1
|
Nihill KJ, Hund ZM, Muzas A, Díaz C, Del Cueto M, Frankcombe T, Plymale NT, Lewis NS, Martín F, Sibener SJ. Experimental and theoretical study of rotationally inelastic diffraction of H2(D2) from methyl-terminated Si(111). J Chem Phys 2016; 145:084705. [PMID: 27586939 DOI: 10.1063/1.4961257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fundamental details concerning the interaction between H2 and CH3-Si(111) have been elucidated by the combination of diffractive scattering experiments and electronic structure and scattering calculations. Rotationally inelastic diffraction (RID) of H2 and D2 from this model hydrocarbon-decorated semiconductor interface has been confirmed for the first time via both time-of-flight and diffraction measurements, with modest j = 0 → 2 RID intensities for H2 compared to the strong RID features observed for D2 over a large range of kinematic scattering conditions along two high-symmetry azimuthal directions. The Debye-Waller model was applied to the thermal attenuation of diffraction peaks, allowing for precise determination of the RID probabilities by accounting for incoherent motion of the CH3-Si(111) surface atoms. The probabilities of rotationally inelastic diffraction of H2 and D2 have been quantitatively evaluated as a function of beam energy and scattering angle, and have been compared with complementary electronic structure and scattering calculations to provide insight into the interaction potential between H2 (D2) and hence the surface charge density distribution. Specifically, a six-dimensional potential energy surface (PES), describing the electronic structure of the H2(D2)/CH3-Si(111) system, has been computed based on interpolation of density functional theory energies. Quantum and classical dynamics simulations have allowed for an assessment of the accuracy of the PES, and subsequently for identification of the features of the PES that serve as classical turning points. A close scrutiny of the PES reveals the highly anisotropic character of the interaction potential at these turning points. This combination of experiment and theory provides new and important details about the interaction of H2 with a hybrid organic-semiconductor interface, which can be used to further investigate energy flow in technologically relevant systems.
Collapse
Affiliation(s)
- Kevin J Nihill
- The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, USA
| | - Zachary M Hund
- The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, USA
| | - Alberto Muzas
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Cristina Díaz
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Marcos Del Cueto
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Terry Frankcombe
- School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Canberra ACT 2610, Australia
| | - Noah T Plymale
- Division of Chemistry and Chemical Engineering, Beckman Institute and Kavli Nanoscience Institute, California Institute of Technology, 210 Noyes Laboratory, 127-72, Pasadena, California 91125, USA
| | - Nathan S Lewis
- Division of Chemistry and Chemical Engineering, Beckman Institute and Kavli Nanoscience Institute, California Institute of Technology, 210 Noyes Laboratory, 127-72, Pasadena, California 91125, USA
| | - Fernando Martín
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - S J Sibener
- The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
2
|
KROES GEERTJAN, SOMERS MARKF. SIX-DIMENSIONAL DYNAMICS OF DISSOCIATIVE CHEMISORPTION OF H2 ON METAL SURFACES. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633605001647] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The theory of time-dependent quantum dynamics of dissociative chemisorption of hydrogen on metal surfaces is reviewed, in the framework of electronically adiabatic scattering from static surfaces. Four implementations of the time-dependent wave packet (TDWP) method are discussed. In the direct product pseudo-spectral and the spherical harmonics pseudo-spectral methods, no use is made of the symmetry associated with the surface unit cell. This symmetry is exploited by the symmetry adapted wave packet and the symmetry adapted pseudo-spectral (SAPS) method, which are efficient for scattering at normal incidence. The SAPS method can be employed for potential energy surfaces of general form. Comparison to experiment shows that the TDWP method yields good, but not yet excellent, quantitative accuracy for dissociation of (ν = 0, j = 0) H 2 if the calculations are based on accurately fitted density functional theory calculations that are performed using the generalized gradient approximation. The influence of the molecule's vibration (rotation) is well (reasonably well) described. The theory does not yet yield quantitatively accurate results for rovibrationally inelastic scattering. The theory has helped with the interpretation of existing experimental results, for instance, by solving a parodox regarding the corrugation of Pt(111) as seen by reacting and scattering H 2. The theory has also provided some exciting new predictions, for instance, concerning where on the surface of Cu(100) H2 reacts depending on its vibrational state. Future theoretical studies of H 2 reacting on metal surfaces will likely be aimed at validating GGAs for molecule-surface interactions, and understanding trends in collisions of H 2 with complex metal surfaces.
Collapse
Affiliation(s)
- GEERT-JAN KROES
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden, University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - MARK F. SOMERS
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden, University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
3
|
Barredo D, Laurent G, Nieto P, Farías D, Miranda R. High-resolution elastic and rotationally inelastic diffraction of D2 from NiAl(110). J Chem Phys 2010; 133:124702. [DOI: 10.1063/1.3479587] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Daniel Barredo
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
4
|
Laurent G, Barredo D, Farías D, Miranda R, Díaz C, Rivière P, Somers MF, Martín F. Experimental and theoretical study of rotationally inelastic diffraction of D2 from NiAl(110). Phys Chem Chem Phys 2010; 12:14501-7. [DOI: 10.1039/c0cp00431f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Rivière P, Busnengo HF, Martín F. Adsorption and scattering of H2 and D2 by NiAl(110). J Chem Phys 2005; 123:074705. [PMID: 16229608 DOI: 10.1063/1.1999588] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We present quasiclassical dynamics calculations of H2 and D2 scattering by the NiAl(110) surface using a recently proposed six-dimensional potential-energy surface (PES) obtained from density-functional theory calculations. The results for dissociative adsorption confirm several experimental predictions using (rotationally hot) D2 beams, namely, the existence of a dissociation barrier, the small isotopic effect, the importance of vibrational enhancement, and the existence of normal energy scaling. The latter conclusion shows that normal energy scaling is not necessarily associated with weak corrugated surfaces. The results for rotationally elastic and inelastic diffractions are also in reasonable agreement with experiment, but they show that many more diffractive transitions are responsible for the observed structures than previously assumed. This points to the validity of the PES recently proposed [P. Riviere, H. F. Busnengo, and F. Martin, J. Chem. Phys. 121, 751 (2004)] to describe dissociative adsorption as well as rotationally elastic and inelastic diffractions in the H2NiAl(110) system.
Collapse
Affiliation(s)
- P Rivière
- Departamento de Química, Facultad de Ciencias C-9, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | |
Collapse
|
6
|
Riviere P, Busnengo HF, Martin F. Density functional theory study of H and H2 interacting with NiAl(110). J Chem Phys 2004; 121:751-60. [PMID: 15260601 DOI: 10.1063/1.1747970] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present results of extensive density functional theory (DFT) calculations for H and H2 interacting with NiAl(110). Continuous representations of the full dimensional potential energy surface (PES) for the H/NiAl(110) and H2/NiAl(110) systems are obtained by interpolation of the DFT results using the corrugation reducing procedure. We find a minimum activation energy barrier of approximately 300 meV for dissociative adsorption of H2, which is consistent with the energy threshold obtained in molecular beam experiments for H2 (nu=0). We explain vibrational enhancement observed in experiments as the consequence of vibrational softening in the entrance channel over the most reactive surface site. The H2/NiAl(110) PES shows a high surface site selectivity: for energies up to 0.1 eV above threshold, H2 adsorption can only take place around top-Ni sites (within a circle of radius approximately 0.3 A). A strong energetic corrugation is observed: energy barriers for dissociation vary by more than 1 eV between the most and the least reactive sites. In contrast, geometric corrugation is much less pronounced and comparable to that of low index single metal surfaces like Cu or Pt.
Collapse
Affiliation(s)
- P Riviere
- Departamento de Quimica, Facultad de Ciencias C-9, Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | | | | |
Collapse
|