theoretical scheme is tested on C̃ 1B2 ← X̃ 1A1 ro-vibronic transitions of SO2. Ab initio potential energy and dipole moment surfaces are generated for this purpose. The calculated ro-vibronic transition intensities and cross sections are compared with the available experimental and theoretical data.
Collapse
Affiliation(s)
- Emil J Zak
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - Jonathan Tennyson
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
2
|
Xie C, Jiang B, Kłos J, Kumar P, Alexander MH, Poirier B, Guo H. Final State Resolved Quantum Predissociation Dynamics of SO 2(C̃ 1B 2) and Its Isotopomers via a Crossing with a Singlet Repulsive State. J Phys Chem A 2017; 121:4930-4938. [PMID: 28613867 DOI: 10.1021/acs.jpca.7b04629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The fragmentation dynamics of predissociative SO2(C̃1B2) is investigated on an accurate adiabatic potential energy surface (PES) determined from high level ab initio data. This singlet PES features non-C2v equilibrium geometries for SO2, which are separated from the SO(X̃3Σ-) + O(3P) dissociation limit by a barrier resulting from a conical intersection with a repulsive singlet state. The ro-vibrational state distribution of the SO fragment is determined quantum mechanically for many predissociative states of several sulfur isotopomers of SO2. Significant rotational and vibrational excitations are found in the SO fragment. It is shown that these fragment internal state distributions are strongly dependent on the predissociative vibronic states, and the excitation typically increases with the photon energy.
Collapse
Affiliation(s)
- Changjian Xie
- Department of Chemistry and Chemical Biology, University of New Mexico , Albuquerque, New Mexico 87131, United States
| | - Bin Jiang
- Department of Chemistry and Chemical Biology, University of New Mexico , Albuquerque, New Mexico 87131, United States
| | - Jacek Kłos
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| | - Praveen Kumar
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| | - Millard H Alexander
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742, United States.,Institute for Physical Science and Technology, University of Maryland , College Park, Maryland 20742, United States
| | - Bill Poirier
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico , Albuquerque, New Mexico 87131, United States
| |
Collapse
|
3
|
Jiang B, Kumar P, Kłos J, Alexander MH, Poirier B, Guo H. First-principles C band absorption spectra of SO 2 and its isotopologues. J Chem Phys 2017; 146:154305. [PMID: 28433016 DOI: 10.1063/1.4980124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The low-energy wing of the C∼B21←X∼1A1 absorption spectra for SO2 in the ultraviolet region is computed for the 32S,33S,34S and 36S isotopes, using the recently developed ab initio potential energy surfaces (PESs) of the two electronic states and the corresponding transition dipole surface. The state-resolved absorption spectra from various ro-vibrational states of SO2(X∼1A1) are computed. When contributions of these excited ro-vibrational states are included, the thermally averaged spectra are broadened but maintain their key characters. Excellent agreement with experimental absorption spectra is found, validating the accuracy of the PESs. The isotope shifts of the absorption peaks are found to increase linearly with energy, in good agreement with experiment.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Praveen Kumar
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Jacek Kłos
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Millard H Alexander
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Bill Poirier
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
4
|
Kłos J, Alexander MH, Kumar P, Poirier B, Jiang B, Guo H. New ab initio adiabatic potential energy surfaces and bound state calculations for the singlet ground X̃1A1 and excited C̃1B2(21A′) states of SO2. J Chem Phys 2016; 144:174301. [DOI: 10.1063/1.4947526] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jacek Kłos
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Millard H. Alexander
- Department of Chemistry and Biochemistry and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Praveen Kumar
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Bill Poirier
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Bin Jiang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
5
|
Park GB, Jiang J, Field RW. The origin of unequal bond lengths in the C̃1B2
state of SO2: Signatures of high-lying potential energy surface crossings
in the low-lying vibrational structure. J Chem Phys 2016; 144:144313. [DOI: 10.1063/1.4945622] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- G. Barratt Park
- Department of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139,
USA
| | - Jun Jiang
- Department of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139,
USA
| | - Robert W. Field
- Department of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139,
USA
| |
Collapse
|
6
|
Park GB, Jiang J, Saladrigas CA, Field RW. Observation of b2 symmetry vibrational levels of the SO2 C̃ 1B2 state: Vibrational level staggering, Coriolis interactions, and rotation-vibration constants. J Chem Phys 2016; 144:144311. [DOI: 10.1063/1.4944924] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- G. Barratt Park
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jun Jiang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Catherine A. Saladrigas
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Robert W. Field
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
7
|
Park GB, Womack CC, Whitehill AR, Jiang J, Ono S, Field RW. Millimeter-wave optical double resonance schemes for rapid assignment of perturbed spectra, with applications to the C̃1B2 state of SO2. J Chem Phys 2015; 142:144201. [DOI: 10.1063/1.4916908] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- G. Barratt Park
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Caroline C. Womack
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Andrew R. Whitehill
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jun Jiang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Shuhei Ono
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Robert W. Field
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
8
|
GUO HUA, CHEN RONGQING, XIE DAIQIAN. CALCULATION OF TRANSITION AMPLITUDES WITH A SINGLE LANCZOS PROPAGATION. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2012. [DOI: 10.1142/s0219633602000129] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We review in this article a recently proposed energy-global method that is capable of calculating the entire transition amplitude matrix with a single Lanczos propagation. This method requires neither explicit computation nor storage of the eigenfunctions, rendering it extremely memory efficient. Procedures are proposed to handle situations where "spurious" eigenvalues aggregate around true eigenvalues due to round-off errors. This method is amenable to both real-symmetric and complex-symmetric Hamiltonians. Applications to molecular spectra and reactive scattering are presented. Its relationships with other methods are also discussed.
Collapse
Affiliation(s)
- HUA GUO
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - RONGQING CHEN
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - DAIQIAN XIE
- Department of Chemistry and Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| |
Collapse
|
9
|
Zhang G, Zhang L, Jin Y. Emission spectrum and relaxation kinetics of SO2 induced by 266 nm laser. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2010; 77:141-145. [PMID: 20537581 DOI: 10.1016/j.saa.2010.04.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 03/15/2010] [Accepted: 04/30/2010] [Indexed: 05/29/2023]
Abstract
Laser induced fluorescence (LIF) emission spectrum of SO(2) in the range of 270.0-470.0 nm has been obtained with the quadruple harmonic output (266 nm) of a pulsed Nd:YAG laser as excitation source. The spectrum is composed of a continuous envelope in the short wavelength side, while it shows the character of banded structure superimposed on a continuous one in the long wavelength region. Fluorescence emission from the hybrid states of A(1)A(2)+B(1)B(1) and X(1)A(1)+B(1)B(1) forms the continuous envelope and phosphorescence emission from the triplet state a(3)B(1) forms the banded progression. It is also found that direct emission from laser excited states is very weak. The primary portion of the emission is from the energy levels populated by collision relaxation or collision induced intersystem crossing process. The harmonic frequencies and inharmonic coefficients of the symmetric stretching vibration and the bending vibration of X(1)A(1) state are derived from the ascription of the phosphorescence progression.
Collapse
Affiliation(s)
- Guiyin Zhang
- School of Mathematics and Physics, North China Electric Power University, Baoding 071003, China.
| | | | | |
Collapse
|
10
|
Tokue I, Nanbu S. Theoretical studies of absorption cross sections for the C (1)B(2)-X (1)A(1) system of sulfur dioxide and isotope effects. J Chem Phys 2010; 132:024301. [PMID: 20095668 DOI: 10.1063/1.3277191] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The C (1)B(2)-X (1)A(1) photoexcitation of SO(2) was studied to investigate excited-state dynamics and the effects of the initial vibrational state. Ultraviolet photoabsorption cross sections (sigma's) of seven isotopologues ((32)S (16)O(2), (33)S (16)O(2), (34)S (16)O(2), (36)S (16)O(2), (32)S(16)O(17)O, (32)S(16)O(18)O, (34)S(16)O(18)O) were computed using the wave packet propagation technique based on the three-dimensional potential energy surfaces of the X and C states, which were calculated using the ab initio molecular orbital configuration interaction method. Numerous wave packet simulations were carried out under the adiabatic approximation and used to calculate the sigma's of the seven isotopologues at 298 K; we concluded that the absorption spectrum of SO(2) can be reliably modeled within the adiabatic framework based on the analysis of the time evolution of the wave packet. The calculated sigma's are in reasonable agreement with the recent experiment in the 190-228 nm region, and the isotope shifts of the peaks for (33)S (16)O(2) and (34)S (16)O(2) relative to the corresponding peaks for (32)S (16)O(2) are in good agreement with the observed data. Relative to the sigma of (32)S (16)O(2), isotopic substitution shows a significant increment for those of (34)S (16)O(2) and (36)S (16)O(2) in the 190-228 nm region. This trend is consistent with the observed data.
Collapse
Affiliation(s)
- Ikuo Tokue
- Department of Chemistry, Faculty of Science, Niigata University, Ikarashi, Niigata 950-2181, Japan.
| | | |
Collapse
|
11
|
|
12
|
Hu C, Pei S, Chang C, Liu K. On the use of photoelectron spectroscopy to probe the dynamics of a dissociative intermediate state. Mol Phys 2008. [DOI: 10.1080/00268970701843758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
The asymptotic region of the potential energy surfaces relevant for the O(3P)+SO(X3Σ−) reaction. Chem Phys Lett 2005. [DOI: 10.1016/j.cplett.2005.06.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Palmer * MH, Shaw DA, Guest MF. The electronically excited and ionic states of sulphur dioxide: anab initiomolecular orbital CI study and comparison with spectral data. Mol Phys 2005. [DOI: 10.1080/00268970512331338135] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Absorption and resonance emission spectra of SO2(X̃1A1/C̃1B2) calculated from ab initio potential energy and transition dipole moment surfaces. Chem Phys Lett 2000. [DOI: 10.1016/s0009-2614(00)01049-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|