1
|
Liu C, Qin X, Yu C, Guo Y, Zhang Z. Probing the adsorption configuration of methanol at a charged air/aqueous interface using nonlinear spectroscopy. Phys Chem Chem Phys 2024; 26:14336-14344. [PMID: 38699833 DOI: 10.1039/d3cp06317h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Investigating the effects of electrolyte ions on the adsorption configuration of methanol at a charged interface is important for studying the interface structure of electrolyte solutions and the oxidation mechanism of methanol in fuel cells. This study uses sum frequency generation (SFG) and heterodyne-detected second harmonic generation (HD-SHG) to investigate the adsorption configuration of methanol at the air/aqueous interface of 0.1 M NaClO4 solution, 0.1 M HClO4 solution and pure water. The results elucidate that the ion effect in the electrolyte solution affects the interface's charged state and the methanol's adsorption conformation at the interface. The negatively charged surface of the 0.1 M NaClO4 solution and the positively charged surface of the 0.1 M HClO4 solution arise from the corresponding specific ionic effects of the electrolyte solution. The orientation angle of methyl with respect to the surface normal is 43.4° ± 0.1° at the 0.1 M NaClO4 solution surface and 21.5° ± 0.2° at the 0.1 M HClO4 solution surface. Examining these adsorption configurations in detail, we find that at the negatively charged surface the inclined orientation angle (43.4°) of methanol favors the hydroxymethyl production by breaking the C-H bond, while at the positively charged surface the upright orientation angle (21.5°) of methanol promotes the methoxy formation by breaking the O-H bond. These findings not only illuminate the intricate ion effects on small organic molecules but also contribute to a molecular-level comprehension of the oxidation mechanism of methanol at electrode interfaces.
Collapse
Affiliation(s)
- Caihe Liu
- Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xujin Qin
- Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Changhui Yu
- Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Guo
- Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Zhang
- Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Bui TT, Colón LA, Velarde L. Intermolecular Interactions at the Silica-Liquid Interface Modulate the Fermi Resonance Coupling in Surface Methanol. J Phys Chem Lett 2021; 12:5695-5702. [PMID: 34115940 DOI: 10.1021/acs.jpclett.1c01015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The buried solid/liquid interface between hydrophilic fused silica and binary solvent mixtures of acetonitrile (MeCN) and methanol (MeOH) was studied with vibrational sum-frequency generation (vSFG) spectroscopy. Our data showed that at high relative concentrations of methanol, the Fermi resonance peak in the vSFG spectrum is greatly suppressed, and it progressively gains intensity as methanol is diluted with perdeuterated acetonitrile. This phenomenon is quantified by the Fermi resonance coupling coefficient, W, extracted using a two-level model, as well as the experimental intensity ratio, R, of the methyl Fermi resonance band to that of the symmetric stretch. At a 1.0 MeOH mole fraction, W and R values were 10 ± 10 cm-1 and 0.01 ± 0.02, respectively, whereas at a 0.1 mole fraction, W and R increased to 46 ± 4 cm-1 and 0.43 ± 0.16, respectively. This indicates that solvation with acetonitrile effectively tunes the Fermi coupling of methanol vibrations at the silica/liquid interface.
Collapse
Affiliation(s)
- Thomas T Bui
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Luis A Colón
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Luis Velarde
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
3
|
Yang B, Cao X, Lang H, Wang S, Sun C. Study on hydrogen bonding network in aqueous methanol solution by Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 225:117488. [PMID: 31654975 DOI: 10.1016/j.saa.2019.117488] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/07/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
The Raman spectra of aqueous methanol solution with various concentrations were measured at room temperature and atmospheric pressure. We found that the CO stretching vibration mode of methanol showed a significant blue shift at Vm (Vm represents the volume fraction of methanol) >0.4, while the CH symmetric and asymmetric stretching vibration modes exhibited red shift under the same conditions. These results illustrate that the variation of hydrogen bond between methanol and water molecules lead to a phase transition of the methanol-water complex at Vm = 0.4. Furthermore, the red shift of the CH vibration mode indicates that there is no hydrogen bond formed between the CH3 group of methanol and water molecules. In addition, we found that the frequency shift of C-H is affected by the hydrogen bond C-O…H-O formed between methanol and water molecules, and the corresponding theoretical discussion is given. Finally, the phase transition process of methanol-water complex in methanol-water binary solution was given by theoretical analysis.
Collapse
Affiliation(s)
- Bo Yang
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, China
| | - Xianwen Cao
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, China
| | - Hongzhi Lang
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, China
| | - Shenghan Wang
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, China; Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China; State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.
| | - Chenglin Sun
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, China; Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China.
| |
Collapse
|
4
|
|
5
|
|
6
|
Mesele OO, Thompson WH. A "Universal" Spectroscopic Map for the OH Stretching Mode in Alcohols. J Phys Chem A 2017; 121:5823-5833. [PMID: 28715218 DOI: 10.1021/acs.jpca.7b05836] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Empirical maps are presented for the OH stretching vibrations in neat alcohols in which the relevant spectroscopic quantities are expressed in terms of the electric field exerted on the hydrogen atom by the surrounding liquid. It is found, by examination of the four lowest linear alcohols, methanol, ethanol, n-propanol, and n-butanol, that a single map can be used for alcohols with different alkyl groups. This "universal" map is in very good agreement with maps optimized for the individual alcohols but differs from those previously developed for water. This suggests that one map can be used for all alcohols, perhaps even those not examined in the present study. The universal map gives IR lineshapes in good agreement with measured spectra for isotopically dilute methanol and ethanol, while the two-dimensional IR photon echo spectra give results that differ from experiments. The role of non-Condon effects, reorientation dynamics, hydrogen bonding, and spectral diffusion is discussed.
Collapse
Affiliation(s)
- Oluwaseun O Mesele
- Department of Chemistry, University of Kansas , Lawrence, Kansas 66045, United States
| | - Ward H Thompson
- Department of Chemistry, University of Kansas , Lawrence, Kansas 66045, United States
| |
Collapse
|
7
|
Chen L, Zhu W, Lin K, Hu N, Yu Y, Zhou X, Yuan LF, Hu SM, Luo Y. Identification of Alcohol Conformers by Raman Spectra in the C–H Stretching Region. J Phys Chem A 2015; 119:3209-17. [DOI: 10.1021/jp513027r] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | | | | | | | - Yuanqin Yu
- School
of Physics and Material Science, Anhui University, Hefei, Anhui 230039, China
| | | | | | | | | |
Collapse
|
8
|
Cuellar KA, Munroe KL, Magers DH, Hammer NI. Noncovalent Interactions in Microsolvated Networks of Trimethylamine N-Oxide. J Phys Chem B 2013; 118:449-59. [DOI: 10.1021/jp408659n] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kristina A. Cuellar
- Department
of Chemistry and Biochemistry, University of Mississippi, P.O. Box 1848, University, Mississippi 38655, United States
| | - Katherine L. Munroe
- Department
of Chemistry and Biochemistry, Mississippi College, P.O. Box 4036, Clinton, Mississippi 39058, United States
| | - David H. Magers
- Department
of Chemistry and Biochemistry, Mississippi College, P.O. Box 4036, Clinton, Mississippi 39058, United States
| | - Nathan I. Hammer
- Department
of Chemistry and Biochemistry, University of Mississippi, P.O. Box 1848, University, Mississippi 38655, United States
| |
Collapse
|
9
|
Kwac K, Geva E. A Mixed Quantum-Classical Molecular Dynamics Study of anti-Tetrol and syn-Tetrol Dissolved in Liquid Chloroform: Hydrogen-Bond Structure and Its Signature on the Infrared Absorption Spectrum. J Phys Chem B 2013; 117:16493-505. [DOI: 10.1021/jp4080724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kijeong Kwac
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eitan Geva
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
10
|
Kwac K, Geva E. A Mixed Quantum-Classical Molecular Dynamics Study of anti-Tetrol and syn-Tetrol Dissolved in Liquid Chloroform II: Infrared Emission Spectra, Vibrational Excited-State Lifetimes, and Nonequilibrium Hydrogen-Bond Dynamics. J Phys Chem B 2013; 117:14457-67. [DOI: 10.1021/jp408580n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kijeong Kwac
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eitan Geva
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
11
|
Pita I, Hendaoui N, Liu N, Kumbham M, Tofail SAM, Peremans A, Silien C. High resolution imaging with differential infrared absorption micro-spectroscopy. OPTICS EXPRESS 2013; 21:25632-25642. [PMID: 24216788 DOI: 10.1364/oe.21.025632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Although confocal infrared (IR) absorption micro-spectroscopy is well established for far-field chemical imaging, its scope remains restricted since diffraction limits the spatial resolution to values a little above half the radiation wavelength. Yet, the successful implementations of below-the-diffraction limit far-field fluorescence microscopies using saturated irradiation patterns for example for stimulated-emission depletion and saturated structured-illumination suggest the possibility of using a similar optical patterning strategy for infrared absorption mapping at high resolution. Simulations are used to show that the simple mapping of the difference in transmitted/reflected IR energy between a saturated vortex-shaped beam and a Gaussian reference with a confocal microscope affords the generation of high-resolution vibrational absorption images. On the basis of experimentally relevant parameters, the simulations of the differential absorption scheme reveal a spatial resolution better than a tenth of the wavelength for incident energies about a decade above the saturation threshold. The saturated structured illumination concepts are thus expected to be compatible with the establishment of point-like point-spread functions for measuring the absorbance of samples with a scanning confocal microscope recording the differential transmission/reflection.
Collapse
|
12
|
Kwac K, Geva E. Solvation Dynamics of Formylperylene Dissolved in Methanol–Acetonitrile Liquid Mixtures: A Molecular Dynamics Study. J Phys Chem B 2013; 117:9996-10006. [DOI: 10.1021/jp405818f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Kijeong Kwac
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eitan Geva
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
13
|
Sun Y, Pein BC, Dlott DD. Three-Dimensional Spectroscopy of Vibrational Energy in Liquids: Nitromethane and Acetonitrile. J Phys Chem B 2013; 117:15444-51. [DOI: 10.1021/jp405197g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yuxiao Sun
- School of Chemical Sciences, University of Illinois at Urbana—Champaign, Urbana, Illinois
61801, United States
| | - Brandt C. Pein
- School of Chemical Sciences, University of Illinois at Urbana—Champaign, Urbana, Illinois
61801, United States
| | - Dana D. Dlott
- School of Chemical Sciences, University of Illinois at Urbana—Champaign, Urbana, Illinois
61801, United States
| |
Collapse
|
14
|
Kwac K, Geva E. A Mixed Quantum-Classical Molecular Dynamics Study of the Hydroxyl Stretch in Methanol/Carbon Tetrachloride Mixtures III: Nonequilibrium Hydrogen-Bond Dynamics and Infrared Pump–Probe Spectra. J Phys Chem B 2013; 117:7737-49. [DOI: 10.1021/jp403726t] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kijeong Kwac
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eitan Geva
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
15
|
Yu Y, Wang Y, Lin K, Hu N, Zhou X, Liu S. Complete Raman Spectral Assignment of Methanol in the C–H Stretching Region. J Phys Chem A 2013; 117:4377-84. [DOI: 10.1021/jp400886y] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuanqin Yu
- School of Physics and Material
Science, Anhui University, Hefei, Anhui
230039, China
- Hefei National
Laboratory for
Physical Sciences at the Microscale, Department of Chemical
Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuxi Wang
- Hefei National
Laboratory for
Physical Sciences at the Microscale, Department of Chemical
Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ke Lin
- Hefei National
Laboratory for
Physical Sciences at the Microscale, Department of Chemical
Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Naiyin Hu
- Hefei National
Laboratory for
Physical Sciences at the Microscale, Department of Chemical
Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoguo Zhou
- Hefei National
Laboratory for
Physical Sciences at the Microscale, Department of Chemical
Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shilin Liu
- Hefei National
Laboratory for
Physical Sciences at the Microscale, Department of Chemical
Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
16
|
Silien C, Liu N, Hendaoui N, Tofail SAM, Peremans A. A framework for far-field infrared absorption microscopy beyond the diffraction limit. OPTICS EXPRESS 2012; 20:29694-29704. [PMID: 23388797 DOI: 10.1364/oe.20.029694] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A framework is proposed for infrared (IR) absorption microscopy in the far-field with a spatial resolution below the diffraction limit. The sub-diffraction resolution is achieved by pumping a transient contrast in the population of a selected vibrational mode with IR pulses that exhibit alternating central minima and maxima, and by probing the corresponding absorbance at the same wavelength with adequately delayed Gaussian pulses. Simulations have been carried out on the basis of empirical parameters emulating patterned thin films of octadecyltrichlorosilane and a resolution of 250 nm was found when probing the CH₂ stretches at 3.5 μm with pump energies less than ten times the vibrational saturation threshold.
Collapse
Affiliation(s)
- Christophe Silien
- Department of Physics and Energy, and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland.
| | | | | | | | | |
Collapse
|
17
|
Sun Y, Zheng R, Shi Q. Theoretical Study of Raman Spectra of Methanol in Aqueous Solutions: Non-Coincident Effect of the CO Stretch. J Phys Chem B 2012; 116:4543-51. [DOI: 10.1021/jp300178v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuanyuan Sun
- Beijing National
Laboratory for Molecular Sciences,
State Key Laboratory for Structural Chemistry of Unstable and Stable
Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| | - Renhui Zheng
- Beijing National
Laboratory for Molecular Sciences,
State Key Laboratory for Structural Chemistry of Unstable and Stable
Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| | - Qiang Shi
- Beijing National
Laboratory for Molecular Sciences,
State Key Laboratory for Structural Chemistry of Unstable and Stable
Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| |
Collapse
|
18
|
Kwac K, Geva E. Mixed quantum-classical molecular dynamics study of the hydroxyl stretch in methanol/carbon-tetrachloride mixtures II: excited state hydrogen bonding structure and dynamics, infrared emission spectrum, and excited state lifetime. J Phys Chem B 2012; 116:2856-66. [PMID: 22283660 DOI: 10.1021/jp211792j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a mixed quantum-classical molecular dynamics study of the hydrogen-bonding structure and dynamics of a vibrationally excited hydroxyl stretch in methanol/carbon-tetrachloride mixtures. The adiabatic Hamiltonian of the quantum-mechanical hydroxyl is diagonalized on-the-fly to obtain the ground and first-excited adiabatic energy levels and wave functions which depend parametrically on the instantaneous configuration of the classical degrees of freedom. The dynamics of the classical degrees of freedom are determined by Hellmann-Feynman forces obtained by taking the expectation value of the force with respect to the ground or excited vibrational wave functions. Polarizable force fields are used which were previously shown to reproduce the experimental infrared absorption spectrum rather well, for different isotopomers and over a wide composition range [Kwac, K.; Geva, E. J. Phys. Chem. B 2011, 115, 9184]. We show that the agreement of the absorption spectra with experiment can be further improved by accounting for the dependence of the dipole moment derivatives on the configuration of the classical degrees of freedom. We find that the propensity of a methanol molecule to form hydrogen bonds increases upon photoexcitation of its hydroxyl stretch, thereby leading to a sizable red-shift of the corresponding emission spectrum relative to the absorption spectrum. Treating the relaxation from the first excited to the ground state as a nonadiabatic process, and calculating its rate within the framework of Fermi's golden rule and the harmonic-Schofield quantum correction factor, we were able to predict a lifetime which is of the same order of magnitude as the experimental value. The experimental dependence of the lifetime on the transition frequency is also reproduced. Nonlinear mapping relations between the hydroxyl transition frequency and bond length in the excited state and the electric field along the hydroxyl bond axis are established. These mapping relations make it possible to reduce the computational cost of the mixed quantum-classical treatment to that of a fully classical treatment.
Collapse
Affiliation(s)
- Kijeong Kwac
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA.
| | | |
Collapse
|
19
|
Kwac K, Geva E. A mixed quantum-classical molecular dynamics study of the hydroxyl stretch in methanol/carbon tetrachloride mixtures: equilibrium hydrogen-bond structure and dynamics at the ground state and the infrared absorption spectrum. J Phys Chem B 2011; 115:9184-94. [PMID: 21675789 DOI: 10.1021/jp204245z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a mixed quantum-classical molecular dynamics study of the structure and dynamics of the hydroxyl stretch in methanol/carbon tetrachloride mixtures. One of the methanol molecules is tagged, and its hydroxyl stretch is treated quantum-mechanically, while the remaining degrees of freedom are treated classically. The adiabatic Hamiltonian of the quantum-mechanical hydroxyl is diagonalized on-the-fly to obtain the corresponding adiabatic energy levels and wave functions which depend parametrically on the instantaneous configuration of the classical degrees of freedom. The dynamics of the classical degrees of freedom are in turn affected by the quantum-mechanical state of the tagged hydroxyl stretch via the corresponding Hellmann-Feynman forces. The ability of five different force-field combinations to reproduce the experimental absorption infrared spectrum of the hydroxyl stretch is examined for different isotopomers and on a wide range of compositions. It is found that, in addition to accounting for the anharmonic nature of the hydroxyl stretch, one also has to employ polarizable force fields and account for the damping of the polarizability at short distances. The equilibrium ground-state hydrogen-bonding structure and dynamics is analyzed, and its signature on the absorption infrared spectrum of the hydroxyl stretch is investigated in detail. Five different hydroxyl stretch subpopulations are identified and spectrally assigned: monomers (α), hydrogen-bond acceptors (β), hydrogen-bond donors (γ), simultaneous hydrogen-bond donors and acceptors (δ), and simultaneous hydrogen-bond donors and double-acceptors (ε). The fundamental transition frequencies of the α and β subpopulations are found to be narrowly distributed and to overlap, thereby giving rise to a single narrow band whose intensity is significantly diminished by rotational relaxation. The fundamental transition frequency distributions of the γ, δ, and ε subpopulations are found to be broader and to partially overlap, thereby giving rise to a single broad band which is red-shifted relative to the αβ band. The γδε band is also found to be inhomogeneously broadened and unaffected by rotational relaxation. The exchange rates between the different subpopulations and corresponding branching ratios are reported and explained. Finally, nonlinear mapping relations between the hydroxyl transition frequency and bond length and the electric field along the hydroxyl bond axis are established, which can be used to reduce the computational cost of the mixed quantum-classical treatment to that of a purely classical molecular dynamics simulation.
Collapse
Affiliation(s)
- Kijeong Kwac
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | |
Collapse
|
20
|
Sokolov VV. Molecular dynamics simulation of liquid methanol. II. Unified assignment of infrared, raman, and sum frequency generation vibrational spectra in methyl C–H stretching region. J Chem Phys 2011; 134:024510. [DOI: 10.1063/1.3514146] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Sokolov VV. Molecular dynamics simulation of liquid methanol. I. Molecular modeling including C–H vibration and fermi resonance. J Chem Phys 2011; 134:024509. [DOI: 10.1063/1.3514139] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
22
|
Knop S, Jansen TLC, Lindner J, Vöhringer P. On the nature of OH-stretching vibrations in hydrogen-bonded chains: Pump frequency dependent vibrational lifetime. Phys Chem Chem Phys 2011; 13:4641-50. [DOI: 10.1039/c0cp02143a] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Zheng R, Sun Y, Shi Q. Theoretical study of the infrared and Raman line shapes of liquid methanol. Phys Chem Chem Phys 2011; 13:2027-35. [DOI: 10.1039/c0cp01145b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
24
|
Pein BC, Seong NH, Dlott DD. Vibrational Energy Relaxation of Liquid Aryl-Halides X-C6H5 (X = F, Cl, Br, I). J Phys Chem A 2010; 114:10500-7. [DOI: 10.1021/jp105716w] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Brandt C. Pein
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801
| | - Nak-Hyun Seong
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801
| | - Dana D. Dlott
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801
| |
Collapse
|
25
|
Mathew NA, Rickard MA, Kornau KM, Pakoulev AV, Block SB, Yurs LA, Wright JC. Coherent Multidimensional Vibrational Spectroscopy of Representative N-Alkanes. J Phys Chem A 2009; 113:9792-803. [DOI: 10.1021/jp905172p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nathan A. Mathew
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Mark A. Rickard
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Kathryn M. Kornau
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Andrei V. Pakoulev
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Stephen B. Block
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Lena A. Yurs
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - John C. Wright
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
26
|
Zimmermann J, Gundogdu K, Cremeens ME, Bandaria JN, Hwang GT, Thielges MC, Cheatum CM, Romesberg FE. Efforts toward developing probes of protein dynamics: vibrational dephasing and relaxation of carbon-deuterium stretching modes in deuterated leucine. J Phys Chem B 2009; 113:7991-4. [PMID: 19441845 DOI: 10.1021/jp900516c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The spectral position of C-D stretching absorptions in the so-called "transparent window" of protein absorption (1800-2300 cm(-1)) makes them well suited as probes of protein dynamics with high temporal and structural resolution. We have previously incorporated single deuterated amino acids into proteins to site-selectively follow protein folding and ligand binding by steady-state FT IR spectroscopy. Ultimately, our goal is to use C-D bonds as probes in time-resolved IR spectroscopy to study dynamics and intramolecular vibrational energy redistribution (IVR) in proteins. As a step toward this goal, we now present the first time-resolved experiments characterizing the population and dephasing dynamics of selectively excited C-D bonds in a deuterated amino acid. Three differently deuterated, Boc-protected leucines were selected to systematically alter the number of additional C-D bonds that may mediate IVR out of the initially populated bright C-D stretching mode. Three-pulse photon echo experiments show that the steady-state C-D absorption linewidths are broadened by both homogeneous and inhomogeneous effects, and transient grating experiments reveal that IVR occurs on a subpicosecond time scale and is nonstatistical. The results have important implications for the interpretation of steady-state C-D spectra and demonstrate the potential utility of C-D bonds as probes of dynamics and IVR within a protein.
Collapse
|
27
|
Seong NH, Fang Y, Dlott DD. Vibrational Energy Dynamics of Normal and Deuterated Liquid Benzene. J Phys Chem A 2009; 113:1445-52. [DOI: 10.1021/jp809679y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nak-Hyun Seong
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Ying Fang
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Dana D. Dlott
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| |
Collapse
|
28
|
Fang Y, Shigeto S, Seong NH, Dlott DD. Vibrational Energy Dynamics of Glycine, N-Methylacetamide, and Benzoate Anion in Aqueous (D2O) Solution. J Phys Chem A 2008; 113:75-84. [DOI: 10.1021/jp8062228] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ying Fang
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Shinsuke Shigeto
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Nak-Hyun Seong
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Dana D. Dlott
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| |
Collapse
|
29
|
Shigeto S, Pang Y, Fang Y, Dlott DD. Vibrational Relaxation of Normal and Deuterated Liquid Nitromethane. J Phys Chem B 2007; 112:232-41. [PMID: 17685649 DOI: 10.1021/jp074082q] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Anti-Stokes Raman scattering is used to monitor vibrational energy redistribution in the ambient temperature liquids nitromethane (NM-h3) and perdeuterated nitromethane (NM-d3) after ultrafast IR excitation of either the symmetric or asymmetric CH- or CD-stretch transitions. The instantaneous populations of most of the fifteen NM vibrations are determined with good accuracy, and a global fitting procedure with a master equation is used to fit all the data. The pump pulses excite not only CH- or CD-stretches but also certain combinations of bending and nitro stretching fundamentals. The coupled vibrations that comprise the initial state are revealed via the instantaneous rise of the anti-Stokes transients associated with each vibrational fundamental. In contrast to many other polyatomic liquids studied previously, there is little energy exchange among the CH-stretch (or CD-stretch) excitations, which is attributed to the nearly free rotation of the methyl group in NM. The vibrational cooling process, which is the multistep return to a thermalized state, occurs in three stages in both NM-h3 and NM-d3. In the first stage, the parent CH- or CD-stretch decays in a few picoseconds, exciting all lower-energy vibrations. In the second stage, the midrange vibrations decay in 10-15 ps, exciting the lower-energy vibrations. In the third stage, these lower-energy vibrations decay into the bath in tens of picoseconds. The initial excitations are thermalized in approximately 150 ps in NM-h3 and there is little dependence on which CH-stretch is excited. VC is somewhat faster in NM-d3 with more dependence on the initial CD-stretch, taking approximately 100 ps with symmetric CD-stretch excitation and approximately 120 ps with asymmetric CD-stretch excitation. Comparison is made with earlier nonequilibrium molecular dynamics simulations of VC [Kabadi, V. N.; Rice, B. M. Molecular dynamics simulations of normal mode vibrational energy transfer in liquid nitromethane. J. Phys. Chem. A 2004, 108, 532-540]. The simulations do a good job of reproducing the observed VC process and in addition they predicted the slow interconversion among CH-stretch excitations and the slower relaxation of the asymmetric CH-stretch now observed here.
Collapse
Affiliation(s)
- Shinsuke Shigeto
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
30
|
Gündoğdu K, Nydegger MW, Bandaria JN, Hill SE, Cheatum CM. Vibrational relaxation of C-D stretching vibrations in CDCl3, CDBr3, and CDI3. J Chem Phys 2007; 125:174503. [PMID: 17100450 DOI: 10.1063/1.2361288] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We present time-resolved transient grating measurements of the vibrational relaxation rates of the C-D stretching vibrations of deuterated haloforms in benzene and acetone. We compare our results with previous measurements of excited C-H stretches in the same solvents to obtain insight into the solvent effect on the vibrational relaxation. In deuterated molecules, there are more low-order-coupled states and the states are closer in energy to the C-D stretch than in the unlabeled isotopologs. Therefore, the relaxation is faster for the deuterated molecules. The relaxation also shows a significant solvent dependence. Bromoform and iodoform form charge-transfer complexes with both benzene and acetone which enhance the relaxation rate. For chloroform, hydrogen bonding to acetone is expected to be a more favorable interaction. Surprisingly, however, the vibrational relaxation of CDCl(3) is slower in acetone than in benzene.
Collapse
Affiliation(s)
- Kenan Gündoğdu
- Chemistry Department, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
31
|
Pang Y, Deàk JC, Huang W, Lagutchev A, Pakoulev A, Patterson JE, Sechler TD, Wang Z, Dlott DD. Vibrational energy in molecules probed with high time and space resolution. INT REV PHYS CHEM 2007. [DOI: 10.1080/01442350601084091] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Ka BJ, Geva E. Classical vs Quantum Vibrational Energy Relaxation Pathways in Solvated Polyatomic Molecules. J Phys Chem A 2006; 110:13131-8. [PMID: 17149825 DOI: 10.1021/jp063907d] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vibrational energy relaxation (VER) of solvated polyatomic molecules can occur via different pathways. In this paper, we address the question of whether treating VER classically or quantum-mechanically can lead to different predictions with regard to the preferred pathway. To this end, we consider the relaxation of the singly excited asymmetric stretch of a rigid, symmetrical, and linear triatomic molecule (A-B-A) in a monatomic liquid. In this case, VER can occur either directly to the ground state or indirectly via intramolecular vibrational relaxation (IVR) to the symmetric stretch. We have calculated the rates of these two different VER pathways via classical mechanics and the linearized semiclassical (LSC) method. When the mass of the terminal A atoms is significantly larger than that of the central B atom, we find that LSC points to intermolecular VER as the preferred pathway, whereas the classical treatment points to IVR. The origin of this trend reversal appears to be purely quantum-mechanical and can be traced back to the significantly weaker quantum enhancement of solvent-assisted IVR in comparison to that of intermolecular VER.
Collapse
Affiliation(s)
- Being J Ka
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | |
Collapse
|
33
|
Park J, Ha JH, Hochstrasser RM. Multidimensional infrared spectroscopy of the N-H bond motions in formamide. J Chem Phys 2006; 121:7281-92. [PMID: 15473797 DOI: 10.1063/1.1792612] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The heterodyned two-dimensional (2D) IR spectra and equilibrium dynamics of the N-H stretching motion of DCONHD in deuterated formamide, DCOND(2), were studied with 80 fs pulses at 3 microm. The time evolution of the heterodyned 2D IR spectra, pump-probe spectra, and photon echo peak shift demonstrate that interstate dynamics is occurring by relaxation of the original N-H excitation. The N-H vibrational frequency correlation function can be expressed as a sum of three exponentials with correlation times 0.24 ps, 0.8 ps, and 11 ps. The intermediate component is attributed to motions of the N-Hcdots, three dots, centeredO unit involving only slight angular variations of the N-H bond. The slow component is attributed to the structure breaking and making. The anisotropy decay confirmed that the significant angular N-H bond motion occurs on the 11 ps time scale. The fast component, which is the least well determined, might correspond to the modulation of the H-bond distance without angular motion. The correlation coefficient between the pumped and relaxed state distributions was +0.51, implying that the excited state phase memory is only slightly diminished by the relaxation of the N-H excitation. The relaxed modes are concluded to be local to the driven N-H mode.
Collapse
Affiliation(s)
- Jaehun Park
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
34
|
Ka BJ, Geva E. Vibrational Energy Relaxation of Polyatomic Molecules in Liquid Solution via the Linearized Semiclassical Method. J Phys Chem A 2006; 110:9555-67. [PMID: 16884188 DOI: 10.1021/jp062363c] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vibrational energy relaxation (VER) of polyatomic, as opposed to diatomic, molecules can occur via different, often solvent assisted, intramolecular and/or intermolecular pathways. In this paper, we apply the linearized semiclassical (LSC) method for calculating VER rates in the prototypical case of a rigid, symmetrical and linear triatomic molecule (A-B-A) in a monatomic liquid. Starting at the first excited state of either the symmetric or asymmetric stretches, VER can occur either directly to the ground state or indirectly via intramolecular vibrational relaxation (IVR). The VER rate constants for the various pathways are calculated within the framework of the Landau-Teller formalism, where they are expressed in terms of two-time quantum-mechanical correlation functions. The latter are calculated by the LHA-LSC method, which puts them in a "Wignerized" form, and employs a local harmonic approximation (LHA) in order to compute the necessary multidimensional Wigner integrals. Results are reported for the LHL/Ar model of Deng and Stratt [J. Chem. Phys. 2002, 117, 1735], as well as for CO(2) in liquid argon and in liquid neon. The LHA-LSC method is shown to give rise to significantly faster VER and IVR rates in comparison to the classical treatment, particularly at lower temperatures. We also find that the type and extent of the quantum rate enhancement is strongly dependent on the particular VER pathway. Finally, we find that the classical and semiclassical treatments can give rise to opposite trends when it comes to the dependence of the VER rates on the solvent.
Collapse
Affiliation(s)
- Being J Ka
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|
35
|
Liu Y, Lohr LL, Barker JR. Quasiclassical Trajectory Simulations of OH(v) + NO2 → HONO2* → OH(v‘) + NO2: Capture and Vibrational Deactivation Rate Constants. J Phys Chem A 2005; 110:1267-77. [PMID: 16435787 DOI: 10.1021/jp053099a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Quasiclassical trajectory calculations are used to investigate the dynamics of the OH(v) + NO(2) --> HONO(2) --> OH(v') + NO(2) recombination/dissociation reaction on an analytic potential energy surface (PES) that gives good agreement with the known structure and vibrational frequencies of nitric acid. The calculated recombination rate constants depend only weakly on temperature and on the initial vibrational energy level of OH(v). The magnitude of the recombination rate constant is sensitive to the potential function describing the newly formed bond and to the switching functions in the PES that attenuate inter-mode interactions at long range. The lifetime of the nascent excited HONO(2) depends strongly not only on its internal energy but also on the identity of the initial state, in disagreement with statistical theory. This disagreement is probably due to the effects of slow intramolecular vibrational energy redistribution (IVR) from the initially excited OH stretching mode. The vibrational energy distribution of product OH(v') radicals is different from statistical distributions, a result consistent with the effects of slow IVR. Nonetheless, the trajectory results predict that vibrational deactivation of OH(v) via the HONO(2) transient complex is approximately 90% efficient, almost independent of initial OH(v) vibrational level, in qualitative agreement with recent experiments. Tests are also carried out using the HONO(2) PES, but assuming the weaker O-O bond strength found in HOONO (peroxynitrous acid). In this case, the predicted vibrational deactivation efficiencies are significantly lower and depend strongly on the initial vibrational state of OH(v), in disagreement with experiments. This disagreement suggests that the actual HOONO PES may contain more inter-mode coupling than found in the present model PES, which is based on HONO(2). For nitric acid, the measured vibrational deactivation rate constant is a useful proxy for the recombination rate, but IVR randomization of energy is not complete, suggesting that the efficacy of the proxy method must be evaluated on a case-by-case basis.
Collapse
Affiliation(s)
- Yong Liu
- Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109-2143, USA
| | | | | |
Collapse
|
36
|
Liu Y, Lohr LL, Barker JR. Quasi-Classical Trajectory Simulations of Intramolecular Vibrational Energy Redistribution in HONO2 and DONO2. J Phys Chem B 2005; 109:8304-9. [PMID: 16851973 DOI: 10.1021/jp047436b] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By use of an analytic potential energy surface developed in this work for nitric acid, the quasi-classical trajectory method was used to simulate intramolecular vibrational energy redistribution (IVR). A method was developed for monitoring the average vibrational energy in the OH (or OD) mode that uses the mean-square displacement of the bond length calculated during the trajectories. This method is effective for both rotating and nonrotating molecules. The calculated IVR time constant for HONO(2) decreases exponentially with increasing excitation energy, is almost independent of rotational temperature, and is in excellent agreement with the experimental determination (Bingemann, D.; Gorman, M. P.; King, A. M.; Crim, F. F. J. Chem.Phys. 1997, 107, 661). In DONO(2), the IVR time constants show more complicated behavior with increasing excitation energy, apparently due to 2:1 Fermi-resonance coupling with lower frequency modes. This effect should be measurable in experiments.
Collapse
Affiliation(s)
- Yong Liu
- Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109-2143, USA
| | | | | |
Collapse
|
37
|
Maekawa H, Ohta K, Tominaga K. Vibrational Population Relaxation of the −NCN− Antisymmetric Stretching Mode of Carbodiimide Studied by the Infrared Transient Grating Method. J Phys Chem A 2004. [DOI: 10.1021/jp047870d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroaki Maekawa
- Graduate School of Science and Technology, CREST, JST, and Molecular Photoscience Research Center, Kobe University, Nada, Kobe 657-8501, Japan
| | - Kaoru Ohta
- Graduate School of Science and Technology, CREST, JST, and Molecular Photoscience Research Center, Kobe University, Nada, Kobe 657-8501, Japan
| | - Keisuke Tominaga
- Graduate School of Science and Technology, CREST, JST, and Molecular Photoscience Research Center, Kobe University, Nada, Kobe 657-8501, Japan
| |
Collapse
|
38
|
Pearson BJ, Bucksbaum PH. Control of Raman lasing in the nonimpulsive regime. PHYSICAL REVIEW LETTERS 2004; 92:243003. [PMID: 15245081 DOI: 10.1103/physrevlett.92.243003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Indexed: 05/24/2023]
Abstract
We explore coherent control of stimulated Raman scattering in the nonimpulsive regime. Optical pulse shaping of the coherent pump field leads to control over the stimulated Raman output. A model of the control mechanism is investigated.
Collapse
Affiliation(s)
- B J Pearson
- FOCUS Center and Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1120, USA
| | | |
Collapse
|
39
|
Nibbering ETJ, Elsaesser T. Ultrafast Vibrational Dynamics of Hydrogen Bonds in the Condensed Phase. Chem Rev 2004; 104:1887-914. [PMID: 15080715 DOI: 10.1021/cr020694p] [Citation(s) in RCA: 422] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Erik T J Nibbering
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Strasse 2 A, D-12489 Berlin, Germany
| | | |
Collapse
|
40
|
Yoo HS, DeWitt MJ, Pate BH. Vibrational Dynamics of Terminal Acetylenes: II. Pathway for Vibrational Relaxation in Gas and Solution. J Phys Chem A 2004. [DOI: 10.1021/jp027546n] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hyun S. Yoo
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904
| | - Merrick J. DeWitt
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904
| | - Brooks H. Pate
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904
| |
Collapse
|
41
|
Yoo HS, DeWitt MJ, Pate BH. Vibrational Dynamics of Terminal Acetylenes: I. Comparison of the Intramolecular Vibrational Energy Redistribution Rate of Gases and the Total Relaxation Rate of Dilute Solutions at Room Temperature. J Phys Chem A 2004. [DOI: 10.1021/jp027543a] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Hyun S. Yoo
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904
| | - Merrick J. DeWitt
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904
| | - Brooks H. Pate
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904
| |
Collapse
|
42
|
Assmann J, von Benten R, Charvat A, Abel B. Intra- and Intermolecular Vibrational Energy Relaxation of C−H Overtone Excited Benzonitrile, para-Difluorobenzene, and Pyrazine in Solution. J Phys Chem A 2003. [DOI: 10.1021/jp027368y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. Assmann
- Institut für Physikalische Chemie der Universität Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany
| | - R. von Benten
- Institut für Physikalische Chemie der Universität Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany
| | - A. Charvat
- Institut für Physikalische Chemie der Universität Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany
| | - B. Abel
- Institut für Physikalische Chemie der Universität Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany
| |
Collapse
|
43
|
Assmann J, Benten RV, Charvat A, Abel B. Vibrational Energy Relaxation of Selectively Excited Aromatic Molecules in Solution: The Effect of a Methyl Rotor and Its Chemical Substitution. J Phys Chem A 2003. [DOI: 10.1021/jp026817r] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J. Assmann
- Institut für Physikalische Chemie der Universität Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany
| | - R. v. Benten
- Institut für Physikalische Chemie der Universität Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany
| | - A. Charvat
- Institut für Physikalische Chemie der Universität Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany
| | - B. Abel
- Institut für Physikalische Chemie der Universität Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany
| |
Collapse
|
44
|
Deng Y, Stratt RM. Vibrational energy relaxation of polyatomic molecules in liquids: The solvent’s perspective. J Chem Phys 2002. [DOI: 10.1063/1.1489417] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
45
|
Wang Z, Pakoulev A, Dlott DD. Watching vibrational energy transfer in liquids with atomic spatial resolution. Science 2002; 296:2201-3. [PMID: 12077411 DOI: 10.1126/science.1071293] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ultrafast spectroscopy was used to study vibrational energy transfer between vibrational reporter groups on different parts of a molecule in a liquid. When OH stretching vibrations of different alcohols were excited by mid-infrared laser pulses, vibrational energy was observed to move through intervening CH2 or CH groups, taking steps up and down in energy, ending up at terminal CH3 groups. For each additional CH2 group in the path between OH and CH3, the time for vibrational energy transfer increased by about 0.4 picosecond.
Collapse
Affiliation(s)
- Zhaohui Wang
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Box 01-6 CLSL, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | | | | |
Collapse
|
46
|
|
47
|
Cheatum CM, Heckscher MM, Bingemann D, Crim FF. CH2I2 fundamental vibrational relaxation in solution studied by transient electronic absorption spectroscopy. J Chem Phys 2001. [DOI: 10.1063/1.1404393] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
|
49
|
Iwaki LK, Dlott DD. Three-Dimensional Spectroscopy of Vibrational Energy Relaxation in Liquid Methanol. J Phys Chem A 2000. [DOI: 10.1021/jp002246w] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lawrence K. Iwaki
- Department of Chemistry, University of Illinois at Urbana-Champaign, Box 01-6 CLSL, 600 South Mathews Avenue, Urbana, Illinois 61801
| | - Dana D. Dlott
- Department of Chemistry, University of Illinois at Urbana-Champaign, Box 01-6 CLSL, 600 South Mathews Avenue, Urbana, Illinois 61801
| |
Collapse
|
50
|
Ultrafast vibrational energy redistribution within C–H and O–H stretching modes of liquid methanol. Chem Phys Lett 2000. [DOI: 10.1016/s0009-2614(00)00356-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|